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Abstract

Cortical neural networks exhibit high internal variability in spontaneous dynamic activities

and they can robustly and reliably respond to external stimuli with multilevel features–from

microscopic irregular spiking of neurons to macroscopic oscillatory local field potential. A

comprehensive study integrating these multilevel features in spontaneous and stimulus–

evoked dynamics with seemingly distinct mechanisms is still lacking. Here, we study the

stimulus–response dynamics of biologically plausible excitation–inhibition (E–I) balanced

networks. We confirm that networks around critical synchronous transition states can main-

tain strong internal variability but are sensitive to external stimuli. In this dynamical region,

applying a stimulus to the network can reduce the trial-to-trial variability and shift the network

oscillatory frequency while preserving the dynamical criticality. These multilevel features

widely observed in different experiments cannot simultaneously occur in non-critical dynam-

ical states. Furthermore, the dynamical mechanisms underlying these multilevel features

are revealed using a semi-analytical mean-field theory that derives the macroscopic network

field equations from the microscopic neuronal networks, enabling the analysis by nonlinear

dynamics theory and linear noise approximation. The generic dynamical principle revealed

here contributes to a more integrative understanding of neural systems and brain functions

and incorporates multimodal and multilevel experimental observations. The E–I balanced

neural network in combination with the effective mean-field theory can serve as a mechanis-

tic modeling framework to study the multilevel neural dynamics underlying neural informa-

tion and cognitive processes.

Author summary

The complexity and variability of brain dynamical activity range from neuronal spiking

and neural avalanches to oscillatory local field potentials of local neural circuits in both

spontaneous and stimulus-evoked states. Such multilevel variable brain dynamics are
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functionally and behaviorally relevant and are principal components of the underlying

circuit organization. To more comprehensively clarify their neural mechanisms, we use a

bottom-up approach to study the stimulus–response dynamics of neural circuits. Our

model assumes the following key biologically plausible components: excitation–inhibition

(E–I) neuronal interaction and chemical synaptic coupling. We show that the circuits

with E–I balance have a special dynamic sub-region, the critical region. Circuits around

this region could account for the emergence of multilevel brain response patterns, both

ongoing and stimulus-induced, observed in different experiments, including the reduc-

tion of trial-to-trial variability, effective modulation of gamma frequency, and preserva-

tion of criticality in the presence of a stimulus. We further analyze the corresponding

nonlinear dynamical principles using a novel and highly generalizable semi-analytical

mean-field theory. Our computational and theoretical studies explain the cross-level brain

dynamical organization of spontaneous and evoked states in a more integrative manner.

1. Introduction

The brain is a complex system characterized by elusive ongoing and stimulus-evoked activity

patterns with seemingly distinct mechanisms at different levels. To better clarify the functions

and working principles of the brain, elucidating the dynamical origin of the multilevel stimu-

lus–response relationships using neural circuits is essential.

Cortical neural systems feature high internal variability [1] across different scales. The

spontaneous dynamics are high-dimensional, structured, and behavior-relevant [2]. First, the

neurons function in noisy environments [3] and spike irregularly [4,5] because of the balance

between the received excitatory and inhibitory current inputs [6,7]. Second, population oscilla-

tions widely occur in neural circuits within different frequency bands [8]. Third, scale-free

neural avalanches (i.e., the spatial or temporal propagation of spiking activities in neuronal

networks) have been widely found in vitro [9] and in vivo [10]. These neural avalanches,

which satisfy critical properties [11], emerge around the oscillation transition between the

asynchronous and synchronous network spiking states [12–14].

Despite the strong internal variability of cortical neural networks, they can respond to

external stimuli in a fairly robust manner [15,16] and feature diverse facets. A pronounced

effect of stimuli is the reduction of the trial-to-trial variability (TTV), which has been observed

in the local field potential (LFP) and spiking of neurons [17] and in functional magnetic reso-

nance imaging signals [18] across broad brain regions and species. Moreover, TTV reduction

is associated with brain functioning, including cognitive and perceptual abilities [19] and

brain disorders [20,21]. Another typical phenomenon is the stimulus-induced alternation in

the oscillation frequency domain. For example, visual stimuli can modulate the alpha band of

occipital electroencephalography signals to the beta band [22]. The gamma oscillation fre-

quency in visual neural circuits depends on the contrast of the visual stimulus [23,24] such

that a higher stimulus contrast results in a higher gamma frequency. The modulations (sup-

pressed or enhanced) of the brain rhythm, which cover a broad spectrum (e.g., alpha

(8~13Hz), gamma (25~80Hz)), have been found to be behavior-related [25–27]. Neural cir-

cuits poised at criticality are considered to have maximal dynamic ranges [28,29] and thus

should most effectively respond to external stimuli. Importantly, the pre-stimulus critical

properties in terms of scale-free avalanches can be preserved after the stimulus onset [30–32].

Taken together, neural systems exhibit sophisticated stimulus–response relationships,

which are supported by their complex spontaneous multilevel dynamics. However, previous
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modeling and theoretical studies have mainly focused on specific features of spontaneous neu-

ral oscillations [33], spontaneous neural avalanches [34], or specific stimulus–response proper-

ties at certain levels in neural networks [35–37]. A mechanistic modeling approach validated

by both ongoing and evoked neural dynamical features to understand such multilevel (from

neuronal spiking to neural field potential) stimulus-response relations is still lacking, though

such relationship has been explored in macroscopic neural field model and MEG data [37].

Recent studies [38,39] have shown that E–I balanced neural networks with suitable synaptic

kinetics can reconcile multilevel complex spontaneous neural dynamics in accordance with

experimental observations in terms of individual neuron spiking, population oscillation, and

critical avalanches. In this paper, we further investigate the stimulus–response relationship in

this type of biologically plausible neuronal networks. We find that only at the critical state

around oscillation transition can the circuit reproduce the experimental observation of exter-

nal stimulus–induced TTV reduction, effectively modulate the gamma frequency, and preserve

the circuit critical properties. Based on a novel semi-analytical mean-field theory [39], we elu-

cidate the dynamical mechanism behind such multilevel features. Specifically, spiking neural

networks with critical dynamics near an oscillation transition correspond to macroscopic field

equations poised near the Hopf bifurcation. Increasing stimulus strength modulates

(increases) the Hopf frequency but has little influence on the Hopf stability of the equilibria in

the field equations; consequently, in spiking networks, the gamma frequency is modulated

(increased), but the criticality is preserved. Linear approximation analysis reveals that fluctua-

tions around the equilibria near the bifurcation point are larger than those far from bifurcation

and more suppressible by extra stimuli, which explains why networks at critical states show

stronger internal variability but a more pronounced TTV reduction in the presence of stimuli.

In summary, our study reveals the generic, integrative dynamical principles of the multilevel

stimulus–response phenomena of biological neural networks found in different experiments.

The neural network model and mean-field theory here can serve as a biologically plausible

modeling framework to study the multilevel stimulus–response dynamics and their relation-

ship with cognition, brain function, and brain disorders.

2. Methods

2.1 Spiking neuronal network

We study a widely investigated biologically plausible conductance-based excitation–inhibition

(E–I) neural circuit [40] with an NE-to-NI ratio of 4:1, where NE is the number of excitatory

neurons and NI is the number of inhibitory neurons. Unless specified otherwise, we consider

the default network size N as 2500, where N = NE+NI. To examine the robustness of the model

dynamics and especially the properties of critical avalanches, we consider additional simula-

tions using larger networks, with N = 5000, 10,000, 15,000. The neurons are connected ran-

domly, with probability p = 0.2, mimicking a small local cortical column. For the i-th neuron,

we denote its spiking train as siðtÞ ¼
P

ndðt � tn
i Þ; its α (α can be excitatory or inhibitory)

neighbors as Ca
i ; its membrane potential (voltage) as Vi(t); and its input conductance (synaptic

time course) received from recurrent excitatory, recurrent inhibitory, and external excitatory

neurons as GEi(t), GIi(t), and GOi(t), respectively. The dynamic equations of the conductance-

based leaky integrate-and-fire (IF) network can be written as

dVi

dt
¼

Va
rest � Vi

ta
þ Vrev

E � Vi

� �
gaoGOi tð Þ þ gaEGEi tð Þ½ � þ Vrev

I � Vi

� �
gaIGIi tð Þ: ð1Þ

Here, Eq (1) describes the membrane potential evolution of the i-th neuron belonging to

class α2{E,I}. The reversal potential for excitatory and inhibitory synaptic currents are Vrev
E ¼
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0 mV and Vrev
I ¼ � 70 mV, respectively. Following previously justified parameter values [38],

the synaptic strengths of conductance are set as gEO ¼
ĝ EOffiffiffi

N
p , gIO ¼

ĝ IOffiffiffi
N
p , gEE ¼

ĝ EEffiffiffi
N
p , gIE ¼

ĝ IEffiffiffi
N
p ,

gEI ¼
ĝ EIffiffiffi

N
p , gII ¼

ĝ IIffiffiffi
N
p , with ĝ EO ¼ 2:5, ĝ IO ¼ 4, ĝ EE ¼ 2, ĝ IE ¼ 4, ĝ EI ¼ 27, ĝ II ¼ 48. Here, the syn-

aptic strengths scale with the network size as� 1ffiffiffi
N
p . This is a feature of the E-I balanced net-

work [41] that enables systematic simulations for networks with different sizes while

maintaining the E–I balance. The first term of Eq (1) describes the leaky current, which

causes the membrane potential to drop back to the leaky potentials, which are set as

VE
rest ¼ VI

rest ¼ � 70 mV. The membrane time constants are set as τE = 20 ms, τI = 10 ms. The

other terms in Eq (1) represent the received excitatory and inhibitory currents of the neuron.

