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Ether lipids are a unique class of glycero- and glycerophospho-lipid that carry an
ether or vinyl ether linked fatty alcohol at the sn-1 position of the glycerol backbone.
These specialised lipids are important endogenous anti-oxidants with additional roles in
regulating membrane fluidity and dynamics, intracellular signalling, immunomodulation
and cholesterol metabolism. Lipidomic profiling of human population cohorts has
identified new associations between reduced circulatory plasmalogen levels, an
abundant and biologically active sub-class of ether lipids, with obesity and body-mass
index. These findings align with the growing body of work exploring novel roles for ether
lipids within adipose tissue. In this regard, ether lipids have now been linked to facilitating
lipid droplet formation, regulating thermogenesis and mediating beiging of white adipose
tissue in early life. This review will assess recent findings in both population studies and
studies using cell and animal models to delineate the functional and protective roles of
ether lipids in the setting of obesity. We will also discuss the therapeutic potential of
ether lipid supplementation to attenuate diet-induced obesity.
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ETHER LIPIDS

Structure and Biological Functions
Ether lipids are a unique class of peroxisome-derived glycero- and glycerophospho-lipid.
They carry an ether or vinyl ether linked fatty alcohol at the sn-1 position, and an ester
linked fatty acid either at the sn-2 position (ether phospholipids), or at both the sn-
2 and sn-3 positions (ether glycerolipids). This is contrary to conventional glycerol-based
lipids that have acyl chains attached by an ester linkage at the sn-1 position (Figure 1).
To date, ether analogs of triacyclglycerols [mono-alkyl-diacylglycerols, TG(O)] and various
phospholipid classes, including phosphatidylethanolamine [alkyl-phosphatidylethanolamine,
PE(O)], phosphatidylcholine [alkyl-phosphatidylcholine, PC(O)], phosphatidylinositol [alkyl-
phosphatidylinositol, PI(O)] and phosphatidylserine [alkyl-phosphatidylserine, PS(O)] have been
reported (Nagan and Zoeller, 2001; Ivanova et al., 2012; Nagy et al., 2012; Ma et al., 2017).

Ether lipids are highly abundant molecules that account for around 20% of the total
phospholipid content in mammalian cells (Nagan and Zoeller, 2001; Paul et al., 2019). They
make up a significant component of subcellular membranes, including the membranes of the
nucleus, endoplasmic reticulum (ER), post-Golgi network and mitochondria (Nagan and Zoeller,
2001; Honsho et al., 2008). Importantly, these lipids contain varying structural and physico-
chemical properties, including different head groups and fatty acyl chains. These features give rise

Frontiers in Physiology | www.frontiersin.org 1 March 2022 | Volume 13 | Article 841278

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2022.841278
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fphys.2022.841278
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2022.841278&domain=pdf&date_stamp=2022-03-03
https://www.frontiersin.org/articles/10.3389/fphys.2022.841278/full
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-13-841278 February 25, 2022 Time: 15:46 # 2

Schooneveldt et al. Ether Lipids in Adipose Tissue

FIGURE 1 | Chemical structure of alkyl-, alkenyl- and mono-alkyl-ether lipids. Diacyl phospholipid and triacylglycerol exhibits typical structure of a glycerol-lipids.

to disparities between their distribution and function amongst
tissues. High levels of ether lipids have been detected in the
brain, heart, kidney, skeletal muscle and certain immune cells,
including neutrophils and macrophages, whilst low levels have
been reported in the liver (Lohner, 1996; Lee, 1998; Farooqui
and Horrocks, 2001; Braverman and Moser, 2012). As the
liver is considered a primary site for ether lipid synthesis, it
has been suggested that its’ low ether lipid content is due
to subsequent transport of ether lipids to other tissues via
lipoproteins (Vance, 1990).

Plasmalogens are a subset of ether glycerophospholipids that
bear a cis double bond adjacent to the ether linkage, forming a
“vinyl-ether linkage” (Nagan and Zoeller, 2001; Braverman and
Moser, 2012). In mammalian cells, plasmalogens are considered
the most abundant and biologically active class of ether lipids,
primarily consisting of palmitic (16:0), stearic (18:0) or oleic
(18:1) alkenyl chains at the sn-1 position, and polyunsaturated
fatty acids (PUFA), such as linoleic acid (18:2), arachidonic acid
(20:4; AA) or docosahexaenoic acid (22:6; DHA) are typically
at the sn-2 position (Gross, 1984; Wallner and Schmitz, 2011;
Braverman and Moser, 2012).

