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Identification of predictive MRI and functional 
biomarkers in a pediatric piglet traumatic brain injury 
model 
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Abstract  
Traumatic brain injury (TBI) at a young age can lead to the development of long-term 
functional impairments. Severity of injury is well demonstrated to have a strong influence 
on the extent of functional impairments; however, identification of specific magnetic 
resonance imaging (MRI) biomarkers that are most reflective of injury severity and 
functional prognosis remain elusive. Therefore, the objective of this study was to utilize 
advanced statistical approaches to identify clinically relevant MRI biomarkers and predict 
functional outcomes using MRI metrics in a translational large animal piglet TBI model. 
TBI was induced via controlled cortical impact and multiparametric MRI was performed 
at 24 hours and 12 weeks post-TBI using T1-weighted, T2-weighted, T2-weighted fluid 
attenuated inversion recovery, diffusion-weighted imaging, and diffusion tensor imaging. 
Changes in spatiotemporal gait parameters were also assessed using an automated gait 
mat at 24 hours and 12 weeks post-TBI. Principal component analysis was performed to 
determine the MRI metrics and spatiotemporal gait parameters that explain the largest 
sources of variation within the datasets. We found that linear combinations of lesion size 
and midline shift acquired using T2-weighted imaging explained most of the variability 
of the data at both 24 hours and 12 weeks post-TBI. In addition, linear combinations of 
velocity, cadence, and stride length were found to explain most of the gait data variability 
at 24 hours and 12 weeks post-TBI. Linear regression analysis was performed to determine 
if MRI metrics are predictive of changes in gait. We found that both lesion size and midline 
shift are significantly correlated with decreases in stride and step length. These results 
from this study provide an important first step at identifying relevant MRI and functional 
biomarkers that are predictive of functional outcomes in a clinically relevant piglet TBI 
model. This study was approved by the University of Georgia Institutional Animal Care and 
Use Committee (AUP: A2015 11-001) on December 22, 2015. 
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Introduction 
In United States, traumatic brain injury (TBI) is a leading cause 
of long-term and permanent disability and even death. Each 
year, approximately 2.8 million people suffer from a TBI in the 
United States (Taylor et al., 2017). Unfortunately, one of the 
largest groups affected by TBI are children between the age of 
0 and 14 with almost half a million (473,947) children going to 
the ER each year (Faul et al., 2010). After TBI in these patients, 
one of the major questions has become how to reliably predict 
functional outcomes and recovery with significant efforts 
being made in the use of non-invasive imaging modalities 
including magnetic resonance imaging (MRI) (Galloway et al., 
2008; Guild and Levine, 2015).

MRI is widely used in TBI patients and has significant 
potential to identify key changes in pathophysiology that 

can be utilized to predict functional outcomes in patients 
(Saatman et al., 2008; Cooper et al., 2014). MRI is capable 
of assessing TBI progression longitudinally and providing 
comprehensive information on spatiotemporal parameters 
such as lesion volume and midline shift (Chastain et al., 2009; 
Lee et al., 2012). In humans, TBI tissue damage detected by 
MRI was found to be related with gait and balance deficits 
(Caeyenberghs et al., 2010; Drijkoningen et al., 2017). In 
pediatric TBI patients, regional gray matter volume was 
positively correlated with gait control as indicated by loss of 
gray matter volume coinciding with increased step length 
asymmetry (Drijkoningen et al., 2017). This suggests that these 
MRI “biomarkers” might be a powerful tool to predict injury 
recovery. 

