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Objectives: This study aimed to extend an epidemiological model (SEIHFR) to analyze epidemic trends, 
and evaluate intervention efficacy. 
Methods: SEIHFR was modified to examine disease transmission dynamics after vaccination for the 
Ebola outbreak. Using existing data from Liberia, sensitivity analysis of various epidemic scenarios was 
used to inform the model structure, estimate the basic reproduction number 
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NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Ebola virus disease (EVD) is an extremely infectious disease 
and can be fatal to humans [1,2]. The virus spreads through 
direct contact with an infected person or their bodily fluids 
(through broken skin, mucus, fluids, and contaminated objects 
such as syringes or needles). The Ebola vaccination is expected 
to be the most promising treatment for preventing an Ebola 
outbreak. 

Ebola vaccine candidates have been developed in the last 
decade, but none have yet been approved for clinical use. 
During 2014-2015, trials of candidate vaccines for EVD were 
fast-tracked in response to the unprecedented EVD epidemic 

in West Africa. Interim results from the Guinea Ebola ring 
vaccination trial suggested that the vaccine could have a 
high level of efficacy [3-5]. Rings, i.e., closest contacts of 
newly infected cases, defined as the contacts, and contacts 
of contacts, of those confirmed EVD cases, gave a cluster of 
contacts. A modeling study [6] suggested that implementation 
of a ring vaccination strategy could supplement case isolation 
and contact tracing, to reduce transmission. However, if there 
were many cases not in the known transmission chains, as 
in West Africa in early 2014, the results of a stochastic model 
[7] using individual-level transmission data suggest that ring 
vaccination might be insufficient to contain the outbreak, 
and mass vaccination or hybrid strategies involving mass and 
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ring vaccination, might need to be considered. It has been 
reported that using a spatially explicit agent-based model 
of EVD transmission (in a region of Sierra Leone), numerical 
estimates for the effectiveness of ring vaccination by varying 
the ring definition (contacts, contacts of contacts, and spatial 
components), as well as the performance of ring vaccination 
assuming different levels of reproduction number and contact 
tracing [8].  However, the efficacy of this, and the likely impact 
on a large, Ebola epidemic such as in West Africa, remains 
unclear. Simulation and forecasting of the impact of different 
vaccination strategies may provide important information in 
developing public health strategies. 

In this paper, the SEIHFR epidemic model [9,10] was modified 
to study the spread of Ebola by intervention (vaccination) 
and incorporating contact tracing [11,12]. Different from the 
ring vaccination model [6], the effectiveness of vaccination 
is modeled to directly reduce the numbers of susceptible 
people in a population. a thorough mathematical analysis of 
the SEIHFR model was conducted and the transmission rates 
due to contact in the community, hospitals, and funerals, as 
well as the intervention time to best fit the data of the 2014 
Ebola outbreak in Liberia were estimated. Based on the fitted 
model, a sensitive analysis on the scenarios of different levels 
of vaccination to Ebola in Liberia 2014 was performed while 
keeping other parameters. The threshold of the percentage of 
the initial vaccinated population to cease the Ebola outbreak 
was determined. From numerical simulation, it was calculated 
that if more than 48.74% of the population in Liberia were 
immunized, the effective reproduction number would be 
less than 1 and the outbreak would be under control. Some 
comments are made to improve the vaccination effectiveness 
for the randomized mass vaccination strategy and ring 
vaccination strategy. Although it is well known that the time to 
intervention is an important parameter, the scenario analysis 
on intervention time provides some quantified information for 
controlling the size of an epidemic. 

Mathematical Models and Stability Analysis 

There are many studies on Ebola outbreaks, with some 
using mathematical modeling [12-19]. Through mathematical 
modeling of the epidemiological distribution and transmission 
pattern of EVD during the African outbreak, many useful 
insights can be obtained to determine how these intervention 
measures affect the total number of infected individuals. 
This would lead to the development of more effective control 
and prevention measures for future outbreaks. Different 
mathematical models have been studied to provide valuable 
information for better understanding of EVD outbreaks, for 
example the SEIR model (Susceptible, Exposed, Infective, 

Removed) [20], the SEIHFR model (Susceptible, Exposed, 
Infective, Hospitalized, Funeral, Removed) [9,10,21] and many 
others [12,13,17-19,22]. These models use Ebola data to identify 
the parameters involved in transmission rates, to estimate 
the average number of secondary infections generated by a 
typical infected case, in its entire period of infectiousness, in a 
completely susceptible population, and this quantity is called 

the basic reproduction number which is denoted 
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. These 
constructed models were well fitted and were demonstrated 
to be effective for predictions. However, the different 
transmission patterns of infectious diseases could be due to 
the unique settings of transmission in the community, in the 
hospital, during burial ceremonies, and due to the availability 
of licensed Ebola virus vaccines as well as pre- and post-
exposure treatments. 

Fisman et al [16] used a simple, 2 parameter mathematical 

model of epidemic growth and control to estimate 
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 which 
was between 1.6 and 2.0 at the early stages of the 2014 Ebola 
outbreak in Liberia. Althaus [13] applied a SEIR model with 
time-dependency of the reproduction number, to capture 
the effects of control interventions by using the data of each 

country in West Africa from March 2014 to August 2014. 
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was estimated to be 1.51 for Guinea, 2.53 for Sierra Leone and 
1.59 for Liberia. Gomes et al [17] used the Global Epidemic and 
Mobility Model to evaluate the risk of international spread, and 
the basic reproduction number ranged from 1.5 to 2.0. 

Moreover, Rivers et al [21] used World Health Organization 
(WHO) data from Liberia and Sierra Leone between March 
to October 2014, to parameterize a SEIHFR model, following 
the same model by Legrand et al [10]. They used this model 
to forecast the progression of the epidemic up to December 
2014, as well as forecasting the efficacy of several interventions 
including increased contact tracing, improved infection 
control practices, and the use of a hypothetical pharmaceutical 
intervention to improve survival in hospitalized patients. 
There have been studies [2,14,23] and a review [24] that have 
presented epidemiological parameter estimates of the 2014 
Ebola outbreak in West Africa.  

1. SEIHFR model

The SEIHFR model has been widely cited [10]. Its underlying 
assumptions are made regarding the relationship between 
the overall waiting time in the infectious state, and the 
waiting times from onset to hospitalization, recovery without 
hospitalization, and death without hospitalization. These 
assumptions have been reviewed in detail [9,11] and a simpler 
model, which is equivalent to the Legrand model is proposed 
[9]. The SEIHFR model consists of the following compartments 
of populations in time t (Figure 1).

The “ring vaccination” strategy involves vaccinating anyone 
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who has come into contact with a person infected with Ebola, 
as well as contacts of theirs. This strategy was used in an 
experimental Ebola vaccination in Guinea in March 2016 and 
was found to be highly effective in preventing Ebola infection 
[7,8,25]. Vaccination was incorporated into the SEIHFR model 
framework by deriving a link between vaccination and contact 
tracing. The Contact tracing process for Ebola consisted of 
3 basic elements; contact identification, contact listing and 
contact follow-up [11]. In order to model this process, the 
following assumptions were made in addition to the base 
SEIHFR model. Reported cases from infectious, hospitalized or 
contaminated deceased cases, triggered contact tracing and 
ring vaccination. In addition, the reported cases that triggered 
ring vaccination were not removed from their corresponding 
cases, but ring vaccination was applied to contacts and contacts 
of contacts.  The probability  accounted for unreported cases 
and reported cases that did not trigger contact tracing and ring 
vaccination. The probability (1- ) accounted for the reported 
cases that triggered ring vaccinations and no secondary cases 
that were caused by them. 

The number of susceptible individuals removed due to ring 
vaccination at time t has the following formula: 

 is the average number of contacts traced per reported case 
that triggered contact tracing.

 is the rate of vaccination and/or isolation of the traced 

contacts. 
 =  ×  ×(1- ) is the average number of  removal 

susceptible individuals who were successfully traced/
vaccinated/isolated per reported case. The total removal 
number is in the mass-action form 
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the model parameters as long as the number of total cases was relatively small. In fact, the true mass-

action assumption 𝑆𝑆𝑆𝑆
𝑁𝑁𝑁𝑁

 was used which made the model parameters independent of 𝑁𝑁𝑁𝑁. In Liberia, the cases 

that were reported on June 2, 2014 were the first new cases since April 7, 2014. To fit the model for 

Liberia, the starting date was June 2, 2014 with 19 confirmed total cases and 9 confirmed total deaths, 

which were used as the initial values 𝐶𝐶𝐶𝐶𝑎𝑎𝑎𝑎(0) and 𝐶𝐶𝐶𝐶𝑑𝑑𝑑𝑑(0). By using the optimization tool “lsqnonlin” in 

Matlab R2016b, parameters were estimated (Table 2). The deterministic model fitted well for Liberia 

(Figure 2).

4. A scenario analysis on the vaccination

In the fitted base model in this study, 𝜈𝜈𝜈𝜈 (the average number of removals [susceptible individuals 

away due to vaccination] per infected case) was assumed to be 0, (1 − 𝜁𝜁𝜁𝜁) (the reducing rate of infected 

cases due to vaccination) was assumed to be 0 (𝜁𝜁𝜁𝜁 = 1), and 𝜇𝜇𝜇𝜇 was assumed to be 1 (no randomized 

vaccination before Ebola outbreak).  The potential impact of vaccination against Ebola was evaluated

under different assumptions around the values 𝜈𝜈𝜈𝜈, 𝜁𝜁𝜁𝜁 and initial percentage (1 − 𝜇𝜇𝜇𝜇) of the vaccinated 

population, while keeping the other estimated parameters the same.

5. Randomized mass vaccination before Ebola outbreak 
Formula 17 (Appendix) for the basic reproduction number ℜ0:

ℜ0 =  
𝜁𝜁𝜁𝜁𝜇𝜇𝜇𝜇
∆𝑖𝑖𝑖𝑖
𝛽𝛽𝛽𝛽𝐼𝐼𝐼𝐼 +

𝜁𝜁𝜁𝜁𝜇𝜇𝜇𝜇𝛾𝛾𝛾𝛾ℎ𝜃𝜃𝜃𝜃1
Δ𝑖𝑖𝑖𝑖∆ℎ

𝛽𝛽𝛽𝛽𝐻𝐻𝐻𝐻 +
𝜁𝜁𝜁𝜁𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇
𝛾𝛾𝛾𝛾𝑓𝑓𝑓𝑓

𝛽𝛽𝛽𝛽𝐹𝐹𝐹𝐹

which indicates that if sufficient fractions of population are immunized, the Ebola epidemic should not 

happen. In the appendix, it was shown that the disease epidemic was predicted to decline when ℜ0 < 1,

and the disease spread would increase when ℜ0 > 1. By corollary 5.4, when random and continuous 

vaccination strategies for susceptible population  were undertaken,  the minimum effective vaccination 

rate 𝑟𝑟𝑟𝑟𝜈𝜈𝜈𝜈 = ℜ0−1
ℜ0

and the Ebola epidemic, would be under control if the initial vaccinated rate of the total 

population was greater than 𝑟𝑟𝑟𝑟𝜈𝜈𝜈𝜈. According the estimated value in this study (Table 2), if 1 − 𝜇𝜇𝜇𝜇 >

 to avoid negative 
compartments. 

In this context, a paradigm for the process of ring vaccination 
was considered: 1) identification of contacts and contacts of 
contacts of reported cases that triggered a ring vaccination; 
2) vaccination of contacts and contacts of contacts where 
no secondary cases were caused by these contacts. This 
requires a high standard in public health work for contact 
tracing, isolation, community engagement and availability of 
effective vaccines [7]. Although  and  are not independent 
of each other,   can have different values for same  due to the 
variables  and ; scenarios analysis can be conducted based 
on the values  and  to find out the impact of vaccination. 