Plasmalogens were first identified in 1924, however, it
was only recently that they received attention, as studies
demonstrated their capabilities as potent anti-oxidants (Feulgen
and Voit, 1924; Zoeller et al., 1988, 1999). The enhanced
electron density and position of the vinyl-ether linkage makes

it a primary target for a variety of oxidants (Engelmann,
2004). Subsequent cleavage of the vinyl-ether linkage provides
additional downstream benefits, as it prevents the oxidation
of PUFAs and protects unsaturated membrane lipids. This
is because plasmalogen oxidation products are unable to
initiate further lipid peroxidation (Khaselev and Murphy,
1999; Murphy, 2001; Engelmann, 2004). Due to their high
PUFA content at the sn-2 position, plasmalogens are also
considered key storage depots of PUFAs. These PUFAs can
be cleaved and metabolised into potent second messenger
molecules, such as protectins and resolvins, to induce anti-
inflammatory and anti-apoptotic effects (Ford and Gross, 1989;
Schwab et al., 2007; Gaposchkin et al., 2008). Later work has
since described additional roles for plasmalogens, including,
but not limited to, their involvement in membrane fluidity
and dynamics, intracellular signalling, immunomodulation and
cholesterol metabolism (Han and Gross, 1990; Mandel et al.,
1998; Farooqui and Horrocks, 2001; Gorgas et al., 2006; Lessig
and Fuchs, 2009; Wallner et al., 2014; Honsho et al., 2015;
Rubio et al., 2018).

Ether Lipid Synthesis
Ether lipid synthesis is a well characterised process that involves
multiple enzymes within the peroxisome and ER (Figure 2).
The pathway begins in the peroxisome with the esterification
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FIGURE 2 | Biosynthetic and catabolic pathways of ether lipids: The formation of fatty alcohol by FAR1 and FAR2 in the peroxisome is the rate-limiting step:
Metabolites are shown in blue and red: DHAP, dihydroxyacetonephosphate; G3P; glycerol-3- phosphate GPC, glycerophospho-choline; GPE,
glycerophospho-ethanolamine; PC(O), Alkyl-phosphatidylcholine; PE(O), Alkyl-phosphatidylethanolamine; PC(P), PC plasmalogen, PE(P), PE Plasmalogen; LPC(P),
Lyso-PC Plasmalogen; LPE(P), Lyso_PE Plasmalogen. Enzymes are shown in orange squares: DHAPAT, DHAP acyltransferase; ADHAP-S, alkyl- dihydroxyacetone
phosphate synthase; AADHAPR, acyl/alkyl dihydroxyacetone phosphate reductase; AAG3PAT, acyl/alkyl-glycero-3- phosphate acyltransferase; PH,
phosphohydrolase; AG kinase, alkylglycerol kinase; δδ1 Desaturase, plasmanyl-ethanolamine delta1-desaturase; C-PT, choline phosphotransferase; E-PT,
ethanolamine phosphotransferase; PEMT, phosphatidylethanolamine N-methyltransferase; PLC, phospholipase C; CoA-IT, coenzyme A-independent transacylase;
i-phospholipase A2, calcium independent phospholipase A2; TMEM86B, lysoplasmalogenase; FAR1, fatty acyl-CoA reductase 1; FAR2, fatty acyl-CoA reductase 2.

of dihydroxyacetone phosphate (DHAP) (Nagan and Zoeller,
2001). After the replacement of the acyl-chain for an alkyl-
chain at the sn-1 position, 1-alkyl DHAP crosses to the cytosolic
side of the ER where it enters the biosynthetic pathway of

diacyl-phospholipids (Lee, 1998). Plasmalogens are the major end
product of the biosynthetic pathway, however, platelet-activating
factor (1-alkyl-2-acetyl glycerophosphoryl-choline, PAF), and the
lipid moiety of distinct glycosyl-phosphatidylinositol anchored
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proteins are also synthesised. Paul et al. have reviewed the ether
lipid biosynthetic pathway in more detail (Paul et al., 2019).