The recurrent network input conductances are the summations of the filtered pulse trains

GEiðtÞ ¼
P

j2CE
i
FE � sjðtÞ and GIiðtÞ ¼

P
j2CI

i
FI � sjðtÞ. Here, the synaptic filter is modeled as

an exponential function:

Fa tð Þ ¼
1

tad
exp �

t
tad

� �

; t � 0: ð2Þ

This function models the non-instant transmission process of neurotransmitters following

the presynaptic spikes. The synaptic decay times tE
d; t

I
d depend on the type of presynaptic neu-

ron. We set tE
d ¼ 4 ms, and the value of tI

d varies in the range of 3~14 ms, which allows the net-

work to exhibit different dynamic modes. Hence, tI
d serves as a control parameter to tune

different background dynamic regions. The values of the synaptic decay times tE
d , tI

d biologi-

cally depend on the constitution of synaptic receptors. The tE
d and tI

d values adopted in this

study are close to the synaptic decay times of the AMPA and GABAa receptors [42,43] for exci-

tation and inhibition synapses, respectively.

For the external input, we consider two scenarios. The first case is the deterministic input

GOi(t) = rin(t) (for results in Figs 1 and 2), and the second case is the noisy input

GOiðtÞ ¼ FE �
P

ndðt � Tn
i Þ, which is modeled as the filtered spike train fTn

i gn�1
from a time-

heterogeneous Poisson process with time-varying rate rin(t) (for results in Figs 3 and 4). In

both cases, the input rate rin(t) can be decomposed as

rinðtÞ¼ r0 þ rextðtÞ: ð3Þ

Fig 1. Model architecture and dynamic modes: (A) Diagram of the recurrent excitation–inhibition network. External

input rext has a background part r0 and an extra stimulus part r1. (B, C, E, F) Examples of dynamic modes for AS, Cri,

SS, and P states. In each case, a period of the local field potential and the corresponding spike raster plot of Exc

neurons, the distributions of the Pearson correlation coefficient (PCC) and coefficient of variance (CV) of inter-spike

intervals, and the population activity autocorrelation (AC) are shown. (D) Examples of avalanche size distributions for

AS, Cri, and SS states. Here, the background input strength is r0 = 0.8/ms, and synaptic parameters are tI
d ¼

4; 8; 11; 14ms for AS, Cri, SS, and P states, respectively.

https://doi.org/10.1371/journal.pcbi.1009848.g001
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Here, r0 is the background input rate of the network and is constant over time, and rext(t) is

the extra stimulus applied to the network, starting from time tonset and with stimulus strength

r1. Sensory circuits generally adapt [44] to a change in the input strength such that for a sudden

increase in the external input, the system response is first intense and then mitigated, causing a

waveform termed an event-related potential (ERP) [45] in some detected signals. In neural

networks, such an adaptation mechanism may be modeled by plasticity rules such as short-

term depression [31]. However, our model does not include an adaptation mechanism. Thus,

in the simulations in Fig 3, to mimic the ERP-causing effect, we adopt the input rate as

rextðtÞ ¼
r1 þ aðt � tonsetÞe� ðt� tonsetÞ=t0 ; t � tonset

0; t < tonset

: ð4Þ

(

This rate represents a step-increase plus a transient pulse modeled as an alpha function,

with the pulse strength a = r1/ms; that is, a higher step-increase will result in a stronger tran-

sient pulse. The maximum instantaneous rate rm = aτ0/e is reached at time t = τ0. Experiments

have shown that rats process olfactory sensory signals in 200 ms [46], and the human visual

system can process signals in 150 ms [47]. Thus, a reasonable τ0 value is 10 to 100 ms, and we

set τ0 = 20 ms. When studying TTV, we use deterministic inputs, with rext(t) given by Eq (4),

where a = 0 (i.e., no transient pulse). Moreover, the network firing rates under deterministic

and stochastic inputs are almost the same. Note that we assume a fixed connection probability

p = 0.2 in the network (representing dense connectivity [41]); therefore, the neighbors of a

neuron and the recurrent input that a neuron receives increase with increasing network size.

Another modeling assumption of such dense E–I balanced networks [41] is that the external

Fig 2. Trial-to-trial variability in ongoing and stimulus states: (A–C) Upper panels: the local field potentials (LFPs)

of five single trials (labeled in different colors) and the all-trial-averaged LFP (bold black line). Lower panels: the cross-

trial variance of LFP. (D–F) Upper panels: raster plots of 300 Exc neurons in five trials (labeled in different colors).

Lower panels: trial-averaged firing rate and Fano factor (FF) (flanking traces are the value of ±std, where the std is due

to the different sampling neuron groups used in the FF computation). The insets compare the pre- and post-stimulus

FF using boxplots. Dashed black vertical lines indicate the stimulus onset time. The results of subcritical (left), critical

(middle), and supercritical (right) dynamics are for parameters tI
d ¼ 4; 8; and 14 ms, respectively. The background

input rate is r0 = 0.55/ms, and the stimulus strength is r1 = 0.2/ms.

https://doi.org/10.1371/journal.pcbi.1009848.g002
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inputs have the same scale as the recurrent inputs. Thus, the strength of the external input (rin
in the following) should scale with ~N. For simplicity, we do not explicitly include this depen-

dence in the formula of rin, but we will maintain the scaling relationship when comparing the

results of networks with different sizes. For example, the strength of the external input of a net-

work with N = 5000 should be twice that of a network with N = 2500.

The network dynamics are simulated using a modified second-order Runge–Kutta scheme

[48], with a time step of dt = 0.05 ms. When the membrane potential reaches the threshold Vth

= −50 mV, a spike is emitted, and the membrane potential is reset to Vreset = −60 mV. Then,

the synaptic integration is halted for 2 ms for excitatory neurons and 1 ms for inhibitory neu-

rons, modeling the refractory periods in real neurons.

2.2 Mean-field theory of the spontaneous and response dynamics of spiking

neuronal network

To understand the dynamical mechanism of the network properties and their stimulus-

induced modulation, we derive the macroscopic field equation corresponding to the spiking

neuronal network model (Eq 1) using a novel semi-analytical mean-field theory [39].

Fig 3. Event-related potential (ERP), gamma frequency modulation, and criticality preservation induced by

stimuli with different strengths. Stimulus starts at t = 0 and ends at t = 600 ms. The blue, green, and red colors in (A–

E) represent post-stimulus strengths r1 = 0.1, 0.35, and 0.6/ms, respectively. (A) Raster plots of 500 neurons in a trial.

(B) Distributions of avalanche size S, avalanche duration T, and average size hSi for duration T in the post-stimulus

period. The top horizontal purple lines indicate the ranges of estimated power-law distributions for the case of r1 =

0.35/ms. For comparison, we also show the avalanche distributions in the pre-stimulus period (cyan curves) and

transient period within 100 ms after the stimulus onset (black curves) for the case of r1 = 0.1/ms. These properties are

similar to those for other stimulus strengths r1. (C) ERPs under different input strengths. (D) Transient network firing

rates. (E) Power spectrum density (PSD) of post-stimulus local field potential (LFP), measured 100–600 ms after

stimulus onset. The inset shows the peak frequencies for different input strengths (dashed-dotted, solid, and dotted

lines represent the subcritical, critical, and supercritical cases, with tI
d ¼ 5; 10; and 13 ms, respectively). (F–H) Time

evolution of the powers of different LFP oscillation frequencies for different input strengths. Dots at t = −200 ms
indicate the post-stimulus peak frequency. The background input is r0 = 0.3/ms. The synaptic parameter is tI

d ¼ 9 ms
for (A, B) and tI

d ¼ 10 ms for (C–H).

https://doi.org/10.1371/journal.pcbi.1009848.g003
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Comprehensive details of the mean-field derivation can be found in [39]. In [39], the deriva-

tion was mainly performed in a current-based model, while the derivation of the conductance-

based model (similar to the model studied in the current paper) was included in the supple-

mentary material of [39].