The only way a person can leave the susceptible group is 
to become infected or immunized. The only way a person 
can leave the infected group is to be hospitalized/recovered/
removed from the disease. Once a person has recovered, the 
person has immunity. The SEIHFR model is as follows:

N is the size of the population.  is the transmission 
rate in the community.  is the transmission rate after 
hospitalization.  is the transmission rate during traditional 
burial. The 1/  is the mean duration of incubation period. The 
1/  is the average overall time in the I compartment, and 1/  is 
the average overall time in the H compartment, which can be 
computed as follows:

 

Figure 1. Schematic diagram of the model compartments and 
variables.
S(t): susceptible individuals who can be infected by Ebola virus 
following contact with infectious cases (Figure 1a), or who can be 
immunized (Figure 1i).
E(t): exposed individuals who have been infected by Ebola virus but 
are not yet infectious or symptomatic (during incubation period).
I(t): symptomatic and infectious individuals in the community.
H(t): hospitalized Ebola cases who are infectious.
F(t): dead Ebola cases who may transmit the disease before safe 
burial.
R(t): individuals removed from the chain of  transmission 
[immunized or isolated without causing a new case (Figure 1i), 
cured (Figure 1f, 1g) or dead (Figure 1e)].
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𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

=  𝛾𝛾𝛾𝛾ℎ𝜃𝜃𝜃𝜃1𝐼𝐼𝐼𝐼 − 𝜔𝜔𝜔𝜔𝐻𝐻𝐻𝐻, (4)
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only way a person can leave the infected group is to be hospitalized/recovered/removed from the disease. 

Once a person has recovered, the person has immunity. The SEIHFR model is as follows:

𝑑𝑑𝑑𝑑𝑆𝑆𝑆𝑆
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= − 𝜁𝜁𝜁𝜁
𝑁𝑁𝑁𝑁

(𝛽𝛽𝛽𝛽𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼 + 𝛽𝛽𝛽𝛽𝐻𝐻𝐻𝐻𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻 + 𝛽𝛽𝛽𝛽𝐹𝐹𝐹𝐹𝑆𝑆𝑆𝑆𝐹𝐹𝐹𝐹) − 𝜈𝜈𝜈𝜈 𝑆𝑆𝑆𝑆
𝑁𝑁𝑁𝑁

(𝐼𝐼𝐼𝐼 + 𝐻𝐻𝐻𝐻 + 𝐹𝐹𝐹𝐹), (1)

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝜁𝜁𝜁𝜁
𝑁𝑁𝑁𝑁

(𝛽𝛽𝛽𝛽𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼 + 𝛽𝛽𝛽𝛽𝐻𝐻𝐻𝐻𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻 + 𝛽𝛽𝛽𝛽𝐹𝐹𝐹𝐹𝑆𝑆𝑆𝑆𝐹𝐹𝐹𝐹) − 𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼, (2)

𝑑𝑑𝑑𝑑𝐼𝐼𝐼𝐼
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

=  𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼 − 𝛾𝛾𝛾𝛾𝐼𝐼𝐼𝐼, (3)
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𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

=  𝛾𝛾𝛾𝛾ℎ𝜃𝜃𝜃𝜃1𝐼𝐼𝐼𝐼 − 𝜔𝜔𝜔𝜔𝐻𝐻𝐻𝐻, (4)
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𝜁𝜁𝜁𝜁 to find out the impact of vaccination. 
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𝑑𝑑𝑑𝑑𝐹𝐹𝐹𝐹
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

=  𝛾𝛾𝛾𝛾𝑑𝑑𝑑𝑑(1 − 𝜃𝜃𝜃𝜃1)𝛿𝛿𝛿𝛿1𝐼𝐼𝐼𝐼 + 𝛾𝛾𝛾𝛾𝑑𝑑𝑑𝑑ℎ𝛿𝛿𝛿𝛿2𝐻𝐻𝐻𝐻 − 𝛾𝛾𝛾𝛾𝑓𝑓𝑓𝑓𝐹𝐹𝐹𝐹, (5)

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

=  𝛾𝛾𝛾𝛾𝑖𝑖𝑖𝑖(1 − 𝜃𝜃𝜃𝜃1)(1 − 𝛿𝛿𝛿𝛿1)𝐼𝐼𝐼𝐼 + 𝛾𝛾𝛾𝛾𝑖𝑖𝑖𝑖ℎ(1 − 𝛿𝛿𝛿𝛿2)𝐻𝐻𝐻𝐻 + 𝛾𝛾𝛾𝛾𝑓𝑓𝑓𝑓𝐹𝐹𝐹𝐹 + 𝜈𝜈𝜈𝜈 𝑆𝑆𝑆𝑆
𝑁𝑁𝑁𝑁

(𝐼𝐼𝐼𝐼 + 𝐻𝐻𝐻𝐻 + 𝐹𝐹𝐹𝐹). (6)

𝑁𝑁𝑁𝑁 is the size of the population. 𝛽𝛽𝛽𝛽𝐼𝐼𝐼𝐼 is the transmission rate in the community. 𝛽𝛽𝛽𝛽𝐻𝐻𝐻𝐻 is the 

transmission rate after hospitalization. 𝛽𝛽𝛽𝛽𝐹𝐹𝐹𝐹 is the transmission rate during traditional burial. 1/𝛼𝛼𝛼𝛼 is the 

mean duration of incubation period. 1/𝛾𝛾𝛾𝛾  is the average overall time in the 𝐼𝐼𝐼𝐼 compartment, and 1/𝜔𝜔𝜔𝜔 is the 

average overall time in the 𝐻𝐻𝐻𝐻 compartment, which can be computed as follows:

1/𝛾𝛾𝛾𝛾ℎ is the mean duration between onset of symptoms and hospitalization.  1/𝛾𝛾𝛾𝛾𝑖𝑖𝑖𝑖 is the mean 

duration of the infectious period for patients who survived their illness. 1/𝛾𝛾𝛾𝛾𝑑𝑑𝑑𝑑 is the mean duration of the 

infectious period for patients who died. 1/𝛾𝛾𝛾𝛾𝑓𝑓𝑓𝑓 is the mean duration of the infectious period between death 

and burial. 𝜃𝜃𝜃𝜃1 is computed in order that θ％ of infectious cases are hospitalized. 𝛿𝛿𝛿𝛿1 and 𝛿𝛿𝛿𝛿2 are computed 

to obtain a case fatality ratio at δ.  1
𝛾𝛾𝛾𝛾𝑖𝑖𝑖𝑖ℎ

= 1
𝛾𝛾𝛾𝛾𝑖𝑖𝑖𝑖
− 1

𝛾𝛾𝛾𝛾ℎ
and 1

𝛾𝛾𝛾𝛾𝑑𝑑𝑑𝑑ℎ
= 1

𝛾𝛾𝛾𝛾𝑑𝑑𝑑𝑑
− 1

𝛾𝛾𝛾𝛾ℎ
. Table 1 shows more information 

about the parameters and more details of derivation of these differential equations have been previously 

described explaining distribution of people across different paths [9,21].

The “randomized mass vaccination” strategy can be used before an Ebola outbreak. By 

vaccinating a percentage of whole population randomly (have the same interaction with the vaccinated 

and non-vaccinated population), the initial susceptible population decreases and it reduces the force of 

infection (rate at which a susceptible person becomes infected). Let (1 − 𝜇𝜇𝜇𝜇) be the percentage of whole 

population that was initially vaccinated randomly before an Ebola outbreak. Scenarios analysis was

conducted based on the percentages of the initial vaccinated population. This parameter does not occur in 
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N is the size of the population. βI is the transmission rate in the community. βH is the transmission rate
after hospitalization. βF is the transmission rate during traditional burial. 1/α is the mean duration of
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The “randomized mass vaccination”strategy can be used before an Ebola outbreak. By vaccinating
a percentage of whole population randomly (have the same interaction with the vaccinated and non-
vaccinated population), the initial susceptible population decreases and it reduces the force of infection
(rate at which a susceptible person becomes infected). Let (1−µ) be the percentage of whole popula-
tion that was initially vaccinated randomly before an Ebola outbreak. We conduct scenarios analysis
based on the percentages of initial vaccinated population. This parameter does not occur in the differ-
ential equations but in the initial values. We deduce a threshold for the parameter to make the basic
reproduction number less than one.
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The 1/  is the mean duration between onset of symptoms 
and hospitalization. The 1/  is the mean duration of the 
infectious period for patients who survived their illness. The 
1/  is the mean duration of the infectious period for patients 
who died. The 1/  is the mean duration of the infectious period 
between death and burial.  is computed in order that ％ of 
infectious cases are hospitalized.  and  are computed to 
obtain a case fatality ratio at .   and  . Table 
1 shows more information about the parameters and more 
details of derivation of these differential equations have been 
previously described explaining distribution of people across 
different paths [9,21].

The “randomized mass vaccination” strategy can be used 
before an Ebola outbreak. By vaccinating a percentage of 
whole population randomly (have the same interaction with 
the vaccinated and non-vaccinated population), the initial 
susceptible population decreases and it reduces the force 
of infection (rate at which a susceptible person becomes 
infected). Let (1- ) be the percentage of whole population that 
was initially vaccinated randomly before an Ebola outbreak. 
Scenarios analysis was conducted based on the percentages 
of the initial vaccinated population. This parameter does not 
occur in the differential equations but does in the initial values. 
A threshold for the parameter was deduced to make the basic 
reproduction number less than 1.  

Here 2 recording variables were introduced C a (t) and C d (t) 
which are not epidemiological states, but they keep track of 

the cumulative number of all Ebola cases, and the cumulative 
number of deaths of Ebola cases respectively from the time of 
onset of symptoms. These 2 cumulative data were reported by 
the WHO. The differential equations are:

To measure the number of vaccines needed in the ring 
vaccination, another recording variable C v (t) was used to keep 
track of the cumulative number of vaccinations. 

Note that ring vaccination is a spatial phenomenon. A 
spatially explicit agent-based model [8] is calibrated to 
reproduce the most important features of the EVD outbreak in 
Pujehun district, Sierra Leone. The process of ring vaccination 
requires the identification of contacts and contacts of contacts 
of a reported case. The modified SEIHFR model cannot 
possibly be faithful to the process as understood by field 
epidemiologists. However, it can provide a numerical estimate 
of the effectiveness of vaccination strategies for the EVD 
outbreak in Liberia or other countries.
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𝑁𝑁𝑁𝑁 is the size of the population. 𝛽𝛽𝛽𝛽𝐼𝐼𝐼𝐼 is the transmission rate in the community. 𝛽𝛽𝛽𝛽𝐻𝐻𝐻𝐻 is the 

transmission rate after hospitalization. 𝛽𝛽𝛽𝛽𝐹𝐹𝐹𝐹 is the transmission rate during traditional burial. 1/𝛼𝛼𝛼𝛼 is the 

mean duration of incubation period. 1/𝛾𝛾𝛾𝛾  is the average overall time in the 𝐼𝐼𝐼𝐼 compartment, and 1/𝜔𝜔𝜔𝜔 is the 

average overall time in the 𝐻𝐻𝐻𝐻 compartment, which can be computed as follows:

1/𝛾𝛾𝛾𝛾ℎ is the mean duration between onset of symptoms and hospitalization.  1/𝛾𝛾𝛾𝛾𝑖𝑖𝑖𝑖 is the mean 

duration of the infectious period for patients who survived their illness. 1/𝛾𝛾𝛾𝛾𝑑𝑑𝑑𝑑 is the mean duration of the 

infectious period for patients who died. 1/𝛾𝛾𝛾𝛾𝑓𝑓𝑓𝑓 is the mean duration of the infectious period between death 

and burial. 𝜃𝜃𝜃𝜃1 is computed in order that θ％ of infectious cases are hospitalized. 𝛿𝛿𝛿𝛿1 and 𝛿𝛿𝛿𝛿2 are computed 

to obtain a case fatality ratio at δ.  1
𝛾𝛾𝛾𝛾𝑖𝑖𝑖𝑖ℎ

= 1
𝛾𝛾𝛾𝛾𝑖𝑖𝑖𝑖
− 1

𝛾𝛾𝛾𝛾ℎ
and 1

𝛾𝛾𝛾𝛾𝑑𝑑𝑑𝑑ℎ
= 1

𝛾𝛾𝛾𝛾𝑑𝑑𝑑𝑑
− 1

𝛾𝛾𝛾𝛾ℎ
. Table 1 shows more information 

about the parameters and more details of derivation of these differential equations have been previously 

described explaining distribution of people across different paths [9,21].