Ether Lipids in Obesity
Ether lipids have been implicated in neurodegenerative disorders,
cardiovascular disease (CVD), metabolic disease and some
genetic disorders (Gould and Valle, 2000; Goodenowe et al., 2007;
Pietiläinen et al., 2007; Graessler et al., 2009; Meikle et al., 2011).
This review will focus on obesity, as it is now considered a
major health burden and contributes to a range of pathologies,
including CVD, insulin resistance, type 2 diabetes (T2D) and
non-alcoholic fatty liver disease (NAFLD). Indeed, lipidomic
studies of large human cohorts have identified decreased levels
of circulating ether lipids to be associated with numerous
features of metabolic diseases (Pietiläinen et al., 2007; Graessler
et al., 2009; Meikle et al., 2011, 2013; Weir et al., 2013;
Beyene et al., 2020).

An early lipidomic study, analysing plasma samples from
monozygotic twins discordant for obesity, demonstrated
that obesity was associated with increased levels of lyso-
phospholipid species, which possess some pro-inflammatory
effects, and a concurrent decrease in ether lipids, independent
of genetic factors (Pietiläinen et al., 2007). Another study,
analysing the plasma lipidome of over 1,000 individuals
from Mexican-American families, observed similar results.
Several ether lipid species were negatively associated with
body mass index, independent of age, sex, systolic blood
pressure, 2 h post-load glucose plasma levels and smoking status
(Kulkarni et al., 2013). Reduced ether lipids have also been
implicated in hypertension, NAFLD, pre-diabetes, T2D and
ageing (Puri et al., 2009; Meikle et al., 2013; Weir et al., 2013;
Paul et al., 2019).

Peroxisomes are membrane bound organelles that perform
multiple functions, including ether lipid synthesis, reactive
oxygen species (ROS) metabolism, fatty acid oxidation and
cholesterol transport (Cipolla and Irfan, 2017). Deficiencies
in the peroxisomal membrane protein Pex11a, involved in
peroxisome maintenance and proliferation, reduced plasmalogen
levels and caused dyslipidemia and obesity in mice (Chen et al.,
2018). Additional preclinical studies have made similar
observations, linking peroxisomal dysfunction, characterised
by reduced levels of plasmalogens, with various metabolic
pathologies including dyslipidemia, obesity, NAFLD and
T2D (Cipolla and Irfan, 2017; Park et al., 2019b). Whilst
the mechanisms underlying these associations remain
unclear, it has been postulated that a reduction in ether
lipids contributes to the disease pathology through multiple
pathways, including the disruption of cellular membranes,
increased oxidative stress, ER stress and inflammation. These
mechanisms have been reviewed previously, and whilst they
offer some insights, it is becoming increasingly apparent
that the physiological roles of ether lipids are likely to be
specific to a given tissue. Accordingly, investigators have begun
to explore the composition of lipids in adipose tissues and
subsequently uncovered novel roles for plasmalogens in the
regulation of adiposity.

IN VITRO AND IN VIVO STUDIES

Lipidomic Profiling of Adipose Tissue
Adipose tissue plays a central role in regulating energy
metabolism and homeostasis. There are three distinct types of
adipose tissue; white (WAT), brown (BAT) and beige adipose
tissue. WAT is comprised of uniocular lipid droplets and is
involved in storing excess energy in the form of neutral lipids,
such as triacylglycerols (TG), that can be remobilised in times
of energy deficiency (Leiria and Tseng, 2020). Conversely, BAT
has multilocular lipid droplets and is highly metabolically active,
driving non-shivering thermogenesis through the oxidation of
fatty acids to generate heat (Park et al., 2019a). Beige adipocytes
occur as clusters within WAT depots and are inducible, often in
response to prolonged cold exposure (Leiria and Tseng, 2020).
As a result, beige adipocytes are able to develop a BAT-like
phenotype, giving rise to their mixed BAT and WAT functions as
well as multilocular/unilocular morphology. Importantly, brown
and beige adipocytes are enriched in mitochondria and express
uncoupling protein 1 (UCP1), a mitochondrial membrane
protein that dissociates oxidative phosphorylation from ATP
production (Fedorenko et al., 2012). Lipidomic profiling of the
different adipose tissues and depots has provided enormous
insight into their unique composition and function.