Rodent models are widely used to study TBI pathophysiology, 
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motor function deficits and to perform safety and efficacy 
studies for potential treatments (Marklund, 2016). However, 
failure to develop a Food and Drug Administration (FDA) 
approved treatment despite numerous clinical trials, with 
more promising therapeutics failing to reach primary end 
points in phase III trials, has led to increased interest in more 
translational and predictive animal models (Jain, 2008). The 
pig has become a TBI model of significant interest due to 
increased similarities to humans in terms of brain anatomy, 
physiology and development (Dobbing and Sands, 1979; 
Flynn, 1984; Gieling et al., 2011; Conrad et al., 2012; Costine 
et al., 2015; Paredes et al., 2016). Also, given that children 
are more likely to sustain a concussive TBI after a fall, the 
use of a juvenile model that more closely recapitulates this 
type of injury, such a piglet controlled cortical impact (CCI) 
model, is critical for the study of TBI outcomes and the 
development of potential therapeutics that are specific for 
a pediatric population (Baker et al., 2019). Compared to the 
rodent brain, the piglet brain has been found to more closely 
mirror the pediatric human brain in terms of brain size, time 
scale of myelination, and total white matter volume, which 
are important factors to consider when a TBI occurs during 
development when the brain is most vulnerable to injury 
(Kinder et al., 2019a). 

To date, there are only a limited number of studies that 
assess TBI pathophysiology utilizing MRI in pig models. T1- 
and T2-weighted sequences are the most commonly used 
MRI sequences to measure lesion volumes in the TBI pig 
model (Duhaime et al., 2003; Grate et al., 2003; Rosenthal et 
al., 2008; Karlsson et al., 2018) and diffusion tensor imaging 
(DTI) and diffusion-weighted imaging (DWI) have been used 
to measure white matter integrity and brain microstructure 
(Conrad and Johnson, 2015). However, there are no pig 
studies that have taken a quantitative statistical approach to 
assessing the longitudinal relationship between MRI observed 
TBI pathology (e.g., lesion volume) and motor function 
changes in a pediatric pig model. Given the heterogeneity 
of TBI, there remains a lack of biomarkers of TBI outcome 
that have consistent prognostic value across the human TBI 
population. Therefore, a major goal of this study is to identify 
TBI outcome biomarkers with high predictive value and clinical 
relevance using a more translational pig TBI model. 

The objective of this study was to utilize advanced statistical 
approaches to identify key MRI parameters that are 
longitudinally associated with changes in motor function in a 
piglet TBI model. In this study, we utilized principal component 
analysis (PCA) on six MRI parameters and 12 gait parameters 
collected in a CCI TBI piglet model to identify parameters 
that explain the most variability of the data. Furthermore, 
this information was used to determine if MRI biomarkers 
can be used to predict motor function impairments via linear 
regression analysis. This study provides an important first step 
in understanding the predictive power of MRI biomarkers and 
motor function outcomes in a pediatric TBI model that more 
closely resembles human TBI patients than traditional rodent 
models.   

Materials and Methods
Animals and CCI surgery
Data that underwent advanced statistical analysis was 
collected as part of a previously published study (Kinder et 
al., 2019b). Briefly, all work was performed in accordance 
with the University of Georgia Institutional Animal Care and 
Use Committee guidelines (AUP: A2015 11-001, approved 
on December 22, 2015). Eighteen commercially bred, male 
piglets were born at the Large Animal Research Unit at the 
University of Georgia. All piglets were castrated for this study. 
It is not expected that pre-pubescent castrated or uncastrated 
males will have differing levels of sex hormones that would 
affect injury responses following TBI. 

Piglets between 4–5 weeks of age underwent TBI induction 
surgery. On the day of surgery, piglets were anesthetized 
using 5% isoflurane and oxygen via surgical mask and then 
maintained under anesthesia during surgical procedures 
using 2.5–3% isoflurane. Vitals (temperature, heart rate, and 
respiration rate) were monitored every 5–10 minutes during 
anesthesia. Piglets were administered Flunixin (2.2 mg/kg) 
and butorphanol (0.2 mg/kg) as a pre-med for analgesia. The 
surgery site was prepared routinely for surgery. The surgical 
site was clipped, sterilized using Betadine and 70% ethanol, 
and covered with a sterile drape. A 4 cm left-sided incision was 
made over the top of the cranium to expose the underlying 
skull. A craniectomy, approximately 20 mm in diameter, was 
performed using an air driller (Brassler, Savannah, GA, USA) at 
the left anterior junction of the coronal and sagittal sutures to 
expose the underlying dura.   