The “randomized mass vaccination” strategy can be used before an Ebola outbreak. By 

vaccinating a percentage of whole population randomly (have the same interaction with the vaccinated 

and non-vaccinated population), the initial susceptible population decreases and it reduces the force of 

infection (rate at which a susceptible person becomes infected). Let (1 − 𝜇𝜇𝜇𝜇) be the percentage of whole 

population that was initially vaccinated randomly before an Ebola outbreak. Scenarios analysis was

conducted based on the percentages of the initial vaccinated population. This parameter does not occur in 
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the differential equations but does in the initial values. A threshold for the parameter was deduced to 

make the basic reproduction number less than 1.

Here 2 recording variables were introduced 𝐶𝐶𝐶𝐶𝑎𝑎𝑎𝑎(𝑡𝑡𝑡𝑡) and 𝐶𝐶𝐶𝐶𝑑𝑑𝑑𝑑(𝑡𝑡𝑡𝑡) which are not epidemiological states, 

but they keep track of the cumulative number of all Ebola cases, and the cumulative number of deaths of 

Ebola cases respectively from the time of onset of symptoms. These 2 cumulative data were reported by

the WHO. The differential equations are:
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To measure the number of vaccines needed in the ring vaccination, another recording variable 

𝐶𝐶𝐶𝐶𝑣𝑣𝑣𝑣(𝑡𝑡𝑡𝑡) was used to keep track of the cumulative number of vaccinations. 
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(𝐼𝐼𝐼𝐼 + 𝐻𝐻𝐻𝐻 + 𝐹𝐹𝐹𝐹). (9)

Note that ring vaccination is a spatial phenomenon. A spatially explicit agent-based model [8] is 

calibrated to reproduce the most important features of the EVD outbreak in Pujehun district, Sierra Leone.  

The process of ring vaccination requires the identification of contacts and contacts of contacts of a 

reported case. The modified SEIHFR model cannot possibly be faithful to the process as understood by 

field epidemiologists. However, it can provide a numerical estimate of the effectiveness of vaccination 

strategies for the EVD outbreak in Liberia or other countries.

2. Mathematical analysis of the SEIHFR model 
Prior to the use of the SEIHFR model to study the 2014 Ebola outbreak in West Africa, a

mathematical analysis was conducted on the model. It proved that there always exists a non-negative 

bounded solution of the differential equation model for any non-negative initial condition. The 
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To measure the number of vaccines needed in the ring vaccination, another recording variable 

𝐶𝐶𝐶𝐶𝑣𝑣𝑣𝑣(𝑡𝑡𝑡𝑡) was used to keep track of the cumulative number of vaccinations. 

𝑑𝑑𝑑𝑑𝐶𝐶𝐶𝐶𝑣𝑣𝑣𝑣
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

=  𝜈𝜈𝜈𝜈 𝑆𝑆𝑆𝑆
𝑁𝑁𝑁𝑁

(𝐼𝐼𝐼𝐼 + 𝐻𝐻𝐻𝐻 + 𝐹𝐹𝐹𝐹). (9)

Note that ring vaccination is a spatial phenomenon. A spatially explicit agent-based model [8] is 

calibrated to reproduce the most important features of the EVD outbreak in Pujehun district, Sierra Leone.  

The process of ring vaccination requires the identification of contacts and contacts of contacts of a 

reported case. The modified SEIHFR model cannot possibly be faithful to the process as understood by 

field epidemiologists. However, it can provide a numerical estimate of the effectiveness of vaccination 

strategies for the EVD outbreak in Liberia or other countries.

2. Mathematical analysis of the SEIHFR model 
Prior to the use of the SEIHFR model to study the 2014 Ebola outbreak in West Africa, a

mathematical analysis was conducted on the model. It proved that there always exists a non-negative 

bounded solution of the differential equation model for any non-negative initial condition. The 

Parameter Description All 
countries Guinea Liberia Sierra

Leone Ref.

1/  days incubation period 11.4 10.9 11.7 10.8 [2]

1/  days symptom onset to hospitalization 5 5.3 4.9 4.6 [2]

1/  days symptom onset to hospital discharge 16.4 16.3 15.4 17.2 [2]

1/  days symptom onset to death 7.5 6.4 7.9 8.6 [2]

1/  days infectious period between death and burial 2 2 2 2 [10]

 %  Proportion of infectious cases hospitalized 54 52 51 58 [21, 23]

 % Ratio of case-fatality 70:8 70.7 72.3 69.0 [2, 17]

1/  days Time from hospitalization to recovery 11.4 11 10.5 12.6 Calculation

1/  days Time from hospitalization to death 2.5 1.1 3 4 Calculation

 % Fraction of infected hospitalization 36.8 38.2 33.9 36.1 Calculation

 % Case fatality rate, unhospitalized 52.6 48.7 57.3 52.7 Calculation

 % Case fatality rate, hospitalized 34.7 19.4 42.7 41.4 Calculation

These epidemiological parameters follow from the study of WHO Ebola Response Team [2, 23] and [10,17]. They are consistent across the modeling 
literature for different outbreaks.

Table 1. Epidemiological parameters for Ebola virus disease used in this study.

Parameter Description All Guinea Liberia Sierra Ref.
Countries Leone

1/α days incubation period 11.4 10.9 11.7 10.8 [2]
1/γh days symptom onset to hospitalization 5 5.3 4.9 4.6 [2]
1/γi days symptom onset to hospital discharge 16.4 16.3 15.4 17.2 [2]
1/γd days symptom onset to death 7.5 6.4 7.9 8.6 [2]
1/γ f days infectious period between death and burial 2 2 2 2 [10]

θ % Proportion of infectious cases hospitalized 54 52 51 58 [21, 23]
δ % Ratio of case-fatality 70.8 70.7 72.3 69.0 [2, 17]

1/γih days Time from hospitalization to recovery 11.4 11 10.5 12.6 Calculation
1/γdh days Time from hospitalization to death 2.5 1.1 3 4 Calculation

θ1 % Fraction of infected hospitalization 36.8 38.2 33.9 36.1 Calculation
δ1 % Case fatality rate, unhospitalized 52.6 48.7 57.3 52.7 Calculation
δ2 % Case fatality rate, hospitalized 34.7 19.4 42.7 41.4 Calculation

These epidemiological parameters follow from the study of WHO Ebola Response Team [2, 23] and
[10, 17]. They are consistent across the modeling literature for different outbreaks.
1/γih = 1/γi −1/γh , 1/γdh = 1/γd −1/γh, θ1 =

θ[γi(1−δ1)+γdδ1]
θ[γi(1−δ1)+γdδ1]+(1−θ)γh

δ1 =
δγi

δγi+(1−δ)γd
,δ2 =

δγih
δγih+(1−δ)γdh

Table 1: Epidemiological parameters for Ebola virus disease used in this study.

Here we introduce two recording variables Ca(t) and Cd(t) which are not epidemiological states,
but they keep track of the cumulative number of all Ebola cases and the cumulative number of deaths of
Ebola cases respectively from the time of onset of symptoms. These two cumulative data are reported
by WHO. The differential equations are

(7)
dCa

dt
= αE.

(8)
dCd

dt
= γd(1−θ1)δ1I + γdhδ2H.

To measure the number of vaccines needed in the ring vaccination, another recording variable Cv(t) is
used to keep track of the cumulative number of vaccinations.

(9)
dCv(t)

dt
= ν

S
N
(I +H +F).

Remark 2.1. Note that ring vaccination is a spatial phenomenon. A spatially explicit agent-based model
[8] is calibrated to reproduce the most important features of the EVD outbreak in Pujehun district,
Sierra Leone. The process of ring vaccination requires the identification of contacts and contacts of
contacts of a reported case. The modified SEIHFR model is not possible to be faithful to the process as
understood by field epidemiologists. However it can provide a numerical estimate of the effectiveness
of vaccination strategies of the EVD outbreak in Liberia or other counties.

6



Z.Xie / Scenario Analysis of Ebola Outbreak 191

2. Mathematical analysis of the SEIHFR model

Prior to the use of the SEIHFR model to study the 2014 
Ebola outbreak in West Africa, a mathematical analysis 
was conducted on the model. It proved that there always 
exists a non-negative bounded solution of the differential 
equation model for any non-negative initial condition. The 

mathematical formula for basic reproduction number 
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than 1 Appendix I).

Results on 2014 Ebola outbreak in Liberia 

Ebola was first detected in 1976 when there were 2 
simultaneous outbreaks in Nzara, Sudan and Yambuku, 
Democratic Republic of the Congo. It later occurred in a village 
near the Ebola River which gave its name to Ebola. Ebola has 
caused at least 21 confirmed outbreaks between 1976 and 2016 
[1]. The 2014 Ebola epidemic in West Africa was the largest 
ever recorded. Ten countries in 3 continents (Africa, Europe and 
North America) had confirmed cases. According to the WHO 
situation report (Data up to March 27, 2016), 28,646 confirmed, 
probable, and suspected cases were reported, primarily in 
Guinea, Liberia, and Sierra Leone, with 11,323 deaths since the 
onset of the Ebola outbreak [26]. The majority of these cases 
and deaths were reported between August and December 2014, 
after which case incidence began to decline as a result of the 
rapid scale-up of treatment, isolation, and safe burial capacity 
in Guinea, Liberia, and Sierra Leone. While previous outbreaks 
in small villages have come to an end due to local depletion 
of susceptible individuals, this epidemic spread across entire 
countries, and thus could only be curtailed by interventions 
aimed at reducing new infections across all locations [14].

Organizations such as the World Health Organization (WHO) 
and local governments implemented intervention measures 
to try to control the outbreak and bring it to an end as soon 
as possible. While some of these interventions were simple, 
such as the deployment of health care workers and personal 
protective equipment, other interventions required much more 
coordination and strategy, such as establishing cross-border 
coalitions for the dissemination of intelligence regarding the 

outbreak. Among these intervention measures, the “70-70-60” 
plan [27,28] which aimed to isolate and treat 70% of infected 
individuals, and safely bury 70% of deceased individuals, within 
60 days, affected a major reduction in the spread of the EVD 
epidemic.  

In this study the SEIHFR model was used to analyze the 
2014 Ebola outbreak in Liberia. Although immunization (in 
the context of an outbreak or epidemic) has the attractive 
property of reducing the force of infection, and several 
candidate Ebola vaccines had been produced, no vaccines 
had been approved for clinical use during the 2014 outbreak. 
However, the potential impact of a vaccination for Ebola needs 
to be studied to provide insights for future planning [4-8]. 
Fisman et al [15] studied the projected impact of vaccination 
timing and dose availability, and they predicted that an 
effective vaccination rate could be projected to prevent tens of 
thousands of deaths, if vaccination could be used before the 
epidemic peaked. This estimation of the effective vaccination 
rate was also discussed in another study [29]. It is reasonable 
to assume  = 0,  =1 and  = 1 to use the SEIHFR model to study 
the 2014 Ebola outbreak in West Africa. The least-squares can 
be used to fit the data from the WHO to estimate the epidemic 
parameters. The fitted model can then be used to estimate the 

basic reproductive number 
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 and to evaluate the impact of 
intervention measures on the transmission rate of the disease. 
In this study the fitted model was used to simulate the impact 
of vaccination. 

1. The transmission rate and the impact of interventions

Various intervention strategies [27,28,30] including 
surveillance, quarantine, education and rapid burial  have 
been employed to control an outbreak and bring it to an 
end as soon as possible. The impact of the intervention plan 
such as “70-70-60” plan is not instantaneous [20]. The net 
effect of intervention strategies, is to reduce the transmission 
rate  (including , , , in our model) from , to  < . 
Between the time of onset of the intervention, to the time of 
full compliance, the transmission rate is assumed to decrease 
gradually from  to  according to:

 

where T0  is the time at which interventions start, and q 
controls the rate of transition from  to . The larger q, the 
faster  decays to .