Let VE = hViii2E and VI = hViii2I represent the average excitatory and inhibitory voltages,

respectively, and FE = hGEiii2E or I and FI = hGIiii2E or I represent the excitatory and inhibitory

received recurrent input conductances of the network, respectively. We are most interested in

the network properties with specific synaptic decay time tI
d and input strength. Thus, we con-

sider the case where the external input is a constant deterministic value: GOi(t) = rin. Then,

introducing the population average h�ii2E and h�ii2I into Eq (1) and performing the decoupling

approximation h[GEi+GIi]Viii2α�hGEi+GIiii2αhViii2α, we get

dVa

dt
¼

Va
rest � Va

ta
þ gaOrin þ gaEFE½ � Vrev

E � Va

� �
þ gaIFI Vrev

I � Va

� �
; a ¼ E; I: ð5Þ

The firing rate of the α neurons at time t (denoted as Qα(t)), defined as the proportion of

neurons whose membrane potential Vi is above the spiking threshold Vth (before the resetting

rule applies), can be approximately computed by assuming a Gaussian distribution of the

membrane potential with mean Vα and standard deviation σα [39].

Qa tð Þ ¼ h
P

ndðt � tn
i Þii2a ¼ 1= 1þ exp

Vth � Va

sa

p
ffiffiffi
3
p

� �� �

; a ¼ E; I: ð6Þ

Here, Qα(t) represents the proportion of α-type neurons that spike between t and t+Δt (Δt
is an infinitely small quantity). It also denotes the mean firing rate per ms of α-type neurons at

time t [39]. We aim to obtain field equations that can effectively capture the desired nonlinear

dynamic properties of the spiking network, so that the network response properties can be

Fig 4. Critical avalanches in networks with different sizes. We simulate networks subjected to noisy inputs with a

constant strength rin that linearly scales with the network size and exhibits critical dynamics (tI
d ¼ 9 ms). We show the

distributions of avalanche size S, avalanche duration T, and the average size hSi under duration T. Horizontal purple

lines indicate the ranges of estimated power-law distributions. From left to right, the network sizes are N = 2500, 5000,

10,000, 15,000. The input strengths are rin = 0.9, 1.8, 3.6, 5.4/ms, to maintain the scale condition rin~O(N) for E–I

balanced networks. Avalanches are measured with adapted time bin Δt = Tm = 0.11, 0.03, 0.02, 0.013 ms respectively.

https://doi.org/10.1371/journal.pcbi.1009848.g004
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understood through the nonlinear dynamic analysis of the field equations. Here, σα, represent-

ing the standard deviation of the membrane potential of neural population α, is an effective

parameter to construct the voltage-dependent mean population firing rate Eq (6). It cannot be

analytically derived and should be estimated numerically. Although the optimal σα values may

depend on the input strength rin, we choose the effective parameters as σE = 3.2 and σI = 3.8

(suitable values obtained from numerical tests). With these values, the derived field equation

can quantitatively capture several essential features of the neuronal network (see details in Sec-

tion 3.4). The dependence of the predicted bifurcation value on these effective parameters is

further studied (S9 Fig). However, a comprehensive analytical approach for studying the

dynamics of conductance-based IF neural networks remains an open issue [49,50].

Assuming that the total α inputs of each neuron is the same (mean-field approximation),

we have h
P

j2Cai
sjðtÞii2E or I ¼ naQaðtÞ, where nα = pNα is the average number of α neighbors of

a neuron in the network. The convolution Fα�δ(t), where Fα is given by Eq (2), obeys

tad
d
dt þ 1

� �
Fa � dðtÞ½ � ¼ d tð Þ, so that tad

d
dt þ 1

� � P
j2Cai

Fa � sjðtÞ
h i

¼
P

j2Cai
sjðtÞ. Taking the pop-

ulation average h�ii2E or I, we have tad
d
dt þ 1

� �
Fa ¼ naQa tð Þ; that is,

tad
dFa

dt
¼ � Fa þ pNa= 1þ exp

Vth � Va

sa

p
ffiffiffi
3
p

� �� �

; a ¼ E; I: ð7Þ

Eqs (5) and (7) are the deterministic field equations to study the dynamic properties of the

spiking network, whose dynamic is represented by Eq (1).

To further explore the dynamic fluctuation and TTV property of the spiking network from

field equations, we introduce artificial noise sources
ffiffiffi
b
p

xaðtÞ; α = E,I into the membrane

potential equation Eq (5), where ξE(t) and ξI(t) are the independent standard (with zero mean

and unit variance) Gaussian white noises (GWNs), and β indicates the noise strength. The

GWN in field equations is phenomenological, and β does not truly reflect the noise level in the

spiking network.

In summary, the noisy field equations corresponding to the spiking network take the form

dVa

dt
¼

Va
rest � Va

ta
þ gaOrinðtÞ þ gaEFE½ � Vrev

E � Va

� �
þ gaIFI Vrev

I � Va

� �
þ

ffiffiffi
b

p
xa tð Þ

tad
dFa

dt
¼ � Fa þ na= 1þ exp

Vth � Va

sa

p
ffiffiffi
3
p

� �� �

; a ¼ E; I
: ð8Þ

8
>>><

>>>:

We can analyze the stability of the equilibrium and the strength of noise fluctuation around

the equilibrium of Eq (8).

The deterministic equilibrium (fixed point) of the field equations Eq (8) is found by setting

d/dt = 0 and β = 0, resulting in algebraic equations.

Vrest � Va

ta
þ gaOrin þ gaEQE½ � Vrev

E � Va

� �
þ gaIQI Vrev

I � Va

� �
¼ 0; a ¼ E; I: ð9Þ

Here, Qα depends on Vα through the relationship in Eq (6). The equilibrium value does not

depend on tad because the synaptic filter is normalized (
R1

0
Fa � dðtÞ ¼ 1 independent of tad),

while the equilibrium stability depends on tad. The Jacobian matrix of Eq (8) at the equilibrium
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is

J ¼

�
1

tE
� gEOrin þ gEEFE þ gEIFIð Þ 0 ðVrev

E � VEÞgEE ðVrev
I � VEÞgEI

0 �
1

tI
� gIOrin þ gIEFE þ gIIFIð Þ ðVrev

E � VIÞgIE ðVrev
I � VIÞgII

nEQ0EðVEÞ

tE
d

0 �
1

tE
d

0

0
nIQ0IðVIÞ

tI
d

0 �
1

tI
d

2

6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
5

; ð10Þ

with Q0
a

Vað Þ ¼
pexp½ðVth� VaÞp=ð

ffiffi
3
p

saÞ�

ffiffi
3
p

sa 1þexp
ðVth � VaÞpffiffi

3
p

sa

h i� �2 estimated at the steady-state value of Vα given by Eq (9).

The eigenvalues of J can determine the stability of the steady state.

Furthermore, we evaluate the fluctuation around the equilibrium of Eq (8) using the linear

noise approximation (LNA) method [51]. Denote X = (VE, VI,FE,FI)
T as the state variables of

Eq (8). The linearized equation at the equilibrium is

dX
dt
¼ JX þ

ffiffiffi
B
p

x tð Þ: ð11Þ

Here, ξ(t) = (ξE(t),ξI(t),0,0)T and B = diag(β,β,0,0) is the noise covariance matrix (notation

diag represents diagonal matrix). Moreover, S = cov(X,X) represents the covariance matrix of

the state variable X, and it obeys [51]

dS
dt
¼ JSþ SJT þ B: ð12Þ

Thus, the covariance at the stationary state can be computed by numerically solving the

Lyapunov equation

JSþ SJT þ B ¼ 0: ð13Þ

The fluctuation around the equilibrium is given by the diagonal elements of S. For example,

the first element of S is the variance of VE. We denote it as Var(VE), and it depends on the

external input strength rin. These dynamic fluctuations can effectively approximate the TTV of

the spiking neural network.

2.3 Statistical analysis

2.3.1 Local field potential. The LFP is a common measure of neuronal activity. It is, how-

ever, not completely clear how the LFP is related to single-neuron variables such as synaptic or

ionic currents and membrane potential [52]. It is likely that LFPs were originated in synaptic

currents on pyramidal neuron dendrites [53]. In general, such dendrite properties are not con-

sidered in our point model as it lacks a spatial geometric structure of neurons; thus, an approx-

imation is needed. Mazzoni et al. [54] studied different approximation schemes to compute

the LFP in point IF neuron models, including factors about membrane potentials and synaptic

currents. They found that a model-specific time-delayed linear combination of AMPA and

GABAa currents constitutes a best approximation of LFP, while the average membrane poten-

tial of neurons, as commonly used in many models [55], is a fair choice to achieve a reasonable

approximation. Moreover, it was shown that the average membrane potential as LFP is quali-

fied in terms of information content [35]. Taken together, we simply take the average
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membrane potential of the excitatory neurons in the network, Ve(t) = hVi(t)ii2E, as the LFP.