The piglet was moved onto a controlled cortical impact 
(CCI) device (University of Georgia Instrument Design and 
Fabrication Shop; Athens, GA, USA) as previously described 
(Baker et al., 2019; Kinder et al., 2019b). A 15 mm impactor 
tip was positioned over the intact dura to induce injury with 
the following parameters: 4 m/s velocity, 9 mm depth of 
depression, and 400 ms dwell time. Immediately following CCI, 
the surgical site was flushed with sterile saline and re-apposed 
with surgical suture without replanting the bone flap. After 
surgery, piglets were maintained on oxygen until recovered 
and then placed back in their home pens once ambulatory. 
For post-operative analgesia, piglets were administered 
Flunixin (2.2 mg/kg) 12 hours post-surgery and then once daily 
for an additional 4 days. Oxytetracycline (19.8 mg/kg) was 
administered as an antibiotic for 5 days post TBI. Piglets were 
monitored daily for health or signs of abnormal neurological 
behaviors. 

To assess changes over time after TBI, piglets were separated 
into four groups based on sacrifice date: 24 hours (n = 4), 1 
week (n = 4), 4 weeks (n = 4), and 12 weeks (n = 6) post-TBI 
(Additional Figure 1).

Magnetic resonance imaging
Magnetic resonance imaging (MRI) was performed 24 
hours and 12 weeks post-TBI on a clinical 3.0 Tesla whole-
body MR scanner (Siemens MAGNETOM TIM/Trio system, 
Siemens Healthineers, Erlangen, Germany) using a 12-channel 
phased array head coil. During MRI acquisition, pigs were 
maintained under anesthesia using the protocol described 
for CCI induction and positioned in dorsal recumbency. 
Standard multiplanar MR brain imaging sequences were 
performed at the sagittal, coronal, and axial planes including 
T2-weighted (T2W) fast spin echo (FSE), T2-weighted fluid 
attenuated inversion recovery (FLAIR), axial DWI, and DTI. Due 
to acquisition complications, group sizes were as follows: T2-
weighted FSE and FLAIR, n = 5 at 24 hours and 12 weeks post-
TBI; DWI and DTI, n = 6 at 24 hours post-TBI and n = 5 at 12 
weeks post-TBI (Additional Figure 1).

T2W images were used for volumetric assessments such as 
lesion volume, which was defined by pixels with abnormal 
(high or low) signal intensity compared to the same anatomic 
area on the contralateral hemisphere. To calculate lesion 
volume, OsiriX DICOM Viewer (Bernex, Switzerland) was used 
to manually define the lesion on a slice by slice basis. The area 
of each slice was multiplied by the slice thickness (5 mm) to 
obtain the lesion volume of each slice. The slice areas were 
then summed to obtain total lesion volume. T2W images were 
also used to measure midline shift which is defined as the 
maximal horizontal displacement of the septum pellucidum 
in relation to the midline (Jacobs et al., 2011; Sauvigny et al., 
2016). The distance from the septum pellucidum to the outer 
border of the cortex was measured for each hemisphere. The 
midline shift was calculated using the formula: midline shift 
(mm) = (total diameter/2) – contralateral diameter.
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DWI sequences were used to generate apparent diffusion 
coefficient (ADC) maps to measure changes in diffusivity. 
Mean ADC values were calculated with NIH ImageJ software 
at a manually drawn region of interest (ROI) that was 
defined by pixels with abnormal (high or low) signal intensity 
compared to the same anatomic area on the contralateral 
hemisphere. The ROI did not delineate between the lesion 
core and perilesion tissue. All hypointense and hyperintense 
regions were included in the ROI as lesion tissue. A ROI drawn 
in a symmetrical site in the contralateral hemisphere served 
as an internal control. Mean ADC values were obtained 
by calculating the average signal intensity across all slices. 
Normalized ADC value was calculated by dividing the ipsilateral 
ADC value by the contralateral ADC value. All ADC values are 
reported as 10–3 mm2/s. 

DTI sequences were used to generate fractional anisotropy (FA) 
maps to measure changes in white matter integrity. ROIs were 
drawn at the internal capsule (IC) and corpus callosum (CC) on 
one representative slice per animal using NIH ImageJ software 
at the ipsilateral and contralateral side of the injury (Schindelin 
et al., 2015). Normalized FA value was calculated by dividing 
the ipsilateral FA value by the contralateral FA value for both 
the IC and CC.