2. Model parameters 

The parameters in the model were put into 2 categories, 
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mathematical formula for basic reproduction number ℜ0 was dependent on the effectiveness of 

vaccination 𝜁𝜁𝜁𝜁 and 𝜇𝜇𝜇𝜇, and it can be decomposed into 3 parts due to transmission rate in the community, 

after hospitalization, and during traditional burial. 

ℜ0 =  𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁
∆𝑖𝑖𝑖𝑖
𝛽𝛽𝛽𝛽𝐼𝐼𝐼𝐼 + 𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝛾𝛾𝛾𝛾ℎ𝜃𝜃𝜃𝜃1

Δ𝑖𝑖𝑖𝑖∆ℎ
𝛽𝛽𝛽𝛽𝐻𝐻𝐻𝐻 + 𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁

𝛾𝛾𝛾𝛾𝑓𝑓𝑓𝑓
𝛽𝛽𝛽𝛽𝐹𝐹𝐹𝐹 ≡ ℜ0𝐼𝐼𝐼𝐼 + ℜ0𝐻𝐻𝐻𝐻 + ℜ0𝐹𝐹𝐹𝐹. (10)

By Routh-Hurwitz Criteria, a disease-free equilibrium is linearly stable when the basic 

reproduction number ℜ0 is less than 1 (Appendix).
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Parameter Description Fitted Value
Liberia

βI0 transmission rate in the community before intervention 1.2596
βI1 transmission rate in the community after intervention 0.3988
βH0 transmission rate after hospitalization before intervention 1.1338
βH1 transmission rate after hospitalization after intervention 0.4418
βF0 transmission rate during traditional burial before intervention 0.9794
βF1 transmission rate during traditional burial after intervention 0.4566
T0 duration from beginning of epidemic to invention taken place 14.8057
q measure the speed of transition from β0 to β1 36.8342

R0 Basic reproduction number 1.9508

Table 2: Ebola Epidemic Parameters and our fitted values

found that effective vaccination would be projected to prevent tens of thousands of deaths if vaccination
could be used before the epidemic peaks. The estimation of the effective vaccination rate was also
discussed in [29] . It is reasonable to assume ν = 0,ζ = 1 and µ = 1 to use the SEIHFR model to study
the 2014 Ebola outbreak in West Africa. We first use the least-squares to fit the data from WHO to
estimate the epidemic parameters. The fitted model can then be used to estimate the basic reproductive
number R0 and to evaluate the impact of intervention measures on the transmission rate of the disease.
We use the fitted model to simulate the impact of vaccination.

3.1 The transmission rate and the impact of interventions

Various intervention strategies [27, 28, 30] including surveillance, quarantine, education and rapid
burial etc. have been employed to control the outbreak and bring it to an end as soon as possible. The
impact of the intervention plan such as “70-70-60”plan is not instantaneous. Follow the paper [20],
the net effect of intervention strategies, is to reduce the transmission rate β (including βI,βH ,βF in
our model) from β0 to β1 < β0. Between the time of the onset of the intervention to the time of full
compliance, the transmission rate is assume to decrease gradually from β0 to β1 according to

β(t) =
{

β0 t < T0,

β1 +(β0 −β1)e−q(t−T0) t ≥ T0,

where T0 is the time at which interventions start and q controls the rate of transition from β0 to β1. The
larger q, the faster β0 decays to β1.

3.2 Model parameters

The parameters in the model are put into two categories: epidemiological parameters and model pa-
rameters. Epidemiological parameters are those parameters to characterize the Ebola virus such as
incubation period and case-fatality ratio etc. They are consistent across the modeling literature for
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epidemiological and model. Epidemiological parameters are 
those which characterize the Ebola virus, such as incubation 
period and case-fatality ratio. They are consistent across the 
modeling literature for different outbreaks [10,17] and are 
listed in Table 1. These epidemiological parameters followed 
the WHO Ebola Response Team study [2,23]. The case-fatality 
ratio in Liberia was 0.7234 before intervention and 0.3844 after 
intervention. 

 

The model parameters shown in Table 2 were fitted to 
the 2014 Ebola outbreak in Liberia by least-squares fit to 
the cumulative number of cases Ca (t, ) in equation (7). The 
nonlinear least-squares solver “lsqnonlin” in Matlab 2016b 
was used and appropriate initial conditions for the differential 
equations were chosen to feed the optimization process so 
that the “best fit” can be determined. The optimization process 
was repeated by feeding different initial conditions before the 
“best fit” was chosen. The confidence interval was computed 
following the method described by Chowella et al [20]. 

The asymptotic variance-covariance AV( ) of the least-
squares estimate was

 

which was estimated by
 

where n is the total number of observations,
                                   and       are numerical derivatives of C. 

To compute the confidence intervals, F-distribution for small 
samples was used. Formally, the confidence intervals were of 
the form:

 

where yai is the observed cumulative number of cases, and 
A  is the 1-  quantile of an F-distribution with appropriate 
degrees of freedom. To have a better approximation to both 
the cumulative number of cases and the cumulative number 
of deaths, least-squares could be applied to the 2 cumulative 
numbers, that is, where ydi was the observed cumulative 
number of deaths.  

 

Confidence intervals were computed by fixing all other 
parameters and parameters estimates are given in Table 2. 
There were many different parameter combinations which 
fitted; thus, confidence intervals may not be relevant for these 
purposes.  For example, the 95% confidence interval (6.1513,∞) 
for q was not “sharp” because it covered an infinity range. This 
was due to the exponential decay (e -q (t-T0) for t > T0) of time and 
its value would not change much when q is large. 

3. Ebola outbreak in Liberia 

Data were retrieved from the WHO website, and was 
based on the cumulative total numbers of total cases and 
total deaths. The data were recorded by days and used to fit 
the model chosen in an interval around a whole week. The 
total population size N = S + E + I + H + F + R was assumed to be 
4,345,000 in Liberia in 2014. Note that the exact population size 
does not need to be known to estimate the model parameters 
as long as the number of total cases was relatively small. In 
fact, the true mass-action assumption 

15 
 

the model parameters as long as the number of total cases was relatively small. In fact, the true mass-

action assumption 𝑆𝑆𝑆𝑆
𝑁𝑁𝑁𝑁

 was used which made the model parameters independent of 𝑁𝑁𝑁𝑁. In Liberia, the cases 

that were reported on June 2, 2014 were the first new cases since April 7, 2014. To fit the model for 

Liberia, the starting date was June 2, 2014 with 19 confirmed total cases and 9 confirmed total deaths, 

which were used as the initial values 𝐶𝐶𝐶𝐶𝑎𝑎𝑎𝑎(0) and 𝐶𝐶𝐶𝐶𝑑𝑑𝑑𝑑(0). By using the optimization tool “lsqnonlin” in 

Matlab R2016b, parameters were estimated (Table 2). The deterministic model fitted well for Liberia 

(Figure 2).

4. A scenario analysis on the vaccination

In the fitted base model in this study, 𝜈𝜈𝜈𝜈 (the average number of removals [susceptible individuals 

away due to vaccination] per infected case) was assumed to be 0, (1 − 𝜁𝜁𝜁𝜁) (the reducing rate of infected 

cases due to vaccination) was assumed to be 0 (𝜁𝜁𝜁𝜁 = 1), and 𝜇𝜇𝜇𝜇 was assumed to be 1 (no randomized 

vaccination before Ebola outbreak).  The potential impact of vaccination against Ebola was evaluated

under different assumptions around the values 𝜈𝜈𝜈𝜈, 𝜁𝜁𝜁𝜁 and initial percentage (1 − 𝜇𝜇𝜇𝜇) of the vaccinated 

population, while keeping the other estimated parameters the same.

5. Randomized mass vaccination before Ebola outbreak 
Formula 17 (Appendix) for the basic reproduction number ℜ0:

ℜ0 =  
𝜁𝜁𝜁𝜁𝜇𝜇𝜇𝜇
∆𝑖𝑖𝑖𝑖
𝛽𝛽𝛽𝛽𝐼𝐼𝐼𝐼 +

𝜁𝜁𝜁𝜁𝜇𝜇𝜇𝜇𝛾𝛾𝛾𝛾ℎ𝜃𝜃𝜃𝜃1
Δ𝑖𝑖𝑖𝑖∆ℎ

𝛽𝛽𝛽𝛽𝐻𝐻𝐻𝐻 +
𝜁𝜁𝜁𝜁𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇
𝛾𝛾𝛾𝛾𝑓𝑓𝑓𝑓

𝛽𝛽𝛽𝛽𝐹𝐹𝐹𝐹

which indicates that if sufficient fractions of population are immunized, the Ebola epidemic should not 

happen. In the appendix, it was shown that the disease epidemic was predicted to decline when ℜ0 < 1,

and the disease spread would increase when ℜ0 > 1. By corollary 5.4, when random and continuous 

vaccination strategies for susceptible population  were undertaken,  the minimum effective vaccination 

rate 𝑟𝑟𝑟𝑟𝜈𝜈𝜈𝜈 = ℜ0−1
ℜ0

and the Ebola epidemic, would be under control if the initial vaccinated rate of the total 

population was greater than 𝑟𝑟𝑟𝑟𝜈𝜈𝜈𝜈. According the estimated value in this study (Table 2), if 1 − 𝜇𝜇𝜇𝜇 >

 was used which made 
the model parameters independent of N. In Liberia, the cases 
that were reported on June 2, 2014 were the first new cases 
since April 7, 2014. To fit the model for Liberia, the starting 
date was June 2, 2014 with 19 confirmed total cases and 9 
confirmed total deaths, which were used as the initial values 
C a (0) and C d (0). By using the optimization tool “lsqnonlin” 
in Matlab R2016b, parameters were estimated (Table 2). The 
deterministic model fitted well for Liberia (Figure 2). 

4. A scenario analysis on the vaccination

In the fitted base model in this study,  (the average number 
of removals [susceptible individuals away due to vaccination] 
per infected case) was assumed to be 0, (1- ) (the reducing rate 
of infected cases due to vaccination) was assumed to be 0 (  =1), 
and  was assumed to be 1 (no randomized vaccination before 
Ebola outbreak).  The potential impact of vaccination against 
Ebola was evaluated under different assumptions around 
the values ,  and initial percentage (1- ) of the vaccinated 
population, while keeping the other estimated parameters the 
same.

5. Randomized mass vaccination before Ebola outbreak

Formula 17 (Appendix I) for the basic reproduction number 
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from the study of WHO Ebola Response Team [2, 23]. Case-fatality ratio in Liberia is 0.7234 before
intervention and 0.3844 is used after intervention. The model parameters are in Table 2.

Ψ = (βI0,βI1,βH0,βH1,βF0,βF1,T0,q)

are fitted to the 2014 Ebola outbreak in Liberia by least-squares fit to the cumulative number of cases
Ca(t,Ψ) in equation (7). We use the nonlinear least-squares solver “lsqnonlin” in Matlab 2016b and
appropriate initial conditions for the differential equations are chosen to fed the optimization process
so that the “best fit” can be determined. The optimization process was repeated by feeding different
initial conditions before the “best fit”was chosen. The confidence interval was computed following the
paper [20]. The asymptotic variance-covariance AV (Ψ̂) of the least-squares estimate is
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which we estimated by

σ̂2

(
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�̂Ca(ti,Ψ̂0)�̂Ca(ti,Ψ̂0)

)−1
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where n is the total number of observations, σ̂2 = 1
n−8

∑
(yi −C(ti,Ψ̂))2 and �̂C are numerical deriva-

tives of C. To compute the confidence intervals, we use F-distribution for small samples. Formally, the
confidence intervals are of the form

{
Ψ :
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(yai −Ca(ti,Ψ))2

∑
(yai −Ca(ti,Ψ̂))2

≤ Aα

}
,

where yai is the observed cumulative number of cases and Aα is the 1−α quantile of an F-distribution
with appropriate degrees of freedom. To have a better approximation to both the cumulative number of
cases and the cumulative number of deaths, least-squares can be applied to the two cumulative numbers,
that is,

min
Ψ

∑
((yai −Ca(ti,Ψ))2 +(ydi −Cd(ti,Ψ))2),

where ydi is the observed cumulative number of deaths. Confidence intervals are computed by fixed
all other parameters and parameters estimates are given in table 2. There are many different parameter
combinations which fit, thus confidence intervals may not be relevant for our purposes here. For ex-
ample, the 95% confidence interval (6.1513,∞) for q is not “sharp” because it covers an infinity range.
This is due to the exponential decay (e−q(t−T0) for t > T0) on time and its value won’t change much for
large q.

