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Juvenile idiopathic arthritis (JIA) is the most common chronic rheumatic disease
among children which could cause severe disability. Genomic studies have discovered
substantial number of risk loci for JIA, however, the mechanism of how these loci affect
JIA development is not fully understood. Neutrophil is an important cell type involved
in autoimmune diseases. To better understand the biological function of genetic loci
in neutrophils during JIA development, we took an integrated multi-omics approach to
identify target genes at JIA risk loci in neutrophils and constructed a protein-protein
interaction network via a machine learning approach. We identified genes likely to be
JIA risk loci targeted genes in neutrophils which could contribute to JIA development.

Keywords: juvenile idiopathic arthritis, target gene identification, epigenetic regulation, protein-protein
interaction, pathway enrichment

INTRODUCTION

Juvenile idiopathic arthritis (JIA) is the most common chronic rheumatic disease in childhood at
a prevalence rate of 1 in 1000, and JIA is a common cause of disability among children (Oen and
Cheang, 1996). The typical clinical manifestation of JIA is joint enlargement of unknown origin for
more than 6 weeks in children under 16 years old (Petty et al., 2004). JIA has long been considered
as a type of autoimmune disease, however, its etiology is still not fully understood. Similar to other
complex diseases, genetic and environmental factors both contribute to its pathogenesis (Glass
and Giannini, 1999). Substantial evidence suggests the large contribution of genetic components.
Previous studies showed that monozygotic twin concordance rates for JIA are between 25 and
40%, much higher than the population prevalence rate (Savolainen et al., 2000). Affected sibling
studies showed that siblings of JIA probands had an over 10-fold increased risk of developing
the disease (Frisell et al., 2016). Our recent heritability study based on SNP-h2 estimated that the
heritability of JIA is 0.73 among the most highly heritable pediatric autoimmune diseases (Li et al.,
2015b). Several genome-wide association studies (GWAS) have been carried out and discovered a
number of JIA susceptibility loci, but how these loci affect the pathogenesis and development of
JIA remains to be explored (Behrens et al., 2008; Hinks et al., 2009, 2013; Thompson et al., 2012;
Cobb et al., 2014; Aydin-Son et al., 2015; Li et al., 2015a; Finkel et al., 2016; Ombrello et al., 2017;
Haasnoot et al., 2018).
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Neutrophils are one of the most important innate immune
cells in human bodies. When infection or inflammation occurs,
they are recruited to the disease site under the attraction of
chemokines. In recent years, studies have found that neutrophils
can secrete a variety of cytokines to play a key role in
immunomodulation. The clinical manifestations of JIA are highly
similar to those of classical autoinflammatory diseases. The large
accumulation of white blood cells is one of the causes for local
tissue damage and loss of joint function due to the inflammatory
response at the joint (Fattori et al., 2016). Neutrophils likely
play an important role in the effector phase of autoimmune
diseases including JIA, and their action can cause or exacerbate
articular inflammation (Németh and Mócsai, 2012). Neutrophil
extracellular traps (NETs) are the newly discovered mechanism
by which neutrophils fight infection, and has been demonstrated
to play a role in pathogenesis of systemic immune diseases
such as systemic lupus erythematosus (SLE) (Hakkim et al.,
2010), antineutrophil cytoplasmic antibodies (ANCA)-associated
systemic vasculitis (Kessenbrock et al., 2009) and multiple
sclerosis (Naegele et al., 2012). However, little is known about the
genes involved in JIA development in neutrophils.

A number of JIA loci have been identified in GWAS (Behrens
et al., 2008; Hinks et al., 2009, 2013; Thompson et al., 2012; Cobb
et al., 2014; Aydin-Son et al., 2015; Li et al., 2015a; Finkel et al.,
2016; Ombrello et al., 2017; Haasnoot et al., 2018), but few have
been functionally characterized as most of the GWAS SNPs are
located at the intronic or intergenic regions, without directly
affecting the sequence of any protein product. We hypothesize
that they may function as cis-regulatory elements, regulating
target gene expression. Therefore, we focused on understanding
the target genes of JIA GWAS loci in neutrophils.

JIA is a heterogeneous group of diseases including several
different subtypes. In recent years, due to the progress in disease
management, their prognosis has been greatly improved, but
there are still few effective treatments. Our study took an in silico
analysis approach, utilizing genomics, transcriptome, epigenome,
and methylome data to find genes targeted by JIA risk loci in
neutrophils, facilitating the design of precision strategy of JIA
prevention and treatment.