Hoene et al. (2014) comprehensively examined the lipidome
of BAT and subcutaneous WAT (SAT) in male and female
mice. They demonstrated a pronounced difference in the lipid
profiles of the adipose tissues, as well as a distinct sex-
dependent difference in BAT. More specifically, they observed
that phospholipid classes, including phosphatidylethanolamine
(PE) and phosphatidylcholine (PC) ether lipids, were elevated
in BAT compared to SAT (Hoene et al., 2014). Conversely, TG
and diacylglycerol (DG) species were higher in SAT compared
to BAT (Hoene et al., 2014). These differences likely reflect the
metabolic activity and function of each tissue, as phospholipids
regulate UCP1 within mitochondrial inner membranes of
thermogenic BAT cells, whilst TG species are typically stored
in WAT (Leiria and Tseng, 2020). Despite the lower levels
of ether lipids in SAT compared to BAT, lipidomic analysis
of human WAT reported that plasmalogens are still highly
abundant relative to other lipid species (Lange et al., 2021).
Findings showed that PE plasmalogens were the most abundant
species containing PUFA as well as the fourth most abundant
lipid class overall. Interestingly, PE plasmalogen levels were
around 3 times higher than PE-diacyl species (Lange et al.,
2021). Interestingly, another study that conducted lipidomic
analysis on primary brown, white and beige adipocytes
in vitro revealed contrary results (Schweizer et al., 2019). White
adipocytes exhibited higher amounts of PE and PC ether
lipids as well as lipid species containing long-chain PUFA
compared to the beige and brown adipocytes. The authors
suggested that this increase may reflect a protective adaptation
of white adipocytes to mitigate the elevated production
of ROS in the obese mice. In addition, the same group
reported that brown adipocytes had a significant increase in
cardiolipins (CL) compared to white and beige adipocytes
(Schweizer et al., 2019). As CL are major constituents of
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mitochondrial membranes, these findings likely reflect the
increased abundance of mitochondria within brown adipocytes
compared to white adipocytes. The lipidomic profiles of
brown and beige adipocytes were considered comparable
(Schweizer et al., 2019).

Whilst our understanding of the adipose lipidome remains
limited, particularly in relation to ether lipids, research has begun
to explore the apparent remodelling of adipose tissue in the
setting of obesity. Multiple studies have now comprehensively
analysed the lipidomic signatures of adipose tissue from obese
and lean individuals (Pietiläinen et al., 2011; Lange et al.,
2021). One study conducted by Pietiläinen et al. (2011) revealed
unique changes in the composition of ether lipids in twin
pairs discordant for obesity (Pietiläinen et al., 2011). Their
results demonstrated that the adipose tissue of the obese twins
presented with increased levels of PUFA-containing ether lipids,
and a proportional decrease in phospholipids containing shorter
and more saturated fatty acids, compared to that of the lean
twins (Pietiläinen et al., 2011). As the ether lipid and diacyl-
phospholipid biosynthetic pathways are linked, these findings
suggest that there is a preferential flux through the ether
lipid pathway, and a concurrent decrease through the diacyl-
phospholipid pathway. This shift between pathways may be
linked to the important role of plasmalogens in facilitating
membrane remodelling of enlarged adipocytes during obesity
(Pietiläinen et al., 2011; Lange et al., 2021).

Lipidomic analyses of SAT and visceral adipose tissue (VAT)
from lean and obese individuals offered greater insights into the
composition of adipose tissue ether lipids in obese individuals
(Lange et al., 2021). Specifically, the study revealed that higher
amounts of PC plasmalogens with long-chain PUFA were
characteristic of obese SAT depots, whilst PE plasmalogen
species accumulated in obese VAT depots. Similar findings were
also observed in women with insulin resistance, which is a
hallmark of obesity (Wentworth et al., 2016). Wentworth et al.
(2016) reported that PC ether lipids were more abundant in
the SAT depots of women with insulin resistance compared
to the VAT depots. Together, these findings demonstrate that
the differences in lipid composition appear to be highly depot
specific. SAT is considered a more metabolically healthy adipose
tissue, in part due to its ability to undergo browning, and
therefore has the potential to develop a BAT-like phenotype
(Chechi et al., 2018). Conversely, VAT is known to be a major
risk factor for cardiometabolic disease and has been linked
to hyperglycaemia, hyperinsulinemia, hypertriglyceridaemia and
impaired glucose tolerance (Ibrahim, 2010). Interestingly, PE
and PC phospholipids have specific and opposing effects on
membrane stability, as PE lipids promote membrane rigidity
whilst PC lipids maintain membrane fluidity (Harayama and
Riezman, 2018). It has been suggested that the expansion of
adipose tissue associated with obesity triggers remodelling of
membrane phospholipids in an effort to maintain membrane
composition and function (Lange et al., 2021). However, the
specific role of PE and PC plasmalogen species in this context
remains elusive. Furthermore, it is unclear whether these findings
reflect increased endogenous synthesis of ether lipids in WAT or
uptake of ether lipids from the circulation.