3.3 Ebola Outbreak in Liberia

Data were retrieved from the WHO website and based on the cumulative total numbers of total cases
and total deaths. The data are recorded by days and the data used to fit the model are chosen in an
interval around a whole week. The total population size N = S+E + I+H +F +R was assumed to be
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the model parameters as long as the number of total cases was relatively small. In fact, the true mass-
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𝜁𝜁𝜁𝜁𝜇𝜇𝜇𝜇
∆𝑖𝑖𝑖𝑖
𝛽𝛽𝛽𝛽𝐼𝐼𝐼𝐼 +

𝜁𝜁𝜁𝜁𝜇𝜇𝜇𝜇𝛾𝛾𝛾𝛾ℎ𝜃𝜃𝜃𝜃1
Δ𝑖𝑖𝑖𝑖∆ℎ

𝛽𝛽𝛽𝛽𝐻𝐻𝐻𝐻 +
𝜁𝜁𝜁𝜁𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇
𝛾𝛾𝛾𝛾𝑓𝑓𝑓𝑓

𝛽𝛽𝛽𝛽𝐹𝐹𝐹𝐹

which indicates that if sufficient fractions of population are immunized, the Ebola epidemic should not 

happen. In the appendix, it was shown that the disease epidemic was predicted to decline when ℜ0 < 1,

and the disease spread would increase when ℜ0 > 1. By corollary 5.4, when random and continuous 

vaccination strategies for susceptible population  were undertaken,  the minimum effective vaccination 

rate 𝑟𝑟𝑟𝑟𝜈𝜈𝜈𝜈 = ℜ0−1
ℜ0

and the Ebola epidemic, would be under control if the initial vaccinated rate of the total 

population was greater than 𝑟𝑟𝑟𝑟𝜈𝜈𝜈𝜈. According the estimated value in this study (Table 2), if 1 − 𝜇𝜇𝜇𝜇 >
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which indicates that if sufficient fractions of population are 
immunized, the Ebola epidemic should not happen. In the 
appendix, it was shown that the disease epidemic was predicted 

to decline when 
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Objectives: This study aimed to extend an epidemiological model (SEIHFR) to analyze epidemic trends,

and evaluate intervention efficacy.

Methods: SEIHFR was modified to examine disease transmission dynamics after vaccination for the 

Ebola outbreak. Using existing data from Liberia, sensitivity analysis of various epidemic scenarios was 

used to inform the model structure, estimate the basic reproduction number ℜ0 and investigate how the 

vaccination could effectively change the course of the epidemic.

Results: If a randomized mass vaccination strategy was adopted, vaccines would be administered

prophylactically or as early as possible (depending on the availability of vaccines). An effective 

vaccination rate threshold for Liberia was estimated as 48.74% among susceptible individuals. If a ring 

vaccination strategy was adopted to control the spread of the Ebola virus, vaccines would be given to 

reduce the transmission rate improving the tracing rate of the contact persons of an infected individual. 

Conclusion: The extended SEIHFR model predicted the total number of infected cases, number of deaths, 

number of recoveries, and duration of outbreaks among others with different levels of interventions such 

as vaccination rate. This model may be used to better understand the spread of Ebola and develop 

strategies that may achieve a disease-free state. 
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>1. By corollary 5.4, when random and continuous 
vaccination strategies for susceptible population  were 
undertaken, the minimum effective vaccination rate  
and the Ebola epidemic, would be under control if the initial 
vaccinated rate of the total population was greater than r  .
According the estimated value in this study (Table 2), if 
1-  > 48.74% or  < 51.25%, the number of new cases would 

decline from the very beginning (Figure 3 right) and the Ebola 
outbreak in Liberia would be under control (Figure 3 left).  
Based on the estimates of the basic reproduction number in [2], 
it was estimated that the minimum effective vaccination rates 
and the Ebola outbreak would be under control if > 41.52% and 
> 50.50% of the total population were vaccinated in Guinea and 
Sierra Leone, respectively. 

These predictions provide scientific evidence of the need for 
vaccine production and application. For purposes of simplicity, 
the assumption was made that the vaccine was 100% 
efficacious with a single dose required for immunity. Roughly 

Figure 2. Fitted line with World Health Organization data for Ebola Epidemic in Liberia. The solid 
red line represents the deterministic model fit of the epidemic in Liberia. The green star represents 
the actual data from World Health Organization. The start date was June 2, 2014.
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the model parameters as long as the number of total cases was relatively small. In fact, the true mass-

action assumption 𝑆𝑆𝑆𝑆
𝑁𝑁𝑁𝑁

 was used which made the model parameters independent of 𝑁𝑁𝑁𝑁. In Liberia, the cases 

that were reported on June 2, 2014 were the first new cases since April 7, 2014. To fit the model for 

Liberia, the starting date was June 2, 2014 with 19 confirmed total cases and 9 confirmed total deaths, 

which were used as the initial values 𝐶𝐶𝐶𝐶𝑎𝑎𝑎𝑎(0) and 𝐶𝐶𝐶𝐶𝑑𝑑𝑑𝑑(0). By using the optimization tool “lsqnonlin” in 

Matlab R2016b, parameters were estimated (Table 2). The deterministic model fitted well for Liberia 

(Figure 2).

4. A scenario analysis on the vaccination

In the fitted base model in this study, 𝜈𝜈𝜈𝜈 (the average number of removals [susceptible individuals 

away due to vaccination] per infected case) was assumed to be 0, (1 − 𝜁𝜁𝜁𝜁) (the reducing rate of infected 

cases due to vaccination) was assumed to be 0 (𝜁𝜁𝜁𝜁 = 1), and 𝜇𝜇𝜇𝜇 was assumed to be 1 (no randomized 

vaccination before Ebola outbreak).  The potential impact of vaccination against Ebola was evaluated

under different assumptions around the values 𝜈𝜈𝜈𝜈, 𝜁𝜁𝜁𝜁 and initial percentage (1 − 𝜇𝜇𝜇𝜇) of the vaccinated 

population, while keeping the other estimated parameters the same.

5. Randomized mass vaccination before Ebola outbreak 
Formula 17 (Appendix) for the basic reproduction number ℜ0:

ℜ0 =  
𝜁𝜁𝜁𝜁𝜇𝜇𝜇𝜇
∆𝑖𝑖𝑖𝑖
𝛽𝛽𝛽𝛽𝐼𝐼𝐼𝐼 +

𝜁𝜁𝜁𝜁𝜇𝜇𝜇𝜇𝛾𝛾𝛾𝛾ℎ𝜃𝜃𝜃𝜃1
Δ𝑖𝑖𝑖𝑖∆ℎ

𝛽𝛽𝛽𝛽𝐻𝐻𝐻𝐻 +
𝜁𝜁𝜁𝜁𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇
𝛾𝛾𝛾𝛾𝑓𝑓𝑓𝑓

𝛽𝛽𝛽𝛽𝐹𝐹𝐹𝐹

which indicates that if sufficient fractions of population are immunized, the Ebola epidemic should not 

happen. In the appendix, it was shown that the disease epidemic was predicted to decline when ℜ0 < 1,

and the disease spread would increase when ℜ0 > 1. By corollary 5.4, when random and continuous 

vaccination strategies for susceptible population  were undertaken,  the minimum effective vaccination 

rate 𝑟𝑟𝑟𝑟𝜈𝜈𝜈𝜈 = ℜ0−1
ℜ0

and the Ebola epidemic, would be under control if the initial vaccinated rate of the total 

population was greater than 𝑟𝑟𝑟𝑟𝜈𝜈𝜈𝜈. According the estimated value in this study (Table 2), if 1 − 𝜇𝜇𝜇𝜇 >

Time of onset (wk) Time of onset (wk) 

Parameter Description Fitted value Liberia

Transmission rate in the community before intervention 1.2596

Transmission rate in the community after intervention 0.3988  

Transmission rate after hospitalization before intervention 1.1338 

Transmission rate after hospitalization after intervention 0.4418

Transmission rate during traditional burial before intervention 0.9794

Transmission rate during traditional burial after intervention 0.4566

T0 Duration from beginning of epidemic to invention taken place 14.8057 

q Measure the speed of transition from  to 36.8342 
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 Basic reproduction number 1.9508

Table 2. Ebola epidemic parameters and our fitted values. 
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Figure 3. Ebola outbreak in Liberia would be under control, and would stop the spread more 
quickly if more than 48.74% of the population were vaccinated even if there were no other 
interventions (Intervention time T0 is set to be infinity).
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Figure 4. Ebola outbreak in Liberia with different level of initial vaccinated population (randomized 
vaccination strategy). 1%, 5% or 10% of initial vaccinated population result in a corresponding 
reduction of the final total case by 8.8%, 36.5%, 59.1%, and a reduction of the final total deaths by 
8.2%, 34.2%, 56.2% respectively.
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speaking, nearly 2.1 million highly effective vaccines are 
needed to prevent an Ebola outbreak. Real-world vaccination 
would require more doses of vaccines if the efficacy of the 
vaccine was less than 100%. Mass vaccination may impose 
lots of challenges to the countries, cities and families affected. 
Financial challenges and ethical challenges would be associated 
with the implementation of wide-scale vaccination with a 
new Ebola vaccine that had been fast tracked with limited 
evaluations for safety and efficacy, however a benefit risk 
assessment would be made.

The impact of a small percentage of the population being 

vaccinated initially was explored. It was observed that this can 
also substantially reduce the final size of the Ebola epidemic if 
current interventions were maintained (Figure 4). The initial 
vaccinated population that reduced the initial susceptible 
population by 1%, 5% or 10% resulted in a corresponding 
reduction of the final total case by 8.8%, 36.5%, 59.1%, and a 
reduction of the final total deaths by 8.2%, 34.2%, and 56.2% 
respectively. The epidemic would also end sooner with larger 
fractions of the population immunized. The significance of a 
reduction of the final epidemic size would make vaccination a 
highly attractive intervention to help control this epidemic. 

Time of onset (wk) 

Time of onset (wk) Time of onset (wk) 

Time of onset (wk) 
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6. Continuous Ring Vaccination

The ring vaccination strategy (that involves vaccinating 
anyone who has come into contact with a person infected with 
Ebola, as well as contacts of theirs) was modeled. This strategy 
was used in an experimental Ebola vaccine in Guinea in March 
2016 and was found to be highly effective in preventing Ebola 
infection. Some evaluations and analysis on the efficacy of 
the vaccination have been studied [4-8,25]. The parameter  
models the average required number for vaccinating contact 
persons per infected person, and the parameter  models 
the direct impact of ongoing vaccination/isolating on the 
transmission rate. In this study the impact on the epidemic 
due to these 2 parameters while keeping all other parameters/
interventions the same was investigated. 

In this study it was assumed that there was a small direct 
reduction on the transmission rate (  = 0.99). The cumulative 
number of infected cases was reduced as the parameter  
increased from  = 0,20,40,60,80 to 100 (Figure 5). Although 
the SEIHFR model did not randomize mass vaccination during 
the course of the Ebola outbreak, the vaccination strategy in 

this case could be treated as a randomized mass vaccination 
strategy rather than a ring vaccination strategy.  However, the 
impact on the reduction of the total number of cases was not 
significant, compared with the total number of vaccinations 
needed in the case of a randomized mass vaccination that was 
used before the Ebola outbreak. In this case, about 200 vaccines 
would be needed to decrease 1 infected case. When = 100, 
about 1.02 million (23% of total population) vaccines would 
be used, but this could only reduce the number of infected 
cases by approximately 3,219 (34% of the total infected cases). 
This is far below the ratio where 10% of the initially vaccinated 
population would reduce 59.1% of potentially infected cases. 
This implies that vaccination should be given as soon as 
possible if a randomized strategy is used.