MATERIALS AND METHODS

Extraction of JIA GWAS Loci
Juvenile idiopathic arthritis loci identified in previous GWAS
were found in GWAS catalog (MacArthur et al., 2017) by
conducting search using keyword “Juvenile idiopathic arthritis.”
All loci found were downloaded without further imposing any
significance threshold.

eQTL Analysis
eQTL analysis was performed via Genotype-Tissue Expression
(GTEx) Project website (Lonsdale et al., 2013), from which the
correlation between each SNP genotype and gene expression level
in whole blood was extracted. We set the significance threshold
as P-value < 0.05. The boxplots for the SNP-gene pairs were
reviewed via GTEx Portal.

Analysis of Microarray Data
Series matrix files of microarray datasets GSE11083 (Frank
et al., 2009a,b) and GSE67596 (Jiang et al., 2015) containing
transcriptome data from neutrophils of 36 JIA patients and 26
healthy controls were downloaded from NCBI Gene Expression
Omnibus (GEO) (Edgar et al., 2002; Barrett et al., 2013). Gene
expression levels were compared between JIA patient group and
control group. Expression values across studies was summarized
through median polish and normalization was performed using
Robust Multi-array Average (RMA) algorithm which minimizes
variance across arrays and log transformation was conducted
for variance stabilization (Irizarry et al., 2003). Meta-analysis
were performed using RankProd package (Hong et al., 2006)
in R 3.5.1 (R Core Team, 2018). The threshold used to select
for differentially expressed genes was defined as possibility
of false positives (PFP) < 0.05 and absolute value of fold
change (FC) > 1.2.

Histone Modification Analysis
The SNPs of interest were input into web portal Haploreg1

(Ward and Kellis, 2012) and their overlap with histone
modification regions in neutrophil cell line E030 BLD.CD15.PC
(primary neutrophils from peripheral blood) was evaluated
using epigenome data from ROADMAP epigenomics database
(Kundaje et al., 2015).

Methylation Data Analysis
The methylation data were extracted from the genome-wide
methylation profiles of 843 subjects processed on the Infinium
HumanMethylation450 BeadChip at the Center for Applied
Genomics, the Children’s Hospital of Philadelphia, which has
been described in previous publication (Van Ingen et al.,
2016). The log2 ratio between the methylated and unmethylated
intensities of each probe on the chip was represented by the
M-values. The association between JIA SNP genotype and
methylation probes in each of the 11 genes was assessed in
a linear regression model conditioned on gender, age and 10
genotype-derived principle components.

Construction of Protein-Protein
Interaction (PPI) Network
Protein-Protein Interaction network on the 11 target genes
was constructed via NetworkAnalyst2 (Xia et al., 2014) which
was based on integration of machine learning and Walktrap
algorithms (Pons and Latapy, 2005). The resource of protein-
protein interaction data was IMEx Interactome database
(Orchard et al., 2012). Hypergeometric test for gene set
enrichment analysis was implemented in NetworkAnalyst and
the Kyoto Encyclopedia of Genes and Genomes (KEGG) database
(Kanehisa et al., 2017) was used as the pathway database
resource. In addition to FDR P-value calculated based on
hypergeometric test and multiple-testing adjustment, empirical
P-value of pathways was derived from permutation analysis. A list

1https://pubs.broadinstitute.org/mammals/haploreg/haploreg.php
2https://www.networkanalyst.ca
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of 11 genes was randomly generated from the human genome
and such resampling was performed 100 times. For each 11-
gene list randomly drawn, the steps of network construction,
pathway analysis were similarly performed as for JIA target
genes in neutrophils, and a list of significantly enriched pathways
with FDR < 0.05 was resulted from each resampling. For each
enriched pathway in PPI network of JIA target genes, its empirical
P-value was derived based on the number of times it appears as
significantly enriched pathway from 100 permutations.

Hi-C Data Visualization
Hi-C data visualization for the JIA loci and target genes were
carried out via the 3D Genome browser3 (Wang et al., 2018) and
FUMA GWAS4 (Watanabe et al., 2017). Hi-C data from cell line
K562 (Rao et al., 2014; Schmitt et al., 2016) were used.

RESULTS

A large number of GWAS loci have been identified for human
complex diseases, including JIA. We extracted all 127 genomic
regions that have been reported to be associated with JIA from
GWAS catalog (Behrens et al., 2008; Hinks et al., 2009, 2013;
Thompson et al., 2012; Cobb et al., 2014; Aydin-Son et al., 2015; Li
et al., 2015a; Finkel et al., 2016; MacArthur et al., 2017; Ombrello
et al., 2017; Haasnoot et al., 2018). All these SNPs are located
outside of gene exons, which may contribute to disease etiology
by affecting gene expression. We then input these SNPs into
GTEx database (Lonsdale et al., 2013) to identify genes that are
regulated by these SNPs. Because GWAS SNPs and their target
genes may not always exhibit highly significant correlation in
eQTL analysis, exemplified by obesity SNP rs9930506 and IRX3
gene (Smemo et al., 2014), we set the significance threshold as
nominal P-value < 0.05. We found that the expression level of
238 genes correlates with JIA SNP genotype in whole blood.

