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Abstract: In disease modeling, a key statistical problem is the estimation of lower and upper tail
probabilities of health events from given data sets of small size and limited range. Assuming such
constraints, we describe a computational framework for the systematic fusion of observations from
multiple sources to compute tail probabilities that could not be obtained otherwise due to a lack of
lower or upper tail data. The estimation of multivariate lower and upper tail probabilities from a
given small reference data set that lacks complete information about such tail data is addressed in
terms of pertussis case count data. Fusion of data from multiple sources in conjunction with the
density ratio model is used to give probability estimates that are non-obtainable from the empirical
distribution. Based on a density ratio model with variable tilts, we first present a univariate fit and,
subsequently, improve it with a multivariate extension. In the multivariate analysis, we selected the
best model in terms of the Akaike Information Criterion (AIC). Regional prediction, in Washington
state, of the number of pertussis cases is approached by providing joint probabilities using fused
data from several relatively small samples following the selected density ratio model. The model is
validated by a graphical goodness-of-fit plot comparing the estimated reference distribution obtained
from the fused data with that of the empirical distribution obtained from the reference sample only.

Keywords: disease outbreak; density ratio model; variable tilt; model selection; goodness-of-fit;
data fusion

1. Introduction

A challenging statistical problem is the estimation of lower and upper tail probabilities
from a given small data set. Challenging as it is, the problem becomes even more arduous
when the data set lacks information about lower or upper tail data to the extent that the
use of the empirical distribution becomes problematic. This calls for additional data in
some form. In this study, the fusion of data from multiple sources allows us to compute
tail probabilities, which could not otherwise be obtained due to the lack of lower or upper
tail data.

In particular, if the data from a certain source exceed a sufficiently high threshold, then
information about lower values below the threshold can be obtained by fusion with other
sources that do have data below the threshold. The same holds for sources with data below
a given threshold. This necessitates fusion with data sources containing data above the
threshold. Our approach is particularly useful when the sample sizes are relatively small
and yet probabilities of unusual or extreme values are of interest [1]. Here, we present a
multivariate extension of our methodology and demonstrate its application using small
pertussis case count data sets.

Pertussis, or whooping cough, is an acute infectious disease of the respiratory tract
caused by the gram-negative bacterium Bordetella pertussis. It is highly contagious and
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transmitted from infected to susceptible individuals by airborne droplets due to coughing
and sneezing. Pertussis affects people of all ages but can be serious in infants less than
1 year of age and causes 195,000 infant deaths annually, mostly in developing countries.
The global estimates in 2014 were 24.1 million cases and 160,700 deaths from the disease
among children below five years of age [2]. Pertussis is endemic in all countries and tends
to occur every two to five years in North America and Europe [3].

After widespread vaccination began in the U.S. in the 1940s, the number of new infec-
tions reduced to 10,000–40,000 cases of pertussis reported each year, resulting in a 100-fold
reduction in the incidence of the disease, thereby making it a likely candidate for elimina-
tion. However, since the mid 1970s, pertussis incidence has steadily increased [4]. In 2012,
48,277 pertussis cases were reported in the U.S. (an incidence rate of 15.1 per 100,000),
the largest number since 1955 [5]. In Washington state alone, more than 4600 pertussis
cases were reported in 2012, mostly among infants aged less than 1 year and children
aged 10 years [6]. The incidence of the disease among adolescents of age 13–14 years and
adults has also increased, including those previously vaccinated, suggesting early waning
of vaccine-acquired immunity.

While vaccination remains the most effective means of preventing illness, pertussis has
re-emerged in countries that have sustained high vaccine coverage. In the U.S., pertussis has
been a reportable disease since 1922, and case-based surveillance data are available through
the National Notifiable Diseases Surveillance System (NNDSS) of the Centers for Disease
Control and Prevention (CDC) and, additionally, the Enhanced Pertussis Surveillance (EPS)
in seven states [7]. The reasons for this re-emergence are attributable to several factors
including changes in diagnostic testing and reporting, increased awareness, mismatch
of vaccine antigens and circulating strains, reduced duration of immunity from acellular
pertussis (aP) vaccines that replaced whole-cell vaccines in the U.S. during the 1990s, and
changes in the B. pertussis organism at the molecular level [7].

During the 2012 pertussis outbreak in Washington state, it was observed that the inci-
dence was highest in infants of age <1 year and children of age 10, 13 and 14 years [6]. The
statewide incidence rate was higher among Hispanics than non-Hispanics [6]. Household
size [7] and vaccination coverage [8] have been considered among the risk factors of the
disease. We have noted such risk factors in Table A1.