Following on from their early work, Pietiläinen et al. (2011)
performed lipidomic analysis on the SAT of healthy and
morbidly obese weight-discordant twins (Pietiläinen et al., 2011).
Surprisingly, they demonstrated that unlike in the obese twins,
remodelling of PUFA-plasmalogens was considerably reduced
in the morbidly obese twins. These findings suggest that the
protective adaptations induced by the onset of obesity are lost
as adiposity increases. One plausible explanation involves the
enzyme calcium independent phospholipase A2 (iPLA2), which
hydrolyses plasmalogens into lyso-plasmalogens (Paul et al.,
2019). Importantly, iPLA2 is known to be elevated in the setting
of obesity and has been shown to contribute to diet-induced
weight gain, adipocyte hypertrophy and insulin resistance, via
changes in fatty acid oxidation and mitochondrial content in vivo
(Garces et al., 2010; Mancuso et al., 2010). Based on the
current literature, it is likely that iPLA2 levels increase during
obesity which contributes to the reduction in plasmalogen levels.
This would result in a subsequent decrease in mitochondrial
content and function, as well as exacerbate diet-induced obesity.
Furthermore, deacylation of plasmalogens results in the release of
PUFAs at the sn-2 position. PUFAs are highly susceptible to lipid
peroxidation, resulting in the formation of toxic lipid peroxyl
radicals and hydroperoxides (Antonio et al., 2014). One example
of this is oxidation of AA. AA can be oxidised into precursors
of multiple eicosanoids, including thromboxane, prostaglandins,
and leukotrienes, which have potent inflammatory functions
(Farooqui et al., 1995; Marzo, 1995). Elevated levels of these
lipid mediators could contribute to the systemic inflammation
associated with morbid obesity. Indeed, this rapid break down
of plasmalogen species via iPLA2 would likely exceed the rate
of endogenous plasmalogen synthesis, resulting in the overall
decrease of PUFA-containing plasmalogens that was observed. It
is important to note that it remains unclear whether iPLA2 is
plasmalogen specific, or it hydrolyses other structurally similar
lipids concurrently. Furthermore, due to the complex nature of
lipid metabolism, the regulatory mechanisms responsible for this
obesity-induced lipid dysregulation are likely to involve multiple
intrinsic and overlapping pathways.

Functional Roles of Ether Lipids in
Adipose Tissue
Studies by Brites et al. (2011) and Park et al. (2019b), have
been critical in developing our understanding of the functional
roles of ether lipids, particularly plasmalogens, within adipocytes.
Using in vivo and in vitro models of impaired peroxisomal
function to induce plasmalogen deficiency, Brites et al. (2011)
revealed a crucial role for plasmalogens in facilitating lipid
droplet formation. Mice deficient in plasmalogens, via knockout
of the peroxisomal factor 7 (Pex7), presented with extremely
reduced epididymal, inguinal, retroperitoneal and subscapular
WAT depots, whilst the brown adipocytes had abnormally
small lipid droplets (Brites et al., 2011). Interestingly, dietary
supplementation with the plasmalogen precursor alkylglycerols,
rescued plasmalogen levels and normalised the size and number
of lipid droplets in both the BAT and WAT of the plasmalogen
deficient mice (Brites et al., 2011). These results suggest a role
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for plasmalogens in lipid droplet formation and maintenance.
Consistent with this, additional studies demonstrated that
plasmalogen-deficient mouse embryonic fibroblasts (MEFs) had
fewer and smaller lipid droplets when compared to control
MEFs (Brites et al., 2011). Similarly, treatment with alkylglycerols
restored the number and volume of lipid droplets, further
supporting a role for plasmalogens in the regulation of lipid
droplet homeostasis.