Separately, we also examine the effect of inhibitory neurons by defining the LFP as the average

membrane potential of the inhibitory neurons or all of the neurons in the network. None of

these definitions result in any essential difference in the LFP properties (see S1 Fig). We apply

wavelet analysis to the single-trial LFP with a complex Morlet wavelet basis to obtain the pat-

terns of frequency components (the absolute value of the wavelet coefficients) across time. The

presented pattern is obtained by averaging the wavelet coefficients of all of the trials (in Figs 3

and S7).

2.3.2 Trial-to-trial variability quantification. The TTV in our model can arise from dif-

ferent realizations of random network topology, different initial membrane potentials of neu-

rons, and noisy inputs. Here, we study the intrinsic variability caused by the network dynamic

nature of E–I balance and criticality. Thus, in our study of TTV, we apply a constant input

GOi(t) = r0+Θ(t−tonset) r1 to the network (Θ(x) is the Heaviside step function). For each param-

eter setting, we first set up a fixed randomly generated network topology. Then, we simulate

the network dynamics under 100 different initial conditions. The initial membrane potential

Vinitial of each neuron is generated from a normal distribution, with mean m and standard

deviation σ. For each trial, m and σ are determined from uniform distributions in [−70, −55]

and [0, 5], respectively (if a generation Vinitial is greater than −50, then it is replaced by another

value uniformly distributed from [−70, − 50].) The stimulus onset time tonset is equal to 1 s.

a. The TTV of LFP. We use the cross-trial variance of LFP to quantify its TTV. The LFP is

measured in 1 ms resolution, and the cross-trial variance (time series) is then computed. The

plot of LFP versus time (in Fig 2) is smoothed using a 30 ms square window.

b. The TTV of spiking. We use the commonly used cross-trial Fano factor (FF) [56] of the

neuron spike numbers to quantify the spiking TTV in time scale ~100ms, as in the analysis of

TTV of LFP and neuron spiking in monkey and cat cortices [17]. FF estimation is often prob-

lematic [56], especially in the cases of low firing rates or short recording time. Thus, we com-

pute the FF using the merged spike train of n neurons (i.e., a combination of n neurons

represents one measurement unit) to avoid the ill behavior resulting from too few spikes. This

spike train also mimics the measured multiunit activity of detected spikes of multiple neurons

close to an electrode in experiments. The FF is computed by the spike number series of this

neuron group in every 100 ms window, with a step of 50 ms. Here, n out of 2000 excitatory

neurons are randomly sampled to compute the FF series, and the results of 200 samples are

averaged. We use n = 5, and the results are broadly unchanged when n>5 (S2 Fig). The plot of

FF versus time (Figs 2 and S2) is smoothed by a square window with length of 5 moving steps,

namely length 250 ms. The pre-stimulus and post-stimulus variance/FF values (Fig 2) corre-

spond to the ranges from −550 ms to −50 ms and from 50 ms to 550 ms, respectively (when 0

ms is taken as the stimulus onset time). Here, we use the raw FF rather than the mean-match

FF [17]. The mean-match procedure requires choosing a group of recording units that pre-

serve the mean spike count distributions across time, which cannot be implemented in certain

dynamic regions of our model. Although the mean-match method has often been used to con-

trol the firing rate to better compare the pre- and post-stimulus FF, the results of the raw FF

and mean-match FF have been shown to be similar in most cases [17].

2.3.3 Spike train statistics. The Pearson correlation coefficient (PCC) between neurons i

and j is defined as cij ¼
covð ~N iðtÞ; ~NjðtÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varð ~N iðtÞÞvarð ~NjðtÞÞ
p , where ~NiðtÞ is the spike series of neuron i filtered by a

square kernel with length T = 5 ms that ~NiðtÞ ¼
PT� 1

s¼0
Niðt � sÞ, where Ni(t) is the spike count

series constructed with time window Δt = 1 ms. The autocorrelation (AC) of the population

activity is defined as AC tð Þ ¼ 1

n2
0
T

PT
t¼1
ðnðt þ tÞ � n0ÞðnðtÞ � n0Þ, where n(t) = ∑iNi(t) is the
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population activity (number of spikes) in every 1 ms, and n0 is the average n(t) value. To mea-

sure the spiking time irregularity, we also calculate the coefficient of variance (CV) of inter-

spike intervals (ISIs). The PCC, CV, and AC results (Fig 1) are obtained from the average

results of 200 trials of 1 s simulation. For the PCC and CV distributions, only neurons

with� 5 spikes are selected for analysis.

2.3.4 Neuronal avalanches and critical property. Following a recent observation that the

irregular spiking of pyramidal neurons in vivo exhibits scale-free features [57], we measure the

neuronal avalanches in the excitatory neuronal population. We count the spike numbers in

each window (bin) with length Δt for the merged spike trains of excitatory neurons. An ava-

lanche is defined as a sequence of consecutive spiking periods (bins), separated by a silent

period. The size S of an avalanche is defined as the total number of spikes within the period,

and the duration T is defined as the number of time bins it contains. In general, we choose the

average ISI of the merged spiking train (denoted as Tm,) as the bin length Δt [9], which

depends on the dataset property. The choice of Δt is crucial for identifying the avalanche prop-

erties. In Fig 3, for the critical dynamic region with tI
d ¼ 9 ms, the time bin is Δt = Tm = 0.45

ms in the pre-stimulus spontaneous period with r0 = 0.3/ms. In the post-stimulus periods with

strengths r1 = 0.1, 0.35, 0.6/ms, the adapted time bins are Δt = Tm = 0.29, 0.15, 0.11 ms, respec-

tively. In Fig 4, for networks with N = 2500, 5000, 10,000, and 15,000, the adapted time bins

are Δt = Tm = 0.11, 0.03, 0.02, 0.013 ms, respectively, decreasing with network size. We also

measure avalanches with other choices of time bins Δt6¼Tm in Fig 5.

The avalanche size and duration distributions are first inspected visually. For distributions

appear to follow the power law, we use a doubly truncated algorithm based on the maximum

likelihood estimation in the NCC toolbox [58] to find the ranges that pass the truncation-

based Kolmogorov–Smirnov (K–S) statistics test (with p values larger than 0.1) and estimate

the critical exponents. The estimated slopes within the truncated ranges in the avalanche size

and duration distributions define the critical exponents P(S)~S−τ and P(T)~T−α. A third expo-

nent is defined as hSi(T)~T1/συz, where hSi(T) is the average size of avalanches with the same

Fig 5. Further measurement of critical avalanches using different sizes of time bins. We further measure

avalanches in networks in Fig 4 using different time bins Δt. The distributions of avalanche size S, avalanche duration

T, and the average size hSi under duration T are shown. (A) Measurement of avalanches in networks with sizes

N = 2500, 5000, 10,000, 15,000 using fixed bin Δt = 0.02ms. (B) Measurement of avalanches in a network with size

N = 15,000 using different time bins Δt = 0.4Tm, 0.8Tm and 1.2Tm, where Tm = 0.013 ms. The horizontal lines on top

indicate the ranges of estimated power-law distributions of the corresponding cases.

https://doi.org/10.1371/journal.pcbi.1009848.g005
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duration T, and it is fitted using a weighted least squares method [58]. Scaling relation a� 1

t� 1
¼ 1

suz

is further verified. We further examine the shape collapse property of avalanches with suffi-

ciently long durations using the script in the NCC toolbox [58].

3. Results

We study a recurrent E–I neural network whose input consists of a background part r0 and an

external stimulus part r1 (Fig 1A). The network dynamics are modeled as conductance-based

IF neurons with synaptic kinetics (Eqs 1 and 2). For a sensory circuit, the background input r0

can be considered as subcortical inputs from the thalamus and top-down inputs from higher

cortices, so that the circuit can have spontaneous with multilevel complex dynamics. The extra

stimulus r1 serves as a sensory stimulus input of the network for further processing. We study

how the spontaneous and stimulus-evoked dynamics interact in this neural circuit with biolog-

ically plausible dynamic properties and particularly how stimulus-evoked dynamics depend

on the circuit spontaneous properties.