Apart from the analysis of factors that affect the resurgence of pertussis, forecasting
upper and lower joint tail probabilities of high incidence in a given period of time is another
key topic of interest to epidemiologists. While a variety of methods for modeling pertussis
incidence have been proposed in recent years [9,10], here we present a method for the
forecasting of both univariate as well as multivariate joint tail probabilities using the fusion
of pertussis count data obtained from neighboring counties in Washington state. Our
approach is based on the so-called density ratio model with variable tilts presented here with
a multivariate extension, which is the novel contribution of this study.

2. Density Ratio Model

Given m+1 independent p-dimensional multivariate random samplesXk = {Xk1, . . . , Xknk
},

k = 0, . . . , m, where nk’s are the corresponding sample sizes. Suppose that Xk has a density
gk for k = 0, . . . , m, where the gk satisfy the density ratio structure

gk(x)
g0(x)

= exp (αk + βT
k hk(x)) k = 1, . . . , m, (1)

where hk is referred to as a tilt functions or simply tilt. The sample X0 is referred to as the
reference sample and the rest of the samples are referred to as tilted samples.

Let α = (α1, . . . , αm)T , β = (βT
1 , . . . , βT

m)
T and θ = (αT , βT)T . Let w0(·; θ) = 1

and wk(·; θ) = exp (αk + βT
k hk(·)). Denote the combined sample by t = {t1, . . . , tn} =

{X01, . . . , X0n0 , . . . , Xm1, . . . , Xmnm}with the corresponding samples size n = n0 + · · ·+ nm.
Let G0 be the reference cumulative distribution function that corresponds to the density g0.
The empirical likelihood function can be written as
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L(θ; G0) =
n

∏
i=1

pi

m

∏
k=1

nk

∏
j=1

wk(Xkj; θ) (2)

with constraints

n

∑
i=1

pi = 1
n

∑
i=1

pi[wk(ti; θ)− 1] = 0 k = 1, . . . , m,

where pi is the jump of G0 at ti. By profiling, the pi’s that maximize the empirical likelihood
are given by

pi =
1

∑m
k=0 nkwk(ti; θ)

.

Therefore, the likelihood becomes a function of θ only and we can find the estimator θ̃
that maximizes the likelihood. Subsequently, the estimator of pi is obtained as

p̃i =
1

∑m
k=0 nkwk(ti; θ̃)

.

It can be shown that θ̃ has the asymptotic normal distribution

√
n(θ̃− θ0)

d→ N(0, Σ(θ0)) (3)

as n→ ∞. Details can be found in [11–15].
The estimated G0 is obtained from the accumulation of the p̃i’s,

G̃0((x1, . . . , xp)) =
n

∑
i=1

p̃i I[ti1 ≤ x1, . . . , tip ≤ xp]. (4)

In the above expression for G̃0, replacing p̃i by 1/n we get the reference empirical
distribution Ĝ0.

The selection of the tilts hk’s can be based on [16–18].
A flowchart in Figure 1 is provided to illustrate the steps in the data fusion analysis.

Start

Choose a tilt function h(·).

Construct density ratio
models with tilts taking

the form h(·) and its
reduced forms. Select the
best model based on AIC.

Obtain empirical and
density ratio estimate
of reference CDF, Ĝ0
and G̃0 respectively.

Is the selected
model a good fit?

Calculate probability
estimates based on
the selected model.

End

No

Yes

Figure 1. Flowchart of the data fusion analysis.
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3. Application: County-level Pertussis Cases in Washington State

We collected Washington state county-level annual data of the number of pertussis
cases from 1997–2018 (Washington Department of Health Website https://www.doh.wa.
gov/ (accessed on 1 March 2021)). For each county, we have a sample of size 22. Without
any distribution assumption, when county tail data are available we can estimate tail
probabilities from the empirical distribution. However, such an estimation is not feasible if
tail data are absent. For example, from Table 1 we see that no observation exceeds 30 in
Jefferson county so that estimating the chance of exceeding the threshold of 30 from the
empirical distribution is not viable.

Table 1. Summary statistics of Jefferson, Cowlitz and Snohomish counties, WA. Q1 and Q3 are
referred to 25th and 75th percentile respectively.

County
Statistics Min. Q1 Median Q3 Max.

Jefferson 0.00 0.00 1.00 6.50 30.00
Cowlitz 0.00 3.00 8.00 23.25 108.00

Snohomish 7.00 36.25 46.50 54.75 549.00

Nevertheless, the estimation of this probability is possible via the density ratio model
if we fuse the sample from Jefferson county with samples from the counties of Cowlitz and
Snohomish for which sufficient amounts of data above 30 are available.