As shown in an experimental Ebola vaccination in Guinea in 
March 2016, the ring vaccination strategy would be effective 
at preventing Ebola infection. To see how the reduction rate 
changes the epidemic case,  was assumed to be zero in this 
numerical simulation. Figure 6 shows that the reduction rate 
that decreased by 5% (  = 0.95), 10% (  = 0.90), 20% (  = 0.80) 

Figure 5. Ebola outbreak in Liberia with different level of vaccinated population with a reducing rate of 1% (  = 0.99).
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Figure 6. Ebola outbreak in Liberia with a different level reducing rate of 5% (  = 0.95), 10% (  = 0.90), 20% (  = 0.80).
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would result in a corresponding reduction of infected cases 
by 36.5%, 59.1%, and 82.4%, and a reduction of total deaths by 
33.1%, 56.2%, and 80.0%, respectively. The higher the reduction 
rate, the smaller the cumulative number of infected cases was, 
and the quicker the epidemic would end.  

By carefully tracing the contact persons of an infected 
person the average number of vaccinations given per cluster 
of infected persons would increase and it is assumed that the 
infected rate would be reduced. However, this data was not 
available to fit the model in this study to determine how to 
achieve a reduced infected rate. In this study, combination 
effects (Figure 7) of ( ,  ) at the different levels (1,0), (0.96,20), 
(0.92, 40), (0.88, 60), (0.84, 80), (0.80, 100), (0.50, 200) were 
proposed. In general, the total number of vaccines would 
increase while  increased. However, when the ring vaccination 
strategy becomes more effective (small ), the total number of 
vaccines could decrease while the average number of vaccines 
per infected person ν increases (see right in Figure 7). With an 

average of 200 vaccines per infected person and a reduced rate 
of infection at 50%, only about 71,000 vaccines (about 1.6% of 
the total population) would be used, and there would be about 
214 total infected cases and 145 total deaths. The outbreak 
would also end within 20 weeks (about October 14, 2014). This 
observation indicated that reducing the infection rate could be 
more effective in mitigating an epidemic. Therefore, the ring 
vaccination strategy could be a good choice if the infection 
rate could be reduced significantly. It depends on the level of 
effectiveness of contact tracing which is highly dependent on 
public health resources [11,12].

By the formula of the basic reproduction number 
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 given 
in equation 17 (Appendix), it was obvious that 
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 linearly 
dependeds on the level of ring vaccination ( ), the transmission 
rate after hospitalization ( ) and the transmission rate 
during traditional burial ( ). In Figure 8, it shows that the 

basic reproduction number 
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 was decreasing when the 
corresponding parameter decreased and all other parameters 

Figure 7. Ebola outbreak in Liberia with different efficiency level of ring vaccinated population, where ( ,   )  
= (1,0), (0.96,20), (0.92, 40), (0.88, 60), (0.84, 80), (0.80, 100), (0.50, 200).
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Figure 8. Dependence of the basic reproduction number 
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were fixed. For example, the estimated basic reproduction 
number for the 2014 Liberia Ebola outbreak decreased from 
1.9508 to 1.6795, if the transmission rate after hospitalization 

decreased from 1.1338 to 0.4, 
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 decreased from 1.9508 to 
1.8310, transmission rate during traditional burial decreased 

from 0.9794 to 0.4 and 
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 decreased from 1.9508 to 0.7803, 
the level of not triggering a ring vaccination would decrease 
from 1 to 0.4. Although decreasing each parameter can 
reduce the basic reproduction number, only the level of ring 
vaccination will affect the basic reproduction number in all 
aspects and it can reduce the basic reproduction number to 
< 1, which will terminate the epidemic of Ebola. On the other 
hand, only focusing on decreasing the transmission rate after 
hospitalization or during traditional burial, cannot reduce the 
basic reproduction number to < 1, which means the epidemic 
can continue. To effectively slow/stop the spread of Ebola, 
combined actions have been taken to reduce the transmission 
rate in the community, after hospitalization and during 
traditional burial (prohibited during the 2014 outbreak of Ebola 
in Liberia).

7. A scenario analysis on the time to intervention T0

From the start of  the epidemic on June 2, 2014, the 
intervention measures would take place for 14.8 weeks, until 
September 12, 2014. By that time the cumulative number of 
cases would have already reached 2,081 total deaths, with 1,137 
cases showing no signs of slowing down. After the start of the 
intervention, the transmission rates would start to decline and 
the epidemic would eventually end. This intervention time 
was consistent with an intervention measure implemented for 
Liberia by a joint declaration of governments, and it was also 

consistent with the “70-70-60” plan which was implemented 
on October 1, 2014. Figure 9 shows how a change in the 
intervention time affected the final size of the epidemic.  

The earlier intervention, with the smaller final size (Figure 9), 
resulted in the intervention time starting 1-2 weeks earlier and 
resulted in a corresponding reduction of final total cases from 
10,515 to 8,080, and 6,211, and final total deaths from 4,611 
to 3,541, and 2,722 respectively. The intervention time that 
began 1-2 weeks later resulted in a corresponding increase in 
total cases from 10,515 to 13,631, 17,682, and final total deaths 
from 4,611 to 5,980, 7,759 respectively. Roughly speaking, 1 
week change in intervention time resulted in about 23% to 30% 
change in its final size.

Conclusion

Many mathematical models such as the SEIR model and 
its variants, the stochastic model, and the spatially explicit 
agent-based model have been developed to study the EVD 
transmission under different interventions. Of the interventions 
modeled, the most frequently suggested intervention was a 
combined strategy of isolating infected individuals from the 
general population, and providing sufficient supplies to treat 
them. In this study the SEIHFR model of Ebola epidemics was 
extended to evaluate the potential impact of Ebola vaccination.

The data was fitted to the model in this study without 
vaccination (  = 1,  = 1,  = 0). According to the simulation study 
it fitted very well in Figure 2. The basic reproduction number 
decreased from 1.9058 before intervention, to 0.8456 after 
intervention.

A detailed analysis  was carried to understand the 

Figure 9. Epidemic size changes as intervention time changes.
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mathematical dynamics of the disease. The system had a 
disease-free equilibrium (S, R, E, I, H, F) = (   N, (1-  )N, 0, 0, 0, 0) 
and it was stable in its infection subsystem if the basic 

reproduction number 
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 was < 1. In turn, this generated a 
threshold for the effective vaccination rate to arrest or mitigate 
an epidemic.

The simulation study in Figure 3 showed that if the initial 
vaccination rate was larger than the threshold, then the spread 
of the epidemic was under control and would gradually stop. 
If a 100% single dose efficacious vaccine was available for 
immunity, nearly 2.1 million highly effective vaccines would be 
needed to substantially prevent an Ebola outbreak in Liberia, 
and nearly 49% of the total population in Liberia would need to 
be vaccinated before or at the beginning of the outbreak. 

Simulation studies in Figures 4 and 5 showed that 
vaccination should be implemented as soon as possible if a 
randomized mass vaccination strategy was used, which is 
consistent with observations reported by Fisman et al [15].  
The simulation study in Figure 9 showed that a delay in 
intervention by 2 weeks would result in a total case increase of 
about 68%. Early intervention and early vaccination should be 
implemented side-by-side to achieve the greatest effectiveness. 

Reducing the infection rate was the key impact factor on 
vaccine administration. The model allowed quantification of the 
parameters corresponding to the number of vaccines ( ) and 
a reduced infection rate (1-  ) for evaluating the impact of the 
vaccine policy. Simulation studies in Figures 6 and 7 showed 
that the ring vaccination strategy could be a good choice if the 
infection rate could be reduced significantly. Potentially, the 
most effective way may be a combined strategy of intensifying 
contact tracing to remove infected individuals from general 
populations, and vaccinating contact persons of an infected 
individual as well as their contacts. Even if the ring vaccination 
with 200 vaccines per infected person could reduce the 
infection rate by 50% in Liberia, the simulation study in Figure 
7 showed that the outbreak would end within 20 weeks, and 
there would be about 214 total infected cases and 145 total 
deaths, which was equivalent to 2% and 3% of the current total 
infected cases and deaths, respectively.

Mathematical modeling is a valuable tool to understand 
the dynamics of infectious diseases. However, there are 
also limitations in applying mathematical models for Ebola 
outbreaks due to the complexity of real world events. It 
cannot be implied that a vaccine with 100% effectiveness 
against the Ebola virus can automatically stop an Ebola 
outbreak. Other intervention strategies (including accurate 
and timely identification and quarantine, sufficient medical 
care, safe burials, tracing the contact persons of an infected 
individual as well as their contacts), need to be implemented 
collaboratively. 
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3 parts due to transmission rate in the community, after 
hospitalization, and during traditional burial. By Routh-Hurwitz 
Criteria, a disease-free equilibrium is locally asymptotically 
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 is less than 1.

1.1. Nonnegativity and boundedness 
It is crucial to show that the solutions to the initial-value 

problem are non-negative and bounded and they retain the 
biological validity for all values of time. 

Lemma 5.1. [Nonnegativity] Let t0>0. If the initial conditions 
satisfy S(0)≥0, E(0)≥0, I(0)≥0, H(0)≥0, F(0)≥0, R(0)≥0, then 
S(t)≥0, E(t)≥0, I(t)≥0, H(t)≥0, F(t)≥0, R(t)≥0 for all t   [0, t0].

Proof. Note that                                           = 0 which implies that 
S+E+I+H+F+R=N, a constant size of population. It is easy to get 
the following lower bounds for any t   [0, t0].

Then
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F(t), R(t) are less than N. 

Proof. This is a direct consequence of that S+E+I+H+F+R=N 
and all S, E, I, H, F, R are nonnegative. 

By the Fundamental Theorem of Existence and Uniqueness 
for differential equations, there exists a unique, positive, and 
bounded solution to the ordinary differential equations given 
in (1) to (6). 

2. SEIHFR Model in matrix form 

To better understand the transmission of an infectious 
disease, it is important to distinguish new infections from 
all other changes in population. It can be shown that SEIHFR 
model can be written as the system below and is defined on a 
forward invariant compact subset Ω of R2

+ × R 4
+  by Lemma 5.1 
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1. Mathematical analysis of the SEIHFR Model 

A mathematical analysis on the model was conducted. It was shown that a non-negative bounded 

solution of the differential equation model for any non-negative initial condition always exists. The 

mathematical formula for basic reproduction number ℜ0 is generated and it can be decomposed into 3

parts due to transmission rate in the community, after hospitalization, and during traditional burial. By 
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ABSTRACT

Objectives: This study aimed to extend an epidemiological model (SEIHFR) to analyze epidemic trends,

and evaluate intervention efficacy.

Methods: SEIHFR was modified to examine disease transmission dynamics after vaccination for the 

Ebola outbreak. Using existing data from Liberia, sensitivity analysis of various epidemic scenarios was 

used to inform the model structure, estimate the basic reproduction number ℜ0 and investigate how the 

vaccination could effectively change the course of the epidemic.

Results: If a randomized mass vaccination strategy was adopted, vaccines would be administered

prophylactically or as early as possible (depending on the availability of vaccines). An effective 

vaccination rate threshold for Liberia was estimated as 48.74% among susceptible individuals. If a ring 

vaccination strategy was adopted to control the spread of the Ebola virus, vaccines would be given to 

reduce the transmission rate improving the tracing rate of the contact persons of an infected individual. 

Conclusion: The extended SEIHFR model predicted the total number of infected cases, number of deaths, 

number of recoveries, and duration of outbreaks among others with different levels of interventions such 

as vaccination rate. This model may be used to better understand the spread of Ebola and develop 

strategies that may achieve a disease-free state. 

 
Keywords: basic reproduction number, ebolavirus, Liberia, vaccination, West Africa

, is generally interpreted 
as the average number of secondary cases caused by a typical 
infected individual throughout its entire course of infection 
in a completely susceptible population and in the absence of 
control interventions [31-34]. It quantifies the potential growth 
for infectious disease transmission.