Studies have demonstrated that lipid droplets also mediate
ER stress (Hapala et al., 2012). ER stress is a common feature
of obesity that results in the disruption of protein folding and
synthesis (Basseri and Richard, 2011). Researchers have shown
that an increase in lipid droplet biogenesis, often during obesity,
induces ER stress. The primary mechanisms thought to drive
this association was a combination of reduced phospholipid
synthesis and an up-regulation of TG synthesis (Basseri and
Richard, 2011). As plasmalogens have been implicated in
lipid droplet formation, it is likely that the known reduction
of plasmalogens caused by obesity in directly contributes to
the progression of ER stress. This is supported by recent
work by Ogawa and colleagues who discuss a potential link
between elevated ER stress, mitochondrial dysfunction and
inflammation with reduced levels of PE plasmalogens in patients
with bipolar disorder (Ogawa et al., 2020). Additionally, an
in vivo study utilising peroxisome-deficient Pex2 knockout
mice, demonstrated that functional peroxisomes are critical
for the prevention of chronic ER stress (Kovacs et al., 2009).
Whilst the study did not link peroxisomal function with
plasmalogen levels directly, combining these results with their
known role as potent anti-oxidants suggests a protective role
of plasmalogens against oxidative stressors. Further exploration
into the specific role of ether lipids in the setting of ER
stress is required.

Recently, peroxisomal lipid metabolism, and subsequent
ether lipid synthesis, has been shown to facilitate thermogenesis
via the regulation of mitochondrial dynamics. Inhibition
of peroxisome biogenesis via the WAT-specific deletion of
the peroxisomal biogenesis factor Pex16 in vivo, decreased
mitochondrial DNA content and impaired mitochondrial
function in brown and beige adipocytes (Park et al., 2019b).
As a result, the knockout mice presented with severe cold
intolerance and reduced thermogenesis. Furthermore, when
placed on a high fat diet, the knockout mice had significantly
increased fat mass and body weight compared to control
mice on the same diet, demonstrating diet-induced obesity.
Subsequent dietary supplementation of alkylglycerols was able
to restore plasmalogen levels, mitochondrial morphology and
cold sensitivity in these mice (Park et al., 2019b). Together,
these findings suggest that peroxisomal synthesis of ether
lipids is important for regulating mitochondrial dynamics and
thermogenesis. Using an alternative model of plasmalogen
deficiency, via knockdown of the endogenous ether lipid
synthesis enzyme glyceronephosphate O-acyltransferase
(GNPAT), researchers observed similar impairments in
mitochondrial fission and oxygen consumption in BAT
stromal vascular fraction (SVF) in vitro (Park et al., 2019b).
These findings are particularly intriguing as attenuation of Gnpat

inhibits ether lipid synthesis but does not impede peroxisomal
function. This suggests that the observed mitochondrial
dysfunction may occur in response to reduced ether lipids, rather
than peroxisomal dysfunction per se.

The underlying mechanisms by which ether lipids regulate
thermogenesis are starting to become more clear, as a study
has now demonstrated that mitochondrial membrane lipids,
including plasmalogens, mediate thermogenesis through
crosstalk between organelles, including the nucleus and
peroxisomes (Jiménez-Rojo and Riezman, 2019). Park et al.
(2019b) demonstrated that thermogenic stimuli increased
peroxisome proliferation via activation of PRDM16 (PR domain
containing 16). This subsequently increased plasmalogen content
within the mitochondria, which promoted mitochondrial fission
and potentiated free fatty acid (FFA)-induced uncoupling and
energy expenditure in BAT (Park et al., 2019a). The known
role of the vinyl-ether linkage to foster non-lamellar lipid
structures and regulate membrane dynamics supports this role
for plasmalogens. However, the extent to which plasmalogens
mediate mitochondrial fission and morphology remains
unclear. It has been speculated that it may involve effects on
mitochondrial localisation and/or activity of fission factors
(Park et al., 2019a).

PUFAs have been shown to promote thermogenesis via
cell signalling (Sadurskis et al., 1995; Fan et al., 2019). As
plasmalogens are rich in PUFAs, this may be an additional
mechanism by which they promote thermogenesis in BAT. An
in vivo study exploring the effect of PUFAs on non-shivering
thermogenesis demonstrated that mice on a high PUFA diet
exhibited an improved thermogenic capacity of BAT compared
to mice fed a diet with standard fat content (Sadurskis et al.,
1995). Interestingly, these effects appear to be specific to omega-
3 PUFA, such as eicosapentaenoic acid (EPA) and DHA. EPA
has been shown to promote BAT differentiation, increase UCP1
gene expression and decrease adiposity in mice (Ghandour et al.,
2018). Surprisingly, omega-6 PUFA, such as AA, inhibit the
conversion of white to beige adipocytes and favour obesity (Pisani
et al., 2017). As plasmalogens carry both omega-3 and omega-6
PUFA at the sn-2 position, understanding their composition in
BAT and WAT may offer further insights into their functional
roles in these tissues.