As we are particularly interested in identifying genes regulated
by JIA GWAS loci in neutrophils, we examined which of these
238 genes showed differential expression in neutrophils between
JIA cases and controls. We extracted two microarray datasets
from gene expression omnibus (GEO) database, GSE11083
(Frank et al., 2009a,b) and GSE67596 (Jiang et al., 2015).
Gene expression data from a total of 36 JIA cases and 26
controls were meta-analyzed. Among the 264 eQTL genes for JIA
SNPs, only 11 genes showed significant differential expression,
including 5 up-regulated and 6 down-regulated (Table 1). Our
in silico analysis suggested that these genes may function as
JIA loci targeted genes in neutrophils. Among the 13 pairs of
JIA SNPs and target genes, only SNP rs79893749 is located
in the intron of its target gene CCR3; all the other SNPs
are located outside of the transcript region of their target
genes. Hi-C data provide additional supporting evidence for
plausible chromatin interactions between some JIA SNPs and
their target genes (Supplementary Figures 1, 2), with the caveat
that these data came from a chronic myelogenous leukemia cell

3promoter.bx.psu.edu/hi-c/
4http://fuma.ctglab.nl/ TA
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FIGURE 1 | PPI network of first-order interactions constructed for JIA loci
target genes in neutrophils.

line K562 (Rao et al., 2014; Schmitt et al., 2016). Experiments
using neutrophils would be necessary to further explore their
possible interactions.

To understand how these genes coordinately contribute to
JIA development, we constructed PPI network among proteins
encoded by these genes and their direct interactors (Figure 1)
using NetworkAnalyst which integrates statistical analyses and
machine learning for interactive PPI network visualization.
We further conducted pathway analysis and found several
signaling pathways significantly enriched among proteins in
this network, including neurotrophin signaling pathway, cardiac
muscle contraction, cell cycle and hypertrophic cardiomyopathy
(HCM) (Table 2). To test the cell type specificity of 11
target genes and enriched pathways, we repeated the whole
process using microarray gene expression data from PBMC

samples of the same GEO datasets. We found that among
the 11 target genes in neutrophils, one gene (TRIM58) was
shared with PBMC (Table 1 and Supplementary Table 1). No
enriched pathway was shared between neutrophils and PBMC
(Figure 1, Table 2, Supplementary Figure 3, and Supplementary
Table 2). To further determine the specificity of the 4 enriched
pathways among JIA target genes in neutrophils, we checked
the distribution of significantly enriched pathways from 100
randomly generated 11-gene lists and derived the empirical
P-values for each of the 4 pathways of interest (Table 2).
The pathways of cardiac muscle contraction and hypertrophic
cardiomyopathy were of empirical P-value < 0.01. Based on these
two control gene set analyses, we demonstrated the specificity of
these target genes and pathways in neutrophils, serving the initial
screening purpose for further functional validation.

Next, we investigated how JIA loci may regulate the expression
of their targeted genes. To address this question, we examined the
ROADMAP database (Kundaje et al., 2015) through HaploReg
(Ward and Kellis, 2012). We found rs79893749 and rs149850873
overlap with histone marks in a neutrophil cell line E030
BLD.CD15.PC, suggesting that these loci may regulate their
targeted gene expression through histone modifications in the
promoter or enhancer region. We also looked into the potential
mechanism of DNA methylation. In our methylation analysis,
we tested the 10 JIA SNPs against their corresponding one
or two genes which each contains ∼11 methylation probes
on average. A total of 144 SNP-methylation-probe pairs were
tested, thus the multiple-testing adjusted P-value cutoff is set
at 3.5 × 10−4. The correlation between four SNP-methylation-
probe pairs reached this experiment-wide significance threshold,
suggesting that these JIA SNPs may regulate the expression of
their target genes through DNA methylation (Table 1).

DISCUSSION

In this study, we conducted data mining in existing datasets
to gain a better understanding of the molecular mechanism
of JIA GWAS loci. By eQTL and transcriptome analyses, we
identified 11 genes may be JIA loci target genes in neutrophils.
We further built PPI network and found pathways enriched
among target genes and their interactors. We also found multiple
JIA GWAS SNPs overlap with histone marks and/or correlate
with methylation level in their target genes.