We first examine the network model dynamic mode/state. These states can be best observed

by studying the spontaneous dynamics with a fixed deterministic input GOi(t) = r0. Generally,

the network can display four types of dynamic modes:

i. Asynchronous (AS): The AS state (Fig 1B) is the dynamic region of the classical E–I balanced

theory [41,59], and it is characterized by the following: (i) irregular firing of neurons, in

which the CV of the ISIs is close to 1.0, similar to Poisson point processes [5]; (ii) low pair-

wise correlation between neurons (i.e., AS); (iii) almost steady LFP; (iv) fast decay of the pop-

ulation activity AC (a chaotic signature); (v) exponential-like avalanche distribution (Fig 1D).

ii. Sparsely synchronous (SS) state: In the SS state (Fig 1E), also called a synchronous irregular

state in some previous literature [60], neurons exhibit clustered spiking, which induces

oscillatory LFPs. Because neurons in the network sparsely participate in the clustered spik-

ing (synchrony), most of the neurons can spike irregularly. The pairwise correlation

between neurons is moderate. The population activity AC features positive peaks, indicat-

ing typical temporal scales in population oscillation, which induce bimodal avalanche dis-

tribution (Fig 1D).

iii. Critical (Cri) state: The Cri state (Fig 1C) is the transition state between AS and SS states

and thus possesses characteristics between both. The avalanche distribution closely follows

the power law (i.e., a scale-free-like behavior, Fig 1D). The criticality properties of ava-

lanches in the Cri state are later examined in more detail. In principle, the critical state in

our model is a phenomenological concept, as the criticality in terms of statistical physics

may not be well-defined in our biological neural network model. However, it was shown

in our previous work [39] and will be confirmed below that such a critical synchronous

transition can correspond to the Hopf bifurcation in the macroscopic field, and the latter

is a true (dynamical) criticality in a nonlinear dynamical system. Thus, it is justifiable to

denote such a dynamic state the critical state.

iv. Periodic (P) state (Fig 1F). This occurs when the inhibitory effect is sufficiently slow (i.e. tI
d

is sufficiently large) in a finite-size system that an all-spike event (wherein all neurons

spike in a very short time window) can trigger another all-spike event. Then, such all-spike

events can occur periodically. In this case, neurons spike regularly (mostly with a regular

periodicity) with very strong pairwise correlation, and the LFP also fluctuates strongly and

periodically. In this state, the available avalanche size and duration can only take a few spe-

cific values.
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For a fixed background input level r0, the characteristics of the dynamic mode mainly

depend on the inhibition synaptic parameter tI
d. In general, slower synaptic inhibition

(increasing tI
d) favors stronger synchrony—the degree of synchrony degree increases from the

AS mode, through the Cri mode, to the SS mode and becomes strongest in the P mode. It has

been shown that these dynamical states display the feature of E–I balance [39], that is, the

excitatory currents received by neurons can be canceled on average by the subsequent inhibi-

tory currents. Furthermore, as the degree of synchrony increases, the cancelation of inhibitory

currents becomes slower and the E–I balance becomes “looser,” i.e., it takes longer to be

restored.

The dynamics of IF oscillators in the E–I balanced region are chaotic [61], indicated by the

fast decay of the population activity AC, which is a characteristic of the AS state in our net-

work. With increasing tI
d, the oscillation component appears and is superposed on chaotic

fluctuations, and the network appears to undergo a transition from the chaotic to the periodic

state. Moreover, according to the avalanche distribution properties (Fig 1D), the AS state can

be called subcritical, while the SS and P states can be called supercritical.

Furthermore, we confirm the existence of the above four dynamic states in larger networks

(N = 5000, 10,000, 15,000) (S3 Fig). Thus, these states are robust features of the model, and

they are not subjected to the artifacts of small network size.

The critical value of tI
d that allows the Cri state can depend on the background input level

r0. However, as will be shown later, the dependence on r0 for dynamic mode transitions is

much less sensitive than the dependence on tI
d; thus, we can explore the subtle difference

between spontaneous and evoked dynamics by maintaining the same dynamic modes near

criticality. Furthermore, even for fixed parameters r0, tI
d, the network can still enter different

dynamic modes, depending on the initial conditions. These possibilities are further explored

in S1 Appendix global dynamic structure.

The above discussion concerns the dynamics under deterministic input. For networks with

noisy input, the AS, Cri, and SS states can be defined by their corresponding properties. How-

ever, there is no absolute periodic state, because noise can induce occasional neuronal spikes

and phase drifts of population oscillation. Moreover, noise can smoothen the transition,

broadening the range of the Cri state.

3.1 Stimulus-induced reduction of trial-to-trial variability at criticality

We first study the TTV of the network activities, focusing on its dependence on the spontane-

ous dynamics and its modulation by extra stimuli. Here, TTV is defined by the intrinsic vari-

ability of the network dynamics. It is studied using numerical simulations, with different

initial conditions but the same network architecture and deterministic input across trials (see

Methods). We detect the TTV in the LFP by computing the cross-trial variance and the TTV

in neuron spiking by cross-trial FF (see Methods). Interestingly, depending on the spontane-

ous dynamic mode determined by tI
d, the network exhibits different TTV characteristics, and

the TTV is further differentially modulated by external stimulus.

At the subcritical spontaneous dynamic region, the neuron spiking exhibits considerable

TTV owing to the chaos in the E–I balanced region [61], whereas the TTV of the LFP is small

(Fig 2A). However, the stimulus does not markedly alter the TTV of the LFP but increases that

of the spikes (Fig 2D). At the supercritical spontaneous dynamic region with periodic modes,

TTV still occurs because the time required for entering the periodic attractor state varies with

the initial conditions (i.e., phase spread, Fig 2C and 2F). Extra stimuli enforce the network into

periodic spiking with a shorter period, which increases the TTV of the spiking but reduces that

of the LFP (Fig 2C and 2F). This occurrence is partially due to the phase resetting effect of the
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stimulus, manifested by the oscillation in the trial-averaged LFP after the stimulus onset (Fig

2C).

The critical spontaneous dynamic region around the oscillation transition is the most inter-

esting region. Here, both spontaneous LFP and neuron spiking exhibit relatively high TTVs.

Interestingly, the variance of the LFP and FF of spiking can be largely suppressed by extra sti-

muli (Fig 2B and 2E). Although stimuli generally increase the mean firing rate of the network,

this increase is not sufficient to reduce the FF, because the variance of spiking activity increases

with the mean spike count (a general property of random point processes). The TTVs of the

LFP and spiking have slightly different properties. When the network is around this critical

region, it exhibits Cri modes both before and after stimulus onset in most trials (Fig 2E). How-

ever, in a small proportion of trials, the network enters P modes before the stimulus onset, and

extra stimuli revert the network to the Cri mode (S4A Fig). If we only consider the trials main-

taining the Cri modes before the stimulus onset, the TTV of the LFP can still be reduced by sti-

muli, whereas the TTV of spiking cannot (S4B and S4C Fig). As will be shown later, the

reduction in the LFP TTV can be understood by the noise suppression property of the extra

stimulus, which is predicted by the mean-field theory (Section 3.3), and the reduction in the

spiking FF depends on the global attractor dynamic structure (S1 Appendix). Moreover, shifts

between dynamic modes do not occur after the stimulus onset in the subcritical and supercriti-

cal regions. The TTV at the post-stimulus critical states can still be higher than that at the sub-

critical states. Thus, critical networks subjected to stimuli still possess sufficient variability and

flexibility for better functioning. The TTV studied here is the intrinsic variability of the net-

work under a deterministic input. For a network subjected to a noisy Poisson input, the input

variability accounts for a part of the TTV of the network dynamics. In this case, extra stimuli

cannot suppress the TTV, even when the network is around the critical state (S4D and S4E

Fig), primarily because the variability of the input also increases with the input strength (a

property of Poisson noise).

Overall, only at the critical state can the network maintain a high internal TTV, and the

TTV can be effectively suppressed by stimuli, consistent with the widely observed highly vari-

able spontaneous states [2,62] with stimulus-suppressed TTV [17,18].

3.2 Stimulus modulates oscillatory frequency and preserves criticality

Neural circuits can display crackling noise activities. These activity patterns are characterized

by avalanches with power-law distributions of size and duration and can be explained by criti-

cal branching theory [9]. Later experimental evidences tend to support that crackling noise

activities occur in moderate synchrony regions [13,14] and obey stricter criteria predicted by

criticality theory [63], such as diverse critical exponents, scaling relation, and shape collapse

relation of the avalanches beyond the power-law distributions. Moreover, the critical proper-

ties occur at spontaneous states but can also be preserved after an additional stimulus onset

[31,32].