3.1. Univariate Analysis

The sample from 0-Jefferson is taken as the reference while the samples from 1-Cowlitz
and 2-Snohomish are tilted with tilts h1(x) = h2(x) = x as suggested in [14]. Using
the fused data from the three counties, and appealing to the density ratio model, tail
probabilities for Jefferson County are given in Table 2 for thresholds 30, 40 and 50. As
discussed above, these tail probabilities cannot be estimated by the empirical distribution
for lack of tail data.

Table 2. Selected joint probability estimates non-obtainable from the empirical distribution and the
corresponding 95% confidence intervals. Here, t represents the annual pertussis cases in Jefferson.

Probability Estimate 95% Confidence Interval

P(t > 30) 0.0200 (−0.0204, 0.0604)
P(t > 40) 0.0084 (−0.0124, 0.0292)
P(t > 50) 0.0021 (−0.0041, 0.0083)

To validate the model, we used the graphical goodness-of-fit discussed in [15]. The idea
is to see whether the points (Ĝ0,G̃0) lie on or close to a 45◦-line. From the goodness-of-fit
graph in Figure 2, we see that some points lie not far from a 45◦-line while others do not,
pointing to a possible lack of fit. Moreover, little improvement has been observed by using
different tilt functions. To resolve this issue as to the suitability of the density ratio model,
we turn to the multivariate version of the model, where a somewhat richer class of possible
tilts is used. This leads to, as we shall see in the next section, remarkable improvement
in the fit.

https://www.doh.wa.gov/
https://www.doh.wa.gov/
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Figure 2. PP-plot for Ĝ0 vs. G̃0 in the univariate case.

3.2. Multivariate Analysis

We took 3-dimensional (that is p = 3) samples from three different regions: 0-(Grays
Harbor, Jefferson, Clallam), 1-(Clark, Cowlitz, Lewis), 2-(King, Snohomish, Skagit). The
order for each region is from the most to the least populated. Therefore, we obtained three
3-dimensional multivariate random samples with sample sizes all equal to 22 where the
sample from (Grays Harbor, Jefferson, Clallam) was considered as the reference sample.
The summary statistics of the nine counties are shown in Table 3.

Table 3. Summary statistics of each county used in the multivariate analysis. Q1 and Q3 are referred
to 25th and 75th percentile respectively.

County
Statistics

Min. Q1 Median Q3 Max.

Grays Harbor 0.00 1.00 2.50 4.75 24.00
Jefferson 0.00 0.00 1.00 6.50 30.00
Clallam 0.00 1.00 2.00 4.75 25.00

Clark 3.00 20.25 33.50 85.00 326.00
Cowlitz 0.00 3.00 8.00 23.25 108.00
Lewis 0.00 2.00 5.00 10.75 71.00
King 38.00 115.00 141.00 194.25 785.00

Snohomish 7.00 36.25 46.50 54.75 549.00
Skagit 1.00 5.00 9.00 17.75 559.00

We initiated tilt selection with h1(x) = h2(x) = (x1, x2, x3)
T suggested in [14,15].

The tilts selected were h1(x) = (x1, x2, x3)
T and h2(x) = (x1, x3)

T giving the smallest
AIC = 483.22 as shown in Table 4. The 45◦-line formed by the pairs (Ĝ0,G̃0) in Figure 3
indicating a good fit (G̃0 is closed to the empirical distribution Ĝ0).

Table 4. AIC values for different choices of h1 and h2. A hyphen “-” indicates that hk(x) ≡ 0 and
therefore g0 and gk are identical for k = 1, 2.

h2

AIC h1

- x1 x2 x3 (x1, x2) (x1, x3) (x2, x3) (x1, x3, x3)

- 553.03 554.32 552.37 554.39 554.19 556.22 554.22 556.11
x1 527.36 487.62 529.32 526.98 483.92 489.53 528.98 485.89
x2 525.03 524.09 516.98 525.37 518.98 525.56 518.94 520.94
x3 549.19 551.19 549.92 547.88 551.36 549.45 547.50 549.45

(x1, x2) 523.36 485.04 515.77 522.57 485.22 487.03 517.24 487.17
(x1, x3) 558.58 489.07 530.52 528.38 485.37 486.05 530.36 483.22
(x2, x3) 527.03 526.08 518.97 526.34 520.97 526.85 520.93 522.92

(x1, x2, x3) 524.91 486.51 517.25 524.33 486.71 483.32 519.19 485.22
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Figure 3. PP-plot for Ĝ0 vs. G̃0 in the univariate case.