Ether Lipids in Infant Adipose Tissue
A recent study has identified a unique role of ether lipids in breast
milk in the prevention of obesity in early life (Yu et al., 2019).
Breast milk is a rich source of lipids and is essential for adipose
tissue physiology (Rosen and Spiegelman, 2014; Koletzko, 2016).
TG(O)’s are the primary ether lipid in breast milk and have been
shown to not only facilitate the development of beige adipocytes
in neonatal mice, but also impede white adipocyte accumulation
(Yu et al., 2019). In this study, investigators increased the
alkylglycerol intake of neonatal mice by 20% and observed
an increase in mitochondrial content, UCP1 transcription and
beiging area of the SAT of the treated mice. Conversely, adipocyte
size and TG content was markedly reduced in the treated
mice when compared to the control mice that did not receive
alkylglycerol supplementation. This effect of alkylglycerols on
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FIGURE 3 | Possible role of plasmalogens in adipose tissue metabolism and function in the setting of obesity. Obesity is characterised by enlarged adipocytes and
severe lipid dysregulation, including reduced plasmalogens. Decreased plasmalogen levels impedes the normal function and size of adipocytes, further exacerbating
the metabolic complications associated with obesity. Conversely, increasing plasmalogen levels via dietary supplementation appears to revert the effects of obesity
on adipocytes by restoring their size and function. UCP1, uncoupling protein 1. Created with Biorender.com (2021).

infant adipocytes was proposed to occur via adipose tissue
macrophage signalling. Adipose tissue macrophages (ATMs)
are important for lipid and energy metabolism as well as
mitochondrial function in adipocytes (Li et al., 2020). This
study demonstrated that the alkylglycerols were metabolised by
ATMs, triggering an increase in PAF levels and the subsequent
release of IL-6 (Yu et al., 2019). IL-6 is an interleukin that
activates the transcription of adipocyte STAT3, which facilitates
beige adipocyte development (Yu et al., 2019). Interestingly, a
lack of alkylglycerol intake during infancy led to a premature
loss of beige adipocytes and an increase in fat accumulation
(Yu et al., 2019). Whilst further exploration is required, this novel
study highlights the importance of breast milk alkylglycerols in
promoting healthy adipose tissue development in early life.

Later in life, ATMs perform contrasting roles, as they maintain
metabolic homeostasis, but also contribute to the aetiology of
obesity through non-resolving inflammation (Morgan et al.,
2021). Progressive lipid accumulation within macrophages drives
a switch between the polarization of anti-inflammatory M2 ATMs
to pro-inflammatory M1 ATMs (Prieur et al., 2011). In the setting
of obesity, M2 ATMs are critical for the removal of necrotic-like
adipocytes, as well as facilitating lipid storage in WAT (Cinti et al.,
2005; Cox et al., 2021). A recent study revealed that treatment of
M1 and M2 bone marrow-derived macrophages (BMDM) with
exogenous fatty acids caused an increase in TG and cholesterol
ester (CE) species in M1 macrophages, whilst a greater increase
in PE and PC ether lipids was observed in M2 macrophages
(Morgan et al., 2021). Mechanistically, M2 macrophages express
higher levels of Gnpat and Far1, the enzymes involved in the
first and rate limiting steps of endogenous ether lipid synthesis,
respectively (Jha et al., 2015). Together, these findings suggest
that ether lipids may play an important role in promoting the
anti-inflammatory phenotype of M2 macrophages. Furthermore,
the anti-oxidant properties of the vinyl-ether linkage may be

a key mechanism by which plasmalogens reduce inflammation
and oxidative stress, thereby negating some of the effects of
obesity. Based on these findings it is evident that promoting
M2-like ATMs may be important for reducing the influx of
obesity-associated inflammatory cytokines and mediators, driven
by M1-like ATMs (Zeyda et al., 2007).

THERAPEUTIC POTENTIAL OF ETHER
LIPIDS FOR ATTENUATING OBESITY

As the protective effects of ether lipids have become more
clear, considerable work has begun to explore the potential
therapeutic effects of modulating ether lipid levels to attenuate
obesity and its subsequent complications. There are two major
approaches for modulating endogenous ether lipid levels: 1)
genetic modulation of enzymes involved in the ether lipid
metabolism and 2) supplementation with their metabolic
precursors, such as alkylglycerols (1-O-alkylglycerol or 1-O-
alkyl-2,3- diacylglycerol) (Figure 2).