Neural oscillation is another commonly observed neural dynamic activity. It is important

for efficient information communication [64,65] in sensory neural circuits, and its frequency

can be modulated by top-down or bottom-up inputs. For example, the gamma oscillation

(defined as that with a peak frequency of 25–80 Hz) in the V1 cortex of awake-behaving

macaques is stimulus-dependent [23] such that changes in stimulus contrast over time lead to

reliable gamma frequency modulations on a fast time scale, suggesting that the gamma rhythm

arises from local interactions between excitation and inhibition.

Although neural avalanches and neural oscillation are usually observed and studied in dif-

ferent experiments, they may share the same neural substrates. Our model reconciles the
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preservation of critical avalanches under different input strengths with the existence of net-

work oscillations of flexibly tunable frequency. Because noise can smoothen the critical transi-

tion, a network under noisy inputs has a broader parameter range supporting Cri modes.

Through numerical tests, we find that for a background input strength r0 = 0.3/ms, the Cri

modes can be maintained when tI
d is 8–10.5 ms. Below, we explore the dynamic properties in

this region in detail.

First, in the presence of stimuli with different strengths, circuits with spontaneous critical

dynamics (tI
d ¼ 9 ms) first go through transient periods where larger avalanches emerge

because of the strong extra input received by the network during the transient periods (see Eq

(4)). Such large avalanches cause bimodal avalanche distributions (as shown in Fig 3B and in

[31]). However, the network can preserve the loose E–I balance, a feature of E–I balanced net-

works at criticality, even during the transient period (S5 Fig). The network can re-enter criti-

cality in the post-stimulus states after the transient period when the inputs drop to r0+r1. The

post-stimulus states still feature a power–law–like avalanche size and duration distributions: P
(S)~S−τ, P(T)~T−α and hSi(T)~T1/συz. To assess the power-law property, we apply the NCC

toolbox [58] to find the power-law distribution ranges for avalanches obtained in the post-

stimulus period under stimulus strength r1 = 0.35/ms (~8.5×104 avalanches are used in the esti-

mation). The toolbox provides a doubly truncated algorithm based on the maximum likeli-

hood estimation to find the largest range that passes the truncation-based K–S statistics test

[58] with p>0.1, meaning the data can produce a K–S statistic value that is less than the values

generated by at least 10% of the power-law models in the truncated range. We find that τ =

1.95, α = 2.15, 1

suz ¼ 1:3 (Fig 3B), and the scaling relation a� 1

t� 1
¼ 1

suz holds, with error < 0.1. The

truncation ranges in this estimation are 4–49 for avalanche size and 3–42 for avalanche dura-

tion. The critical exponents of the model are more comprehensively explored in the next sec-

tion. Further analysis (S6 Fig) shows that the shapes of avalanches at critical states can be

collapsed into scaling functions F through the relation s t;Tð Þ ¼ T 1
suz� 1F t=Tð Þ, where s(t,T) is

the time course of an avalanche with duration T, which substantiates the evidence of criticality.

In the literature, the preservation of criticality with different input strengths is usually

explained by adaptation effects such as short-term depression [31,32], which regulate the cir-

cuit to a new stable state that can defy the elevated input. Our results show that synaptic adap-

tation may not be necessary, as the critical region can be broad, depending on the input

strength.

Furthermore, critical dynamic manifests itself as gamma network oscillation, and extra

input tunes the critical circuit into another critical state with higher oscillatory frequency,

depending on the input strength. We apply three levels of stimulus strength (r1 = 0.1, 0.35, 0.6/

ms) to denote the usage of increasing contrasts (for 25%, 50%, 100%) in a macaque experiment

[23]. Here, the form of the input is r1 þ r1te� t=t0 for t2(tonset, tend). The input is first increased

sharply and then steadily, to induce the ERP effect (see Methods). Fig 3C to 3H show the stim-

ulus-induced modulation of gamma oscillation under critical dynamics with tI
d ¼ 10 ms. The

ERP height, representing elevated post-stimulus potential and population firing rate, increases

with the stimulus strength (Fig 3C and 3D). The stimulus shifts the gamma oscillation to a

higher frequency, which increases with stimulus strength, as demonstrated in the power spec-

tral density (PSD) curve (Fig 3E). This frequency modulation can be completed within 100 ms

after the transient effect, and the gamma frequency immediately returns to the spontaneous

level when the input is re-tuned to the background level (Fig 3F to 3H). All of these features

agree with the experimental results (see Fig 1 in [23]). The stimulus-induced modulation of

gamma power is most effective only at critical states. Subcritical spontaneous dynamics with

the AS mode (S7A and S7B Fig) do not exhibit gamma oscillation or the modulation effect. In

PLOS COMPUTATIONAL BIOLOGY Multilevel responses in critical neural networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009848 January 31, 2022 15 / 27

https://doi.org/10.1371/journal.pcbi.1009848


contrast, supercritical spontaneous dynamics (S7C and S7D Fig) show strong gamma oscilla-

tions. However, without the dynamic sensitivity at criticality, the post-stimulus frequency is

not sensitively modulated by extra inputs (see the comparison in Fig 3E inset).

In summary, at the critical state, the network exhibits population oscillation with dynamic

sensitivity, so that its frequency can be effectively modulated by external stimulus, while criti-

cality is preserved.

3.4 Further exploration of critical avalanche dynamics

We have shown that an E–I balanced network around the critical synchronous transition

region can exhibit scale-free-like avalanche dynamics. This phenomenon is further confirmed

in the spontaneous critical dynamics (with tI
d ¼ 9 ms) for larger networks. Specifically, we use

the firing rate rin = 0.9/ms in the network with N = 2500 as a baseline (which is the highest

input rate received by the network in the post-stimulus periods in the simulations in Fig 3),

and we simulate networks with N = 5000, 10,000, 15,000 by keeping the scale condition rin~O
(N) for E–I balanced networks [41] so that their inputs are set as rin = 1.8, 3.6, 5.4/ms, respec-

tively. Fig 4 shows that scale-free-like avalanches such that P(S)~S−τ, P(T)~T−α, and hSi(T)~T1/

συz can be detected in models with network sizes N = 2500, 5000, 10,000 and 15,000, where ava-

lanches are measured by adapted time bins Δt = Tm = 0.11, 0.03, 0.02, 0.013 ms respectively.

We apply the algorithm in the NCC toolbox [58] to find the power-law distribution ranges for

networks with different sizes. The numbers of avalanches used in the estimation are approxi-

mately 6.1×104, 1.2×105, 7×105, and 1.5×106 for network sizes N = 2500, 5000, 10,000 and

15,000, respectively (Fig 4). The truncated ranges for estimating the critical exponents in the

networks are approximately 1.5 decades for avalanche size (the truncated ranges are 5–238,

8–168, 8–268, and 13–295 for networks with N = 2500, 5000, 10,000 and 15,000, respectively)

and one decade for avalanche duration (the truncated ranges are 4–48, 6–60, 6–62, and 9–82,

respectively). The size distribution exponent τ is 2–3, the duration distribution exponent α is

2–3.5, but in all of the cases, the exponent 1/συz�1.3. Interestingly, although the critical expo-

nents are diverse, the scaling relation a� 1

t� 1
¼ 1

suz holds in all of the cases, with error< 0.1.

Although a larger network has a considerably denser merged spike train, under the partition

of a smaller time bin, the avalanche size and duration do not grow substantially larger. How-

ever, when the avalanches are measured with a fixed bin length Δt = 0.02ms, the power-law

cutoff grows as the network size increases, as shown in Fig 5A. Here, the numbers of ava-

lanches used in the estimation are approximately 1.2×105, 1.5×105, 1.7×105, and 1.8×107, and

the size exponents τ�4.15, 3.7, 2.7, 2.4 (with truncated ranges 6–60, 6–90, 7–260, 7–331), dura-

tion exponent α�4.65, 4.25, 3.15, 2.75 (with truncated ranges 4–27, 5–38, 5–57, 5–80), and the

third exponent 1/συz�1.2, 1.2, 1.3, 1.3 for network sizes N = 2500, 5000, 10,000 and 15,000,

respectively (Fig 5A). Finally, the power-law cutoff can also grow by measuring avalanches

using bins with increasing lengths. As shown in Fig 5B, when the avalanches in network with

size N = 15,000 are measured using time bin Δt = 0.4Tm, 0.8Tm and 1.2Tm, scale-free-like

behavior is still maintained. Here, the numbers of avalanches used in the estimation are

approximately 4.3×105, 3×105, and 2.2×105, and the size exponents τ�4.15, 3.2, 2.65 (with

truncated ranges 8–80, 12–219, 9–288), duration exponent α�4.95, 3.75, 3.1 (with truncated

ranges 6–29, 7–72, 6–78), and the third exponent 1/συz�1.2, 1.25, 1.3. Again, although the

critical exponents are different in the measurements using different time bins in Fig 5, the scal-

ing relation a� 1

t� 1
¼ 1

suz holds in all of the cases, with error< 0.1.