We computed in Table 5 the estimates of several selected joint threshold probabilities,
which can be regarded as predictions for a future year. It is worth noticing that the
probabilities selected cannot be estimated by the empirical distribution Ĝ0 due to the lack
of observations while this is made feasible by fusing data from the other two regions.

Table 5. Selected joint probability estimates non-obtainable from the empirical distribution and the
corresponding 95% confidence intervals. Here, (t1, t2, t3) represents the number of annual pertussis
cases in (Grays Harbor, Jefferson, Clallam) respectively.

Probability Estimate 95% Confidence Interval

P(t1 > 20, t2 ≤ 10, t3 ≤ 10) 5.6511× 10−3 (−2.5641× 10−2, 3.6943× 10−2)
P(t1 > 10, t2 > 10, t3 ≤ 10) 8.1231× 10−3 (−2.9312× 10−2, 4.5558× 10−2)
P(t1 > 15, t2 > 15, t3 ≤ 15) 2.6609× 10−3 (−1.8843× 10−2, 2.4166× 10−2)
P(t1 > 25, t2 > 20, t3 > 10) 2.6517× 10−7 (−1.8969× 10−4, 1.9010× 10−4)
P(t1 > 15, t2 > 30, t3 > 10) 3.7789× 10−9 (−2.5683× 10−5, 2.5691× 10−5)

4. Discussion

Our data fusion approach allows us to combine information from multiple sources that
can together describe dynamic and multifactorial phenomena more comprehensively than
a single source alone. Infectious disease dynamics are ideally suited for such integrative
modeling of an outbreak in which a county is usually affected by its neighboring counties,
especially in populated areas, due to population mobility [19]. As the re-emergence of
pertussis in the U.S. and Europe in recent years has shown, it is important to have the
modeling capacity to predict the incidence of the disease even if the data are usually of small
size, which are in themselves not adequate for the precise estimation of tail probabilities.

The multivariate density ratio model described in this study allowed us to examine
the joint behavior of pertussis resurgence in adjacent counties. The model was validated
by goodness-of-fit plots. Importantly, the observed support of the reference distribution
of cases was enlarged by fusing the reference sample with data from nearby regions and
applied to the density ratio model. While time series modeling of disease incidence is
common in epidemiology, in the face of small or moderate data sources few methods can
enhance their input to yield multivariate tail probabilities and confidence intervals, which
are not possible to estimate otherwise.

In future work, we plan to further enrich our model with regional covariates to provide
key insights for disease surveillance and public health researchers. For instance, the risk
factors of pertussis cases that are studied in the U.S. include household size, vaccination
coverage and demographics (see Table A1). Such factors are observed with regional
variation that is often spatially clustered across neighboring counties [20]. Indeed, data
fusion is well suited to the systematic modeling of regions with socioeconomic, political
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or cultural overlap (e.g., school districts) that are characterized by nonmedical vaccine
exemptions, migration and vaccine refusal [21–23]. In times of increasingly common
vaccine hesitancy, such applications could be very effective for public health.

While the world is currently seeing outbreaks of the COVID-19 pandemic, pertussis is,
in comparison, an ancient disease, which was recognized even in the Middle Ages. While
connections between these diseases have recently been considered [24], it is beyond the
scope of the present study. However, the multivariate approach that we used for fusion of
pertussis inter-county data could also be applied to other regionally transmissible diseases,
including COVID-19. We leave this to future studies.
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and agreed to the published version of the manuscript.
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Appendix A. Risk Factors of Pertussis Incidence

Table A1. County statistics and risk factors: Population Estimate, Average Household Size, Percent Hispanic, Pertussis
Vaccine Coverage, Percent Population Below 5 years, Population Density, Rural/Urban, Socioeconomic Status (SES) as per
2017 estimates.

County Population Household %Hispanic %Vaccine %Below5 Density Rural/Urban SES

Grays Harbor 72,490 2.43 9.8 80.7 5.5 14.78 Mostly Rural Mid
Jefferson 31,210 2.07 3.7 80.8 2.9 6.70 Mostly Rural Mid
Clallam 75,637 2.25 5.8 87.1 4.7 16.74 Mostly Rural Mid

Clark 474,381 2.69 8.7 84.7 6.2 290.74 Semi-Urban High
Cowlitz 106,805 2.52 8.4 94.1 6.2 36.13 Semi-Urban High
Lewis 78,320 2.52 9.7 91.5 5.9 12.56 Mostly Rural Mid

King 2,203,836 2.45 9.4 91.4 5.9 400.75 Urban Mid/High
Snohomish 802,089 2.68 9.7 90.7 6.4 147.82 Semi-Urban High
Skagit 125,860 2.55 17.8 90.4 6.1 28.03 Semi-Urban High
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