Note that for any [0,1], X=(X*
1, 0) =(  N, (1- )N, 0, 0, 0, 0) 

will be a disease free equilibrium for the SEIHFR model (11).  
(1- ) can be regarded as the initial removal rate of the total 
population due to immunization/vaccination. Legrand et al 

[10] determined the formula for 

2 
 

ABSTRACT

Objectives: This study aimed to extend an epidemiological model (SEIHFR) to analyze epidemic trends,

and evaluate intervention efficacy.

Methods: SEIHFR was modified to examine disease transmission dynamics after vaccination for the 

Ebola outbreak. Using existing data from Liberia, sensitivity analysis of various epidemic scenarios was 

used to inform the model structure, estimate the basic reproduction number ℜ0 and investigate how the 

vaccination could effectively change the course of the epidemic.

Results: If a randomized mass vaccination strategy was adopted, vaccines would be administered

prophylactically or as early as possible (depending on the availability of vaccines). An effective 

vaccination rate threshold for Liberia was estimated as 48.74% among susceptible individuals. If a ring 

vaccination strategy was adopted to control the spread of the Ebola virus, vaccines would be given to 

reduce the transmission rate improving the tracing rate of the contact persons of an infected individual. 

Conclusion: The extended SEIHFR model predicted the total number of infected cases, number of deaths, 

number of recoveries, and duration of outbreaks among others with different levels of interventions such 

as vaccination rate. This model may be used to better understand the spread of Ebola and develop 

strategies that may achieve a disease-free state. 

 
Keywords: basic reproduction number, ebolavirus, Liberia, vaccination, West Africa

 without considering the 
effect of control interventions such as antivirals and vaccines, 
where they assumed  =1. Indeed, at the beginning of the 2014 
Ebola outbreak in West Africa, susceptible individuals can be 
assumed to be all the population which means  =1. Following 
the previously described methods [31-34], we determined the 

formula for 

2 
 

ABSTRACT

Objectives: This study aimed to extend an epidemiological model (SEIHFR) to analyze epidemic trends,

and evaluate intervention efficacy.

Methods: SEIHFR was modified to examine disease transmission dynamics after vaccination for the 

Ebola outbreak. Using existing data from Liberia, sensitivity analysis of various epidemic scenarios was 

used to inform the model structure, estimate the basic reproduction number ℜ0 and investigate how the 

vaccination could effectively change the course of the epidemic.

Results: If a randomized mass vaccination strategy was adopted, vaccines would be administered

prophylactically or as early as possible (depending on the availability of vaccines). An effective 

vaccination rate threshold for Liberia was estimated as 48.74% among susceptible individuals. If a ring 

vaccination strategy was adopted to control the spread of the Ebola virus, vaccines would be given to 

reduce the transmission rate improving the tracing rate of the contact persons of an infected individual. 

Conclusion: The extended SEIHFR model predicted the total number of infected cases, number of deaths, 

number of recoveries, and duration of outbreaks among others with different levels of interventions such 

as vaccination rate. This model may be used to better understand the spread of Ebola and develop 

strategies that may achieve a disease-free state. 

 
Keywords: basic reproduction number, ebolavirus, Liberia, vaccination, West Africa

 here. The next generation matrix of the SEIHFR 
model (11) for (  N, (1- )N, 0, 0, 0, 0) is

	  

The formula for 

2 
 

ABSTRACT

Objectives: This study aimed to extend an epidemiological model (SEIHFR) to analyze epidemic trends,

and evaluate intervention efficacy.

Methods: SEIHFR was modified to examine disease transmission dynamics after vaccination for the 

Ebola outbreak. Using existing data from Liberia, sensitivity analysis of various epidemic scenarios was 

used to inform the model structure, estimate the basic reproduction number ℜ0 and investigate how the 

vaccination could effectively change the course of the epidemic.

Results: If a randomized mass vaccination strategy was adopted, vaccines would be administered

prophylactically or as early as possible (depending on the availability of vaccines). An effective 

vaccination rate threshold for Liberia was estimated as 48.74% among susceptible individuals. If a ring 

vaccination strategy was adopted to control the spread of the Ebola virus, vaccines would be given to 

reduce the transmission rate improving the tracing rate of the contact persons of an infected individual. 

Conclusion: The extended SEIHFR model predicted the total number of infected cases, number of deaths, 

number of recoveries, and duration of outbreaks among others with different levels of interventions such 

as vaccination rate. This model may be used to better understand the spread of Ebola and develop 

strategies that may achieve a disease-free state. 

 
Keywords: basic reproduction number, ebolavirus, Liberia, vaccination, West Africa

 is the spectral radius of the next 
generation matrix (the maximum value of its eigenvalues) and 

 

Note, from the definition in Table 1, 2=                 one can 
obtain

 

Because  1=                   in Table 1, we have                         which 
is equivalent to:

 

By direct computation, we have:

Therefore, 

2 
 

ABSTRACT

Objectives: This study aimed to extend an epidemiological model (SEIHFR) to analyze epidemic trends,

and evaluate intervention efficacy.

Methods: SEIHFR was modified to examine disease transmission dynamics after vaccination for the 

Ebola outbreak. Using existing data from Liberia, sensitivity analysis of various epidemic scenarios was 

used to inform the model structure, estimate the basic reproduction number ℜ0 and investigate how the 

vaccination could effectively change the course of the epidemic.

Results: If a randomized mass vaccination strategy was adopted, vaccines would be administered

prophylactically or as early as possible (depending on the availability of vaccines). An effective 

vaccination rate threshold for Liberia was estimated as 48.74% among susceptible individuals. If a ring 

vaccination strategy was adopted to control the spread of the Ebola virus, vaccines would be given to 

reduce the transmission rate improving the tracing rate of the contact persons of an infected individual. 

Conclusion: The extended SEIHFR model predicted the total number of infected cases, number of deaths, 

number of recoveries, and duration of outbreaks among others with different levels of interventions such 

as vaccination rate. This model may be used to better understand the spread of Ebola and develop 

strategies that may achieve a disease-free state. 

 
Keywords: basic reproduction number, ebolavirus, Liberia, vaccination, West Africa

 can be decomposed into 3 parts due to the 
transmission rate in the community, after hospitalization, and 
during traditional burial. 

 

4. Equilibrium, stability and immunity

The SEIHFR model has equilibrium points which belong to 
the line segment 

 

Note that the system only has disease free equilibria and it 
has no coexistence equilibrium.

where x1 =

[
S
R

]
represents the states of different compartments of non transmitting individuals (sus-

ceptible, recovered or immune, · · · ), x2 =




E
I
H
F


 represents the states of compartments of different

transmitting individuals (infected, infectious, · · ·), and x =

[
x1
x2

]
.

(12) A1(x2) =




− ζ
N (βII +βHH +βFF)− ν

N (I +H +F) 0

ν
N (I +H +F) 0


 .

(13) A12 =

[
0 0 0 0
0 γi(1−θ1)(1−δ1) γih(1−δ2) γ f

]
.

(14) A2(x) =




−α ζS
N βI

ζS
N βH

ζS
N βF

α −∆i 0 0

0 γhθ1 −∆h 0

0 γd(1−θ1)δ1 γdhδ2 −γ f



,

where
∆i = (γhθ1 + γi(1−θ1)(1−δ1)+ γd(1−θ1)δ1),

∆h = (γdhδ2 + γih(1−δ2)).

5.1.3 The Basic Reproduction Number R0

The basic reproduction number, R0, is generally interpreted as the average number of secondary cases
caused by a typical infected individual throughout its entire course of infection in a completely suscep-
tible population and in the absence of control interventions [31, 32, 33, 34]. It quantifies the potential
growth for infectious disease transmission.

Note that for any µ ∈ [0,1], x = (x∗1,0) = (µN,(1−µ)N,0,0,0,0) will be a disease free equilibrium
for the SEIHFR model (11). (1−µ) can be regard as the initial removal rate of the total population due
to immunization/vaccination. Legrand etc. [10] determined the formula for R0 without considering the
effect of control interventions such as antivirals and vaccines, where they assumed µ = 1. Indeed, at
the beginning of the 2014 Ebola outbreak in West Africa, the susceptible individuals can be assumed to
be all the population which means µ = 1. Following the method described in Driessche and Watmough
[34] or [31, 32, 33], we determine the formula for R0 here. The next generation matrix of the SEIHFR
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α−1 0 0 0

∆i
−1 ∆i

−1 0 0
γh θ1
∆i ∆h

γh θ1
∆i ∆h

∆h
−1 0

∆h γd δ1 (1−θ1)+γh θ1 γdh δ2
∆i ∆h γ f

∆h γd (1−δ1)θ1+γh θ1 γdh δ2
∆i ∆h γ f

γdh δ2
∆h γ f

γ f
−1



.

The formula for R0 is the spectral radius of the next generation matrix (the maximum value of its
eigenvalues) and

(16) R0 =
ζµβI

∆i
+

ζµβHγh θ1

∆i ∆h
+

ζµβF(∆h γd δ1 (1−θ1)+ γh θ1 γdh δ2)

∆i ∆h γ f
.

Note, from the definition in table 1, δ2 =
δγih

δγih+(1−δ)γdh
, one can obtain

δ =
δ2γdh

(1−δ2)γih +δ2γdh
=

δ2γdh

∆h
.

Because δ1 =
δγi

δγi+(1−δ)γd
in table 1, we have δ1

1−δ1
= δγi

(1−δ)γd
, which is equivalent to

γd δ1(1−δ)− γi(1−δ1)δ = 0.

By direct computation, we have

∆h γd δ1 (1−θ1)+ γh θ1 γdh δ2

∆i ∆h
=

γd δ1 (1−θ1)+ γh θ1δ
∆i

=
γd δ1 (1−θ1)+(∆i − γi(1−θ1)(1−δ1)− γd(1−θ1)δ1)δ

∆i

=
γd δ1 (1−θ1)(1−δ)− γi(1−θ1)(1−δ1)δ+∆iδ

∆i

=
(1−θ1)(γd δ1(1−δ)− γi(1−δ1)δ)+∆iδ

∆i
= δ.

Therefore, R0 can be decomposed into three parts due to transmission rate in the community, after
hospitalization, and during traditional burial.

(17) R0 =
ζµ
∆i

βI +
ζµγh θ1

∆i ∆h
βH +

ζµδ
γ f

βF ≡ R0I +R0H +R0F .

5.1.4 Equilibrium, Stability and Immunity
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Therefore, R0 can be decomposed into three parts due to transmission rate in the community, after
hospitalization, and during traditional burial.
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∆i ∆h
βH +
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γ f

βF ≡ R0I +R0H +R0F .

5.1.4 Equilibrium, Stability and Immunity

The SEIHFR model has equilibrium points which belong to the line segment

(18) L = {(S∗,R∗,0,0,0,0) : S∗ ≥ 0,R∗ ≥ 0, and S∗+R∗ = N}.

Note that the system only has disease free equilibria and it has no coexistence equilibrium.
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Theorem 5.3. Let P0 = (x∗1,0) = (µN,(1− µ)N,0,0,0,0) ∈ L be a disease free equilibrium, where
µ ∈ [0,1]. Then P0 ∈ L is a locally asymptotically stable disease free equilibrium in the infection
subsystem if the basic reproduction number R0 for P0 is less than 1. Conversely, P0 ∈ L is an unstable
disease free equilibrium if the basic reproduction number R0 for P0 is greater than 1.