Gait analysis
Pigs underwent gait assessment at the following time points: 
24 hours (n = 18) and 12 weeks post-TBI (n = 6). Gait was 
collected using a GAITFour® electronic, pressure-sensitive 
mat (CIR Systems Inc., Franklin, NJ, USA) that is 7.01 m in 
length and 0.85 m in width with an active area that is 6.10 m 
in length and 0.61 m in width. In this arrangement, the active 
area is a grid, 48 sensors wide by 480 sensors long, totaling 
23,040 sensors. Prior to gait collection, pigs were trained to 
travel back and forth across the gait mat at a self-selected, 
consistent two-beat gait using food as a positive reward. 
During gait collection, pigs were assessed until 4–5 consistent 
trials were obtained, or up to a maximum of 20 minutes per 
pig on each testing day. For each trial, a minimum of three gait 
cycles with less than 10% variability in velocity were selected, 
and all gait parameters were calculated automatically using 
the GAITFour® software. Age-matched, male normal pigs 
(n = 6) were born at the Large Animal Research Unit at 
the University of Georgia and underwent gait collection 
at identical time points to TBI pigs in order to account for 
changes in gait that are attributed to normal growth. The gait 
parameters assessed are described in Table 1. The following 
parameters are reported as an average in step length, stride 
length, percent swing, percent stance, number of sensors, 
scaled pressures, mean pressure, hind reach, total pressure 
index, and step/stride ratio in left front, right front, left hind, 
and right hind limbs. 

Statistical analysis
PCA is an unsupervised dimension reduction technique that 
generates linear combinations of the original variables by 
exploring sources of variation within the data set. The first 
principal component explains the greatest sources of variation 
and the subsequent PCs explain the greatest sources of 
variation beyond the first PC. In PCA, the first assumption 
is that the data cannot have missing values. The second 
assumption is that the sample size (denoted as n) of data 
should be greater than or equal to the number of parameters 
(denoted as p). The third assumption is that parameters of 
data should be at least moderately correlated with each other. 
PCA was performed using five MRI parameters, normalized 
ADC, normalized IC FA, normalized CC FA, lesion volume, and 
midline shift. PCs for the MRI data are linear combinations 
of those five parameters, written as PCi = ai1 ADC + ai2 ICFA 
+ ai3 CCFA + ai4 lesion volume + ai5 midline shift, where i = 
1, 2, …, 5. When some of the ai’s are equal to zero, PCs are 
linear combinations of one or more parameters out of five 

parameters, and each PC corresponds to a unique linear 
combination. PCA was implemented separately at 24 hours 
and 12 weeks post-TBI.

PCA was also performed using twelve gait parameters listed 
and described in Table 1. Similarly, PCs for the gait data are 
linear combinations of those twelve parameters, written as 
PCi = ai1 Step Length + ai2 Stride Length + ai3 Hind Reach + … + 
ai,12 TPI, where i = 1, 2, …, 12. When some of the ai’s are equal 
to zero, PCs are linear combinations of several parameters 
out of twelve parameters, and each PC corresponds to a 
unique linear combination. PCA was implemented separately 
at 24 hours and 12 weeks post-TBI. Biplots were generated 
to illustrate a coordinate system for PCs for both MRI and 
gait data. Simple linear regression was utilized to determine 
whether MRI parameters are able to predict gait parameters 
with respect to functional changes. P-values ≤ 0.05 were 
considered to be statistically significant. All statistical analysis 
was performed using R (R Core Team, 2013). 