Utilising a Gnpat knockout mouse model to induce
plasmalogen deficiency, Jang et al. (2017) demonstrated
that upon feeding of a high fat diet, mice were more susceptible
to hepatic lipid accumulation, adipose tissue inflammation
and high fat diet-induced insulin resistance compared to
wild type mice (Jang et al., 2017). In contrast, alkylglycerol
supplementation has been shown to increase plasmalogen levels
in cells, animals and humans, resulting in the suppression of
some features of metabolic diseases (Das et al., 1992; Brites et al.,
2011). A pivotal study using alkylglycerol supplementation in
a mouse model of diet-induced obesity and insulin resistance
demonstrated that 8 weeks of alkylglycerol treatment decreased
body weight, serum TG, cholesterol and fasting insulin levels
(Zhang et al., 2013). It is possible that the reduction in body
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weight may be linked to increased lipolysis of WAT in an attempt
to release more FFA to facilitate thermogenesis. An in vitro
study has also shown that alkylglycerols are effective at reducing
oxidative stress, a hallmark of obesity and subsequent metabolic
diseases (Zoeller et al., 2002). Cultured human pulmonary arterial
endothelial cells (PAEC) were supplemented with alkylglycerols
for 6 days and exhibited a two-fold increase in plasmalogen levels.
Importantly, the PAEC were protected against hypoxia and other
stressors linked to reactive oxygen species (Zoeller et al., 2002).

Shark liver oil is a natural product rich in alkylglycerols.
A recent preliminary clinical study assessed the ability of shark
liver oil supplementation to modulate plasma and immune
cell plasmalogen levels in overweight or obese men (Paul
et al., 2021b). The study reported significant changes in the
levels of multiple ether lipid species in plasma and circulating
white blood cells, including 59% and 15% increases in PE
plasmalogens in the plasma and white blood cells, respectively
(relative to total PC levels). Furthermore, total cholesterol,
TG levels and the inflammatory marker C-reactive protein all
decreased (Paul et al., 2021b). These results support the concept
that shark liver oil enriches plasma and cellular plasmalogens
to provide protection against obesity-related dyslipidaemia
and inflammation.

A recent study examined the impact of supplementation of an
alkylglycerol mix on the plasma and various tissues, including the
liver, VAT and skeletal muscle of mice in vivo (Paul et al., 2021a).
After 1 to 12 weeks of the mixed alkylglycerol treatment, PE and
PC ether lipids, including plasmalogens, progressively increased
in the VAT. These results demonstrate the ability of dietary
alkylglycerols to penetrate the adipose tissue and successfully
incorporate into the ether lipid biosynthetic pathway (Paul
et al., 2021a). As discussed previously, dietary supplementation
with alkylglycerols rescued adipocyte morphology and reduced
diet-induced obesity in mice with plasmalogen deficiencies
(Figure 3) (Brites et al., 2011). Whilst obesity has been the
focal point for this review, it is important to note that
alkylglycerols have also proven effective in the treatment of
NAFLD, genetic peroxisomal disorders and CVD (Das et al.,
1992; Wood et al., 2011; Rasmiena et al., 2015; Parri et al.,

2016; Jang et al., 2017). Furthermore, natural plasmalogens
such as scallop-purified and chick-skin PE plasmalogens have
been successful at increasing plasmalogen levels in human
and animal studies (Maki et al., 2009; Tandy et al., 2009;
Mawatari et al., 2012, 2020).

In summary, ether lipids are important biological molecules
with functional roles within adipose tissue. Numerous studies
now demonstrate a clear relationship between circulating ether
lipids and obesity, as reduced plasmalogen levels are apparent
in obese individuals and facilitate diet-induced obesity in vivo.
Combining these studies further suggests that the increased
oxidative stress and inflammation associated with obesity
promotes the dysregulation of ether lipids in adipose tissue.
As lipid metabolism is highly complex, it remains unclear
whether the reduced ether lipids drive obesity, or obesity
drives the observed decrease in ether lipids. Importantly, this
work highlights potential functional roles for ether lipids in
the protection against diet-induced obesity. Thus, increasing
plasmalogen levels may be beneficial in the attenuation of obesity
and its complications via the promotion of thermogenesis,
antioxidant effects and cellular signalling to reduce inflammation.
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