The estimated critical exponents in our model do not agree with the classical critical

branching processes where τ = 1.5, α = 2, 1

suz ¼ 2. The origin of the larger-than-usual critical

exponents in our model is still unclear. Such large critical exponents seem to be features of
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critical E–I balanced networks [39]. Diverse exponents that are larger than the usual critical

branching exponents and satisfy the scale relation have also been found in previous experi-

mental data [13,31,39] and models [66] of neural avalanches.

3.5 Mean-field prediction of multilevel response features of E–I circuits

We have shown that an E–I circuit at (and only at) the critical oscillation transition state can

simultaneously display multiple features in spontaneous and evoked states: high internal vari-

ability and stimulus-induced reduction of TTV in both the LFP and neuron spiking, effective

modulation of oscillation frequency, and preservation of critical properties in the presence of a

stimulus (Table 1).

To reveal the dynamical mechanism behind these multilevel features, we adopt a novel

semi-analytical mean-field theory [39] to derive the macroscopic field equations (i.e., Eq (8))

corresponding to the network subjected to a fixed input strength rin (see Methods). The theory

relies on constructing the voltage-dependent mean firing rate, i.e., Eq (6) with presumed

parameters σE, σI. These parameters can be optimally evaluated as sa ¼
Vth� Vss

a

ln½ðQss
a Þ
� 1 � 1�

pffiffi
3
p [39]

through numerical network simulation under AS dynamics (tI
d ¼ 5 ms) to obtain the mean

membrane potential Vss
a

and firing rate Qss
a
. Note that such optimal estimation relies on the

input strength rin and the optimally constructed field equations can thus predict the network

firing rate precisely (Fig 6A). Here, the prediction by the field equation is based on its fixed-

point values. However, the firing rate (Fig 6A), and especially, its linear relation to the input

strength rin, can satisfactorily be predicted using other fixed σE, σI values.

The field equation provides a method to analyze the stability of the equilibrium obtained by

solving Eq (9) by checking the eigenvalue of the Jacobian matrix (Eq (10)). The transition

from AS to oscillatory modes corresponds to the Hopf bifurcation in the field equations [39],

indicated by a pair of dominant complex eigenvalues α±iω crossing the imaginary axis. The

Hopf bifurcation indicates that the stable fixed point of the field equations will give way to a

stable periodic solution, whose amplitude grows from zero. Furthermore, the frequency of the

periodic motion can be estimated as ω/2π in the linear order, and we term f = ω/2π the Hopf

frequency. As depicted in Fig 6B, the Hopf stability (the real part α of the eigenvalue) is mainly

governed by tI
d, while its dependence on the input strength rin is much weaker. Because of the

noise perturbation, the criticality property does not emerge at the Hopf bifurcation point but

before the bifurcation. If we heuristically assume a suitable threshold of the real part of the

eigenvalue, e.g., −0.05, then the field model with an eigenvalue real part larger than this thresh-

old can be assumed to be driven by noise to exhibit critical properties. Then, we can define the

critical region by a critical line above which the system enters criticality (Fig 6B). For certain tI
d

values, this critical region spans a broad range with respect to the input strength, which

explains the criticality preservation of the neural network for increased input strengths (Fig

3B). However, the Hopf frequency (f ¼ o

2p
), which lies in the gamma range around critical

Table 1. Comparison of dynamic features at different dynamic states.

States Subcritical Critical Supercritical

Internal variability of the local field potential (LFP) small medium large

Internal variability of neuron spike medium large small

Stimulus-induced modulation of the trial-to-trial variability (TTV) of the LFP no substantial change reduce reduce

Stimulus-induced modulation of the TTV of spiking increase decrease increase

Network oscillation no yes yes

Stimulus-induced modulation of oscillatory frequency no yes not effectively

https://doi.org/10.1371/journal.pcbi.1009848.t001
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states, increases with the input strength, and it is more sensitive for smaller tI
d values (Fig 6C).

This explains how stimuli increase the post-stimulus gamma frequency most effectively at the

critical point (Fig 3E to 3H).

Before the Hopf bifurcation, the derived deterministic field equations do not exhibit TTV

because its dynamic converges to the fixed point in a short time. However, the GWN can

induce TTV in the field equations (see Methods). Due to ergodicity, the cross-trial fluctuation

of the LFP at a specific time is equivalent to the single-trial fluctuation across time. Thus, in

the presence of noise in the field equations, the magnitude of the dynamic fluctuation of VE is

equivalent to the TTV of the LFP in the microscopic neural network; this fluctuation is indi-

cated by the LNA of the activity fluctuation around the equilibrium (see Methods). The

steady-state fluctuation variance Var(VE) can be obtained by solving the Lyapunov equation

Eq (13) under different tI
d and rin (Fig 6D). The Var(VE) increases with tI

d before the Hopf

bifurcation, because the fluctuation is larger when the equilibrium stability is weaker (closer to

bifurcation). For the same tI
d, the fluctuation variance Var(VE) appears smaller for larger

inputs. The increase in the input strength can reduce the dynamic fluctuation and thus the

TTV, which represents the noise reduction mechanism. The LNA shows the following proper-

ties: 1) Under the same input strength, Var(VE) is larger at the critical state (closer to the Hopf

bifurcation) than at the subcritical state (far below the Hopf bifurcation) (Fig 6E). 2) The fluc-

tuation suppression given by DVarðVEÞ ¼ VarðVEÞ � VarðVEÞjrin¼0:55
(where rin = r0 = 0.55/ms

is the spontaneous input level used in Fig 2) is larger at the critical state than at the subcritical

state (Fig 6F). This explains why E–I networks poised at criticality have both high internal vari-

ability and strong stimulus-induced suppression of variability in the LFP (Fig 2B and 2E).

Fig 6. Mean-field theory prediction of the response dynamics: (A) Excitatory firing rates vs. input strength at the AS

state, with tI
d ¼ 5 ms. The red/blue markers represent network simulation results under noisy/constant inputs. The

black curve represents the field model fixed-point estimation under fixed σα parameters indicated at the end of this

caption. The purple curve represents the result under σα parameters estimated with different rin values. (B) The real

part of the eigenvalue evaluated at equilibrium. The purple curve indicates the zero value (i.e., the deterministic Hopf

bifurcation points), and the black curve corresponds to the case where the real part of the eigenvalue is −0.05. (C) The

prediction of the population oscillation frequency f = ω/2π, where ω is the imaginary part of the eigenvalue at

equilibrium. Only results above the effective critical black line in (B) are shown. The inset shows the frequencies for

input strengths rin = 0.4, 0.65, 0.9/ms (solid and dotted lines correspond to the critical and supercritical cases with

tI
d ¼ 9; 13 ms), similar to the inset of Fig 3E. (D) The linear noise prediction of Var(VE) for different tI

d and rin values

(before the Hopf bifurcation line). The black curve is the critical line in (B). (E) Plot of Var(VE) vs. input strength rin
for subcritical and critical states with tI

d ¼ 4; 9 ms. (F) Same as (E) but for quantity

DVarðVEÞ ¼ VarðVEÞ � VarðVEÞjrin¼0:55. The field equation parameters are σe = 3.2, σi = 3.8, β = 0.2.

https://doi.org/10.1371/journal.pcbi.1009848.g006
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However, the macroscopic field equations here cannot directly reflect the properties of

spikes in the E–I network. In the network, high magnitudes in the LFP correspond to the clus-

tered spiking of neurons (Fig 1), so that the spike property can be partially understood from

the LFP property. Nevertheless, the TTV of neuron spiking, measured by FF, is more intricate,

and the global dynamic structure in S1 Appendix explains the stimulus-induced reduction of

FF.

Finally, the quantities of fluctuation and the stimulus-induced reduction of fluctuations are

determined by the imposed noise strength β in the field equations, while the qualitative conclu-

sion that fluctuation can be most suppressed around critical dynamic states does not depend

on β (see S8 Fig). The sensitivity of the bifurcation point on the effective parameters σE, σI for

constructing the field equations is further examined (shown in S9 Fig).

In summary, through the mean-field theory, a map from the E–I spiking neural network to

neural field equations can be effectively constructed. The network properties in spontaneous

and evoked states—namely LFP variability, oscillatory frequency, and criticality property—can

be predicted under different background dynamic modes determined by tI
d.

4. Discussion

In this paper, we study the stimulus–response relationship in different spontaneous states of

E–I balanced neural networks. It is found that E–I circuits poised around critical states can

reproduce multilevel dynamic features, namely neuron spiking, firing rate, neural avalanches,

LFP, and network oscillation frequency, etc., in accordance with different experimental obser-

vations. These multiple facets are unifiedly predicted by a novel mean-field theory. Below, we

compare our model and theory with those of previous studies.