Results
Lesion volume and midline shift explain most of the MRI 
data variability at 24 hours and 12 weeks post-TBI
Representative T2W images 24 hours (Figure 1A) and 12 
weeks (Figure 1B) post-TBI images show distinct brain lesions. 
At 24 hours post-TBI, the midline shifted away from the 
ipsilateral hemisphere (Figure 1C, red line) at the level of the 
septum pellucidum (yellow line), while at 12 weeks post-TBI 
the midline shifted toward the ipsilateral hemisphere (Figure 
1D, blue line). These changes in midline shift are indicative of 
swelling and atrophy at each time point, respectively. At 24 
hours and 12 weeks post-TBI, PCA analysis of lesion volume 
and midline shift from T2W sequences, normalized ADC from 
DWI sequences, and normalized IC and CC FA values from 
DTI sequences was performed. The scree plot of the five PCs 
of MRI data at 24 hours post-TBI using covariance criteria 
showed that PC1 and PC2 explained most of the variability 

Table 1 ｜ Gait parameter definitions

Gait parameter Definition

Spatial parameters
Step length Distance between corresponding successive points of 

heel contact of opposing limbs (i.e., right front and left 
front, right hind and left hind); expressed in cm

Stride length Distance between successive points of heel contact of 
the same hoof (i.e., left front and left front); expressed 
in cm

Hind reach Distance from the heel center of the hind limb to the 
heel center of the previous front limb on the same side 
(i.e., left hind to left front); expressed in cm

Step/stride ratio The ratio between step and stride lengths of the same 
limb

Number of sensors The number of sensors activated by contact of each 
limb

Temporal parameters
Velocity Stride Length divided by stride time, expressed in cm/s
Cadence Frequency of steps/min during a trial
Percent stance Percentage of time during which a limb is in stance 

phase during one stride cycle (stance time/cycle time)
Percent swing Percentage of time during which a limb is in swing phase 

during one stride cycle (swing time/cycle time)
Pressure parameters
Mean pressure Average pressure of all sensors for one limb
Total scaled 
pressure

The sum of peak pressure values recorded from 
each activated sensor by a limb during mat contact, 
represented by the switching levels and reported as a 
scaled pressure from 0–7 for each sensor

Total pressure index 
(TPI)

Percent distribution of weight across all four limbs. Pigs 
typically carry 30% of their weight in each front limb 
and 20% of their weight in each hind limb
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(63.9% and 36%, respectively, Figure 1E). Both PC1 and PC2 
are linear combinations of lesion volume and midline shift 
(Figure 1E). The biplot of PC1 against PC2 indicated that lesion 
volume and midline shift are dominant in explaining most 
of the variability at 24 hours post-TBI (Figure 1F). The scree 
plot of the five PCs of MRI data at 12 weeks post-TBI using 
covariance criteria showed that PC1 and PC2 explained most 
of the variability (69.6% and 29.3%, respectively, Figure 1G). 
Both PC1 and PC2 are linear combinations of lesion volume 
and midline shift (Figure 1G). The biplot of PC1 against PC2 
indicated that lesion volume and midline shift are dominant in 
explaining most of the variability at 12 weeks post-TBI (Figure 
1H). Taken together, these results suggest that lesion volume 
and midline shift are key MRI indicators of injury severity after 
TBI.  

Velocity, cadence, and stride length explain most of the gait 
data variability at 24 hours and 12 weeks post-TBI
Pigs were subjected to gait analysis using a GAITFour® 
electronic, pressure-sensitive mat at 24 hours and 12 weeks 
post-TBI (Figure 2A). Activated sensors on the mat were 
capable of detecting key gait pressure and spatiotemporal 
parameter changes of the left front (blue), left hind (green), 
right front (red), and right hind (black) limbs (Figure 2B, black 
line indicates stride length for the left front limb). The scree 
plot of the first 10 PCs of gait data at 24 hours post-TBI using 
covariance criteria showed that PC1 and PC2 explained most 
of the variability (85.5% and 10.9%, respectively, Figure 2C). 
Only the first 10 PCs are displayed because the percentage 