We did not observe extensive overlap between JIA eQTL
genes in whole blood and genes of differential expression in

TABLE 2 | KEGG pathways enriched among the PPI network formed by JIA loci target gene and their interactors (FDR < 0.05).

Pathway Total Expected Hits P-value FDR Empirical P-value

Neurotrophin signaling pathway 123 1.34 10 5.60E-07 1.21E-04 0.1

Cardiac muscle contraction 12 0.131 4 5.81E-06 6.30E-04 <0.01∗

Cell cycle 124 1.35 8 4.74E-05 3.43E-03 0.14

Hypertrophic cardiomyopathy 25 0.272 4 1.34E-04 7.25E-03 <0.01∗

Total = the total number of genes in each pathway; Expected = the expected number of genes in each pathway given the number of JIA target genes; Hits = the actual
number of JIA target genes falling into each pathway; P-value = P-value of each pathway in enrichment test; FDR = false discovery rate of each pathway; ∗empirical
P-value < 0.01 based on permutation analysis.
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neutrophils. It possibly resulted from the small sample size in
our microarray datasets which did not have enough power to
detect certain differentially expressed genes. In addition, JIA
eQTL genes may be expressed in cell types other than neutrophils
which we are particularly interested in.

Several of the target genes we identified are highly related
to the immune system, such as CCR3, ELL2, and HLA-DPA1.
Others play a role in cell proliferation, carcinogenesis and/or
other biological functions. The Human leukocyte antigen (HLA)
gene complex encodes human major histocompatibility complex
(MHC), a group of cell-surface proteins playing important roles
in the regulation of human immune system. HLA genes have
been reported to be associated with autoimmune diseases (Sollid,
2017; Kawabata et al., 2018), including rheumatoid arthritis
(Onuora, 2015; Smolen et al., 2018) and JIA (Smerdel et al.,
2002). The HLA-DPA1 locus has been particularly linked to
ankylosing spondylitis, a type of chronic inflammatory rheumatic
disease (Diaz-Pena et al., 2011). As expected, HLA genes
were also found as target genes in PBMC, suggesting they
contribute to pathogenesis of JIA in diverse immune cell types.
CCR3 gene encodes a protein as a member of the G protein-
coupled receptor family, responding to the C-C type chemokines.
SNP in CCR3-CCR5 region has been linked to family history
of autoimmune disease among children with type I diabetes
(Parkkola et al., 2017). It has been reported that CCR3 expression
was increased under rheumatoid arthritis conditions, and it
mediated eotaxin-1 induced matrix metalloproteinase (MMP)-
9 upregulation in fibroblast-like synoviocyte which may further
result in articular damage (Liu et al., 2017). Previous studies have
also demonstrated that CCR3 is highly expressed in infiltrated
synovial neutrophils of rheumatoid arthritis patients (Hartl et al.,
2008). ELL2 gene encodes Elongation Factor for RNA Polymerase
II 2, a component of the super-elongation complex. It functions
in immune regulation by affecting IgH alternative processing,
Ig secretion and plasma cell differentiation. Missense mutation
in ELL2 gene affects IgA and IgG level associated with multiple
myeloma (Swaminathan et al., 2015). Study has shown that ELL2
is expressed in mature neutrophils and its expression is elevated
in responses to inflammatory stimuli (Zhang et al., 2004). Our
results suggest that these genes may also play a role in neutrophils
mediating the effect of JIA risk loci during JIA pathogenesis
which should be further investigated by experimental approaches.

The pathways of cardiac muscle contraction and hypertrophic
cardiomyopathy are significantly and specifically enriched in PPI
network of JIA target genes and their interactors in neutrophils.
Multiple studies have reported that patients with rheumatoid
arthritis have a higher incidence and mortality of cardiovascular

disease (Maradit-Kremers et al., 2005; Voskuyl, 2006; Avina-
Zubieta et al., 2008; Georgiadis et al., 2008). Cardiac involvement
has similarly been found in JIA patients (Svantesson et al., 1983;
Hull, 1988). However, whether JIA increases the long-term risk
of cardiovascular disease is still uncertain (Coulson et al., 2013).
Our results suggest that JIA and cardiovascular disease may share
common underlying molecular mechanism.

High-throughput omics technology provides a wealth of
experimental data for disease gene discovery. The multi-omics
studies on the interplay between genes, RNA, proteins and small
molecules reveal new directions for the research of complex
diseases (Bersanelli et al., 2016; Bock et al., 2016). Integration
of data from different dimensions of multi-omics data via
different analytical approaches facilitates prioritizing genes for
efficient functional studies and contributes to the understanding
of disease etiology.
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