Proof. The Jacobian for the linearized system of the SEIHFR model along the equilibrium P0 is

(19) J =




0 0 0 −(ζβI +ν)µ −(ζβH +ν)µ −(ζβF +ν)µ

0 0 0 γi(1−θ1)(1−δ1)+νµ γih(1−δ2)+νµ γ f +νµ
0 0 −α ζµβI ζµβH ζµβF

0 0 α −∆i 0 0

0 0 0 0 γhθ1 −∆h

0 0 0 γd(1−θ1)δ1 γdhδ2 −γ f




,

and its characteristic polynomial is

J(λ) = λ2(λ4 +B3λ3 +B2λ2 +B1λ+B0),

where

B0 =−ζµβI α∆h γf −ζµβH αγhθ1 γf − γdhδ2 γhθ1 αζµβF − γd(1−θ1)δ1 αζµβF ∆h +α∆i ∆h γf

= (α∆i ∆h γ f )(−R0 +1),

B1 =−ζµβI α∆h−ζµβI αγf −γhθ1 αζµβH −γd(1−θ1)δ1 αζµβF +α∆i ∆h+α∆i γf +α∆h γf +∆i ∆h γf ,

=(−ζµβI α∆h−γhθ1 αζµβH+α∆i ∆h)+(−ζµβI αγf −γd(1−θ1)δ1 αζµβF+α∆i γf )+α∆h γf +∆i ∆h γf

= α∆i ∆h(−R0 +1+R0F)+α∆i γf (−R0 +1+R0H +
γhθ1

∆i
R0F)+α∆h γf +∆i ∆h γf ,

B2 =−αζµβI +∆i α+∆h α+ γf α+∆h ∆i + γf ∆i + γf ∆h

= α∆i(−R0 +1+R0H +R0F)+∆h α+ γf α+∆h ∆i + γf ∆i + γf ∆h

B3 = γ f +∆h +α+∆i.

The characteristic polynomial has eigenvalues zero and the equilibrium is not linearly stable for the
whole system. But the characteristic polynomial of its infection subsystem is

(20) P = λ4 +B3λ3 +B2λ2 +B1λ+B0.

If R0 > 1, B0 < 0. By Descartes’ Rule of Signs, the characteristic polynomial has at least one positive
root. So the equilibrium P0 is linearly unstable. We will use the Routh-Hurwitz Criteria and the values
of B0,B1,B2, and B3 to derive the stability of P0. We know that all of the parameters are positive. It
is clear that B0 > 0,B1 > 0,B2 > 0,B3 > 0 if R0 < 1. We use Maple 2016 to carry out the following
calculations.

B3B2 −B1 = (γ f +∆h +α+∆i)(α∆i(−R0 +1+R0H +R0F))+
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(γ f +∆h +α+∆i)(∆h α+ γf α+∆h ∆i + γf ∆i + γf ∆h)+
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(B3B2 −B1)B1 −B2
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γf ∆i + γf ∆h)+(α+∆i)(∆h α+ γf α)+∆i(∆h ∆i + γf ∆i))(α∆h γf +∆i ∆h γf )−

(γ f +∆h +α+∆i)
2(α∆i ∆h γ f )(−R0 +1)

= (−R0 +1)(γ f ∆h(γ f +∆h)(∆h∆2
i +∆h∆iα+∆h∆iγ f +∆hα2 +∆hαγ f +∆3

i +∆2
i α+∆2

i γ f+

∆iα2 +∆iαγ f +α3 +α2γ f )> 0.

By Routh-Hurwitz Criteria, P0 ∈ L is a locally asymptotically stable disease free equilibrium in the
infection subsystem when the basic reproduction number R0 is less than 1.

Therefore, if R0 < 1, then on average an infected individual produces less than one new infected
individual over the course of its infectious period, and the infection can not generate a major epidemic.
By contrast, if R0 > 1, then on average each infected individual produces more than one new infection,
and an epidemic is likely to occur.

Corollary 5.4. Assume that an infectious disease has the basic reproduction number R0 > 1 without
vaccination/immunization (µ = 1 in Theorem 5.3). Let rv be the minimum effective vaccination rate
which is given by

(21) rv =
R0 −1

R0
.

Then the epidemic would be under control if the initial immunized/vaccinated rate (1−µ) of the total
population is bigger than the minimum effective vaccination rate, that is, (1−µ)> rv.
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Theorem 5.3. Let P0 = (x∗1,0) = (µN,(1− µ)N,0,0,0,0) ∈ L be a disease free equilibrium, where
µ ∈ [0,1]. Then P0 ∈ L is a locally asymptotically stable disease free equilibrium in the infection
subsystem if the basic reproduction number R0 for P0 is less than 1. Conversely, P0 ∈ L is an unstable
disease free equilibrium if the basic reproduction number R0 for P0 is greater than 1.

Proof. The Jacobian for the linearized system of the SEIHFR model along the equilibrium P0 is

(19) J =




0 0 0 −(ζβI +ν)µ −(ζβH +ν)µ −(ζβF +ν)µ

0 0 0 γi(1−θ1)(1−δ1)+νµ γih(1−δ2)+νµ γ f +νµ
0 0 −α ζµβI ζµβH ζµβF

0 0 α −∆i 0 0

0 0 0 0 γhθ1 −∆h

0 0 0 γd(1−θ1)δ1 γdhδ2 −γ f




,

and its characteristic polynomial is

J(λ) = λ2(λ4 +B3λ3 +B2λ2 +B1λ+B0),

where

B0 =−ζµβI α∆h γf −ζµβH αγhθ1 γf − γdhδ2 γhθ1 αζµβF − γd(1−θ1)δ1 αζµβF ∆h +α∆i ∆h γf

= (α∆i ∆h γ f )(−R0 +1),

B1 =−ζµβI α∆h−ζµβI αγf −γhθ1 αζµβH −γd(1−θ1)δ1 αζµβF +α∆i ∆h+α∆i γf +α∆h γf +∆i ∆h γf ,

=(−ζµβI α∆h−γhθ1 αζµβH+α∆i ∆h)+(−ζµβI αγf −γd(1−θ1)δ1 αζµβF+α∆i γf )+α∆h γf +∆i ∆h γf

= α∆i ∆h(−R0 +1+R0F)+α∆i γf (−R0 +1+R0H +
γhθ1

∆i
R0F)+α∆h γf +∆i ∆h γf ,

B2 =−αζµβI +∆i α+∆h α+ γf α+∆h ∆i + γf ∆i + γf ∆h

= α∆i(−R0 +1+R0H +R0F)+∆h α+ γf α+∆h ∆i + γf ∆i + γf ∆h

B3 = γ f +∆h +α+∆i.

The characteristic polynomial has eigenvalues zero and the equilibrium is not linearly stable for the
whole system. But the characteristic polynomial of its infection subsystem is

(20) P = λ4 +B3λ3 +B2λ2 +B1λ+B0.

If R0 > 1, B0 < 0. By Descartes’ Rule of Signs, the characteristic polynomial has at least one positive
root. So the equilibrium P0 is linearly unstable. We will use the Routh-Hurwitz Criteria and the values
of B0,B1,B2, and B3 to derive the stability of P0. We know that all of the parameters are positive. It
is clear that B0 > 0,B1 > 0,B2 > 0,B3 > 0 if R0 < 1. We use Maple 2016 to carry out the following
calculations.

B3B2 −B1 = (γ f +∆h +α+∆i)(α∆i(−R0 +1+R0H +R0F))+
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(γ f +∆h +α+∆i)(∆h α+ γf α+∆h ∆i + γf ∆i + γf ∆h)+

(ζµβI α∆h +ζµβI αγf + γhθ1 αζµβH + γd(1−θ1)δ1 αζµβF)− (α∆i ∆h +α∆i γf +α∆h γf +∆i ∆h γf )

= (γ f +∆h +α+∆i)(α∆i(−R0 +1+R0H +R0F))+

(ζµβI α∆h +ζµβI αγf + γhθ1 αζµβH + γd(1−θ1)δ1 αζµβF)+

(γ f +∆h)(∆h α+ γf α+∆h ∆i + γf ∆i + γf ∆h)+(α+∆i)(∆h α+ γf α)+∆i(∆h ∆i + γf ∆i)> 0.

Because (−R0 + 1) > 0, B3B2 −B1 > (−R0 + 1)((γ f +∆h +α+∆i)(α∆i)+ (γ f +∆h)(∆h α+ γf α+
∆h ∆i+ γf ∆i + γf ∆h)+(α+∆i)(∆h α+ γf α)+∆i(∆h ∆i + γf ∆i)) and B1 > (α∆h γf +∆i ∆h γf )

(B3B2 −B1)B1 −B2
3B0 > (−R0 +1)((γ f +∆h +α+∆i)(α∆i)+(γ f +∆h)(∆h α+ γf α+∆h ∆i+

γf ∆i + γf ∆h)+(α+∆i)(∆h α+ γf α)+∆i(∆h ∆i + γf ∆i))(α∆h γf +∆i ∆h γf )−

(γ f +∆h +α+∆i)
2(α∆i ∆h γ f )(−R0 +1)

= (−R0 +1)(γ f ∆h(γ f +∆h)(∆h∆2
i +∆h∆iα+∆h∆iγ f +∆hα2 +∆hαγ f +∆3

i +∆2
i α+∆2

i γ f+

∆iα2 +∆iαγ f +α3 +α2γ f )> 0.

By Routh-Hurwitz Criteria, P0 ∈ L is a locally asymptotically stable disease free equilibrium in the
infection subsystem when the basic reproduction number R0 is less than 1.

Therefore, if R0 < 1, then on average an infected individual produces less than one new infected
individual over the course of its infectious period, and the infection can not generate a major epidemic.
By contrast, if R0 > 1, then on average each infected individual produces more than one new infection,
and an epidemic is likely to occur.

Corollary 5.4. Assume that an infectious disease has the basic reproduction number R0 > 1 without
vaccination/immunization (µ = 1 in Theorem 5.3). Let rv be the minimum effective vaccination rate
which is given by

(21) rv =
R0 −1

R0
.

Then the epidemic would be under control if the initial immunized/vaccinated rate (1−µ) of the total
population is bigger than the minimum effective vaccination rate, that is, (1−µ)> rv.
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(γ f +∆h +α+∆i)(∆h α+ γf α+∆h ∆i + γf ∆i + γf ∆h)+

(ζµβI α∆h +ζµβI αγf + γhθ1 αζµβH + γd(1−θ1)δ1 αζµβF)− (α∆i ∆h +α∆i γf +α∆h γf +∆i ∆h γf )

= (γ f +∆h +α+∆i)(α∆i(−R0 +1+R0H +R0F))+

(ζµβI α∆h +ζµβI αγf + γhθ1 αζµβH + γd(1−θ1)δ1 αζµβF)+

(γ f +∆h)(∆h α+ γf α+∆h ∆i + γf ∆i + γf ∆h)+(α+∆i)(∆h α+ γf α)+∆i(∆h ∆i + γf ∆i)> 0.

Because (−R0 + 1) > 0, B3B2 −B1 > (−R0 + 1)((γ f +∆h +α+∆i)(α∆i)+ (γ f +∆h)(∆h α+ γf α+
∆h ∆i+ γf ∆i + γf ∆h)+(α+∆i)(∆h α+ γf α)+∆i(∆h ∆i + γf ∆i)) and B1 > (α∆h γf +∆i ∆h γf )

(B3B2 −B1)B1 −B2
3B0 > (−R0 +1)((γ f +∆h +α+∆i)(α∆i)+(γ f +∆h)(∆h α+ γf α+∆h ∆i+

γf ∆i + γf ∆h)+(α+∆i)(∆h α+ γf α)+∆i(∆h ∆i + γf ∆i))(α∆h γf +∆i ∆h γf )−

(γ f +∆h +α+∆i)
2(α∆i ∆h γ f )(−R0 +1)

= (−R0 +1)(γ f ∆h(γ f +∆h)(∆h∆2
i +∆h∆iα+∆h∆iγ f +∆hα2 +∆hαγ f +∆3

i +∆2
i α+∆2

i γ f+

∆iα2 +∆iαγ f +α3 +α2γ f )> 0.

By Routh-Hurwitz Criteria, P0 ∈ L is a locally asymptotically stable disease free equilibrium in the
infection subsystem when the basic reproduction number R0 is less than 1.

Therefore, if R0 < 1, then on average an infected individual produces less than one new infected
individual over the course of its infectious period, and the infection can not generate a major epidemic.
By contrast, if R0 > 1, then on average each infected individual produces more than one new infection,
and an epidemic is likely to occur.

Corollary 5.4. Assume that an infectious disease has the basic reproduction number R0 > 1 without
vaccination/immunization (µ = 1 in Theorem 5.3). Let rv be the minimum effective vaccination rate
which is given by

(21) rv =
R0 −1

R0
.

Then the epidemic would be under control if the initial immunized/vaccinated rate (1−µ) of the total
population is bigger than the minimum effective vaccination rate, that is, (1−µ)> rv.
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