of explained variances of the last 6 PCs (PC7-PC12) are all 
0%. PC1 is a linear combination of velocity, cadence, and 
stride length, while PC2 is a linear combination of velocity, 
cadence, step length, stride length, percent swing, percent 
stance, and total scaled pressure (Figure 2C). The biplot of 
PC1 against PC2 indicated that velocity, cadence, and stride 
length are dominant in explaining most of the variability at 
24 hours post-TBI (Figure 2D). The Scree Plot of the first 10 
PCs of gait data at 12 weeks post-TBI using covariance criteria 
showed that PC1 and PC2 explained most of the variability 
(91.1% and 4.8%, respectively, Figure 2E). Similarly, only the 
first 10 PCs are displayed because the percentage of explained 
variances of the last 6 PCs (PC7-PC12) are all 0%. PC1 is a 
linear combination of velocity, cadence, stride length, percent 
swing, and percent stance, while PC2 is a linear combination 
of velocity, cadence, step length, stride length, total scaled 
pressure, and hind reach (Figure 2E). The biplot of PC1 against 
PC2 indicated that velocity, cadence, and stride length are 
dominant in explaining most of the variability at 12 weeks 
post-TBI (Figure 2F). Taken together, these results suggest that 
velocity, cadence, and stride length are key gait indicators of 
motor function impairments after TBI. 

Lesion volume and midline shift predict deficits in stride and 
step length
Linear regression analysis was performed to determine if 
MRI parameters predict changes in gait. Combined 24-hour 
and 12-week post-TBI data showed that increases in lesion 
volume resulted in a direct decrease in stride length (Figure 
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Figure 1 ｜ Lesion volume and midline shift explain most of the MRI data 
variability at 24 hours and 12 weeks post-TBI. 
Representative T2-weighted Fast Spin Echo images 24 hours (A) and 12 weeks 
(B) post-TBI images show distinct brain lesions. At 24 hours post-TBI, the 
midline shifted away from the ipsilateral hemisphere (C, red line) at the level 
of the septum pellucidum (C, yellow line), while at 12 weeks post-TBI the 
midline shifted toward the ipsilateral hemisphere (D, blue line). The scree plot 
of the five PCs at 24 hours post-TBI using covariance criteria showed that PC1 
and PC2 explained most of the variability (E). The biplot of PC1 against PC2 of 
indicated that lesion volume and midline shift is dominant in explaining most 
of the variability at 24 hours post-TBI (F). The scree plot of the five PCs at 12 
weeks post-TBI using covariance criteria showed that PC1 and PC2 explained 
most of the variability (G). The biplot of PC1 against PC2 indicated that lesion 
volume and midline shift is dominant in explaining most of the variability 
at 12 weeks post-TBI (H). MRI: Magnetic resonance imaging; PC: principal 
component; TBI: traumatic brain injury.
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Figure 2 ｜ Velocity, cadence, and stride length explain most of the gait 
data variability at 24 hours and 12 weeks post-TBI. 
Pigs were subjected to gait analysis using a GAITFour® electronic, pressure-
sensitive mat at 24 hours and 12 weeks post-TBI (A). Activated sensors on 
the mat were capable of detecting key gait pressure and spatiotemporal 
parameter changes of the left front (blue), left hind (green), right front (red), 
and right hind (black) limbs (B). The scree plot of the first 10 PCs of gait data 
at 24 hours post-TBI using covariance criteria showed that PC1 and PC2 
explained most of the variability (C). The biplot of PC1 against PC2 indicated 
that velocity, cadence, and stride length are dominant in explaining most 
of the variability at 24 hours post-TBI (D). The scree plot of the first 10 PCs 
of gait data at 12 weeks post-TBI using covariance criteria showed that PC1 
and PC2 explained most of the variability (E). The biplot of PC1 against PC2 
indicated that velocity, cadence, and stride length are dominant in explaining 
most of the variability at 12 weeks post-TBI (F). PC: Principal component; PCA: 
principal component analysis; TBI: Traumatic brain injury.
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3A) and step length (Figure 3B). Lesion volume was found to 
be significant in predicting stride length (P = 0.03) and step 
length (P = 0.02; Table 2). Similarly, an increase in midline 
shift resulted in a direct decrease in stride length (Figure 3C) 
and step length (Figure 3D). Midline shift was found to be 
significant in predicting stride length (P = 0.03) and step length 
(P = 0.03; Table 2). Therefore, these results suggest that 
lesion size and midline shift can be used as key indications of 
functional deficits in a pig TBI model.
 
Discussion
Multiparametric neuroimaging is becoming increasingly 
more important for identifying and diagnosing TBI outcomes 
(Sigmund et al., 2007; Chastain et al., 2009). However, the 
identification of key MRI biomarkers with potent prognostic 
value has proven to be challenging given the heterogeneous 
nature of TBI and the diversity of the patient population. 
Multivariate projection models may provide a mathematical 
framework to identify linear combinations of MRI biomarkers 
with acceptable sensitivity and specificity with regard to 
predicting outcome (Irimia et al., 2012). In this study, we 
performed PCA in order to explore the largest sources of 
variation within MRI datasets and identify MRI parameters 
that closely covary. We found that linear combinations of 
lesion size and midline shift explain most of the variability of 
the data at both 24 hours and 12 weeks post-TBI. In addition, 
PCA was utilized to explore the largest sources of variation 
within gait datasets and identify gait parameters that closely 
covary. Linear combinations of velocity, cadence, and stride 
length were found to explain most of the gait data variability 
at 24 hours and 12 weeks post-TBI. Linear regression of MRI 
and gait parameters combined at 24 hours and 12 weeks post-
TBI revealed both lesion size and midline shift were negatively 
correlated with stride length and step length. Taken together, 
in this study we showed that advanced statistical approaches 
can be used to identify key, clinically relevant MRI biomarkers 
and predict functional outcomes using MRI metrics in a large 
animal piglet TBI model that closely recapitulates human TBI. 

Injury responses following TBI are complex and heterogeneous 
which creates a challenging landscape for the development of 
effective diagnostic and prognostic tools (Ziebell and Morganti-
Kossmann, 2010; Allen, 2016). Therefore, the identification 
and use of potent TBI biomarkers may aid in early diagnosis, 
guide treatment selections, and provide critical insight of 
long-term prognosis (Martinez and Stabenfeldt, 2019). The 
use of machine learning and multivariate statistical models 
may be well suited to identify potential TBI biomarkers by 
analyzing large data sets to reveal prospective markers of 
interest (Irimia et al., 2012; Mateos-Perez et al., 2018). 
In this study, we found that both PC1 and PC2 are linear 
combinations of lesion volume and midline shift at 24 hours 
and 12 weeks post-TBI which suggests that lesion volume and 
midline shift are key contributors to injury severity at both 
acute and chronic timepoints in this model. MRI assessments 
of lesion volume using conventional approaches such as T2W 
and FLAIR have been found to correspond to injury severity in 
both pre-clinical models and human TBI patients (Sigmund et 
al., 2007; Immonen et al., 2009). Increased lesion volume has 
been associated with poorer Glasgow Outcome Scale (GOS) 
scores in adult TBI patients and GOS-Extended Pediatrics 
(GOS-E Peds) scores in pediatric TBI patients (Chastain et 
al., 2009; Smitherman et al., 2016). Similarly, increased 
degree of midline shift in patients with head injuries by CT 
scan corresponded to injury severity, and a midline shift > 
5 mm was predictive of reduced favorable outcomes and 
lower quality of life (Chiewvit et al., 2010; Swanson et al., 
2012; Puffer et al., 2018). However, predictions of functional 
outcomes may be enhanced by using multivariate statistical 
classification methods that identify linear combinations of MRI 
metrics. The results from this study provide an important first 

step in identifying relevant MRI biomarkers of injury severity 
in a piglet model of TBI that can be used in future studies 
to predict a broad range of functional outcomes such as 
neurologic function, behavior, cognition and motor function. 

Neural damage following TBI can lead to the development 
of balance instability, decreased motor control, and gait 
abnormalities (Caeyenberghs et al., 2009; Katz-Leurer et 
al., 2009a, b). These impairments can lead to changes in a 
multitude of spatiotemporal gait parameters such as velocity, 
cadence, step length, stride length, stance percent, and swing 
percent (Williams et al., 2009, 2010). Currently, it is not well 
studied if a single parameter, or combination of parameters, 
might be more sensitive to injury and thus more reflective of 
TBI outcomes. In this study