4.1 Neural oscillation and criticality

Cortical neural networks exhibit cognition-related rhythmic activities in terms of population

oscillation [33]. Neural oscillations within the gamma frequency range are of particular inter-

est as they are found to associate with high-level cognitive functions such as attention [67],

memory [68,69], and perception [70]. Gamma oscillation can arise from the E–I interaction in

the local E–I neural circuit [40,71] with sparsely synchronous but irregular spiking of neurons

[72]. The dynamic mechanism by which the balance of excitatory and inhibitory currents in

the circuit induces spike irregularity has been theoretically established as the classical E–I bal-

ance theory [41,59]. The irregular neuronal spiking can also organize as scale-free avalanches

[57]. Traditionally, critical avalanches are explained by critical branching process theory [9].

Other studies have shown that critical oscillation transition theory [39,66,73] can better

account for the critical phenomena. Under this scenario, the scale-free-like avalanches of the

neurons and scale-dependent gamma oscillations of the network can coexist at the critical syn-

chronous transition states of E–I balanced neural networks [39,74]. In this paper, we find that

in this biologically plausible dynamic critical region of the spontaneous state, a network in the

presence of extra inputs can self-organize into critical states characterized by different gamma

frequencies.

In the traditional theory of criticality in neural systems [75], the critical state is often con-

fined to a small parameter range, which converges to a critical point as the system size

increases. It arises a question about how neural systems exposed to diverse environments can

achieve criticality. An idea is the self-organized criticality theory [76], which holds that critical

states are stable attractors for different external conditions. A common way to maintain the

critical state in neural networks in the presence of perturbation is through synaptic plasticity,

as demonstrated in previous models [31,77,78]. In these models, networks under various initial
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conditions can evolve from non-critical transient states to a critical stationary state, deter-

mined by the plasticity effect. In contrast, our model shows that E–I networks intrinsically

adapt to different input strengths, allowing a critical region with different dynamic details

(e.g., network oscillation frequency). Thus, the findings here indicate that the maintenance of

criticality in E–I balanced neural networks does not necessarily require (explicit) adaptation

mechanisms. Another approach for preserving criticality for broad parameter ranges without

an adaptation mechanism is the adoption of Griffiths phases [79], in which criticality extends

from a singular point to a stretched region in networks with hierarchical/modular structures.

The critical state has been proposed to have advantages in information processing optimum

in dynamical range [28,29,32], information capacity and transmission [80], complexity [81],

and information representation [38,82]. However, previous studies have mostly focused on the

variability aspect of criticality. Neural systems require not only flexibility but also reliability to

process input signals. Our work here further reveals the advantage of criticality in terms of

dynamic reliability in response to stimuli. First, the complexity of the spontaneous critical

state implies a certain level of TTV, while a stimulus can reduce the TTV and thus enhance

reliability in the evoked state, which is ideal for information processing. Second, the critical

states in our E–I network exhibit population oscillations whose frequency is sensitive to exter-

nal modulation. A previous study proposed that the stimulus-induced modulation of the

gamma frequency of the network can be leveraged to encode the information of the stimulus

[35]. Thus, this type of criticality in neural networks is also beneficial for information encoding

and decoding. Indeed, it has been shown that E–I balanced networks with critical features

found here (e.g., gamma oscillation and weak pairwise correlation) can achieve most efficient

coding [65]. Such dynamic features are also beneficial to encode memory in networks through

spike-timing-dependent plasticity [83].

4.2 Mechanism of stimulus-induced reduction of trial-to-trial variability

Different modeling frameworks have been proposed to explain the widely observed and behav-

ior-relevant stimulus-induced reduction of TTV. Previous theories can be roughly classified

into three classes.

The first mechanism is chaos suppression. It is known that the dynamics of randomly cou-

pled rate units can undergo a transition from a steady state to a chaotic state as the coupling

grows [84]. Later works [85,86] have shown that chaos in such networks can be suppressed

when sufficiently strong oscillatory inputs are applied, thus reducing the TTV. The resonant

phenomenon predicted by this theory has also been experimentally observed [87]. However,

whether chaos suppression can be achieved in spiking neural networks is unclear. Spiking E–I

neural networks can also show similar chaotic firing rate fluctuation induced by strong recur-

rent coupling [88]. However, it was shown that this chaotic firing rate fluctuation dynamic

region cannot support the stimulus-induced reduction of TTV [89].

The second mechanism occurs in networks with multiple attractors. Spontaneous cortical

dynamics exhibit complex patterns explained by dynamic trajectories wandering between dif-

ferent attractors [90]. Spiking neural networks with multiple attractors can result in high TTV

at ongoing states, characterized by frequent transitions between different attractors, whereas

extra stimuli can stabilize the network toward particular attractor(s) and thus reduce the TTV

[89]. A typical example is neural networks with clustered topology [91,92], where extra inputs

can bias the dynamics to particular cluster(s), reducing the TTV in the presence of stimulus.

The third mechanism is noise reduction, which is achieved in noisy neural field models

with specific properties. In these models, the increase in input (parameters) can lead to the

reduction of fluctuation in dynamic variables in the equations, which is often explainable by
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LNA. Typical examples include a large-scale human cortical model [93] and the stochastic sta-

bilized supralinear network model [94]. Our derived field equations from the mean-field the-

ory also obey this mechanism.

In our study, we observe pronounced stimulus-induced reductions of TTV in both LFP and

spiking when the E–I network is poised at the critical oscillatory transition region, but the two

reductions have slightly different properties. The TTV of the LFP decreases when extra stimuli

drive the network to a higher frequency state. This is demonstrated by the noise reduction in

the corresponding effective macroscopic mean-field equations. In contrast, the spiking TTV

decreases when extra stimuli revert a small proportion of trials with periodic modes back to

critical modes. In such spontaneous dynamic region, two types of attractors (one chaotic, the

other periodic) exist in the network (see S1 Appendix). Thus, the reduction in the spiking FF

in our model also involves the above-mentioned second mechanism. The periodic mode with

eliminated chaos is induced by sufficiently long inhibition owing to the finite network size.

Thus, the present finding is a counterintuitive result that TTV can be reduced by enhancing

chaos. It should be noticed that the dynamic feature of our critical E–I network is similar to

the spiking version of a stochastic stabilized supralinear network model in the literature [94] in

terms of weak population oscillation and loose E–I balance. However, different from the pre-

sumed stochasticity for generating variability in that stochastic model, our model exhibits

internal variability from the E–I balance–induced chaotic spike time. Overall, the presented

critical E–I network model provides a novel TTV reduction mechanism in spiking neural net-

works that is related to but different from previous theories.

4.3 Outlook

The E–I balanced neural network model incorporating biological synapse kinetics with its

effective mean-field approximation theory captures biologically realistic features in terms of

dynamic behavior, variability, and criticality. It is thus a promising modeling framework to

study the multilevel stimulus–response dynamics and their relationship with cognition, brain

function, and brain disorders. The relationships between spontaneous brain activity and its

behavioral outcomes have been widely observed in brain functional connectome [95,96].

A recent study [37] proposed a framework based on the linear Wilson–Cowan equation

and fluctuation-dissipation theorem in nonequilibrium statistical physics to understand the

relationship between the ongoing and evoked dynamics. From our derived field equations,

one may further derive the autocorrelation and response function based on the fluctuation-

dissipation theorem [37]. This may provide insights into how the stimulus–response proper-

ties can be predicted from the spontaneous dynamics [37] and would be an interesting direc-

tion to be explored in the future. On the other hand, our model exhibits unusual critical

exponents, as shown in Fig 4. These exponents may also depend on the network details such as

the synaptic coupling parameters, time scale of synapses, and network size. The relationship

between the network dynamic properties and the value of the critical exponents is presently

unclear and it should require further efforts to explore.

The model and analysis in this paper can be extended to incorporate realistic components

for task processing. For example, this extension may explore the dynamics of the evoked up-

states in working memory recall [97] and decision making [98] and how they interact with or

depend on the dynamics of the corresponding spontaneous states. It is also interesting to

extend the theory to spatially extended networks that allow the propagation of waves [99,100]

related to experimentally observed cortical waves [101]; through such studies, the dimension-

ality [102] and shared variability [103] properties of neural dynamics during spontaneous and

evoked states can be further explored. To investigate task processing dynamics between brain
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regions, the present model can be generalized to large-scale coupled neural fields incorporat-

ing brain connectomes [104]. Moreover, future studies can adopt the information theory

approach [82,105] to examine the functional benefits at the critical states of E-I networks. The

above-mentioned potential directions will be interesting to explore in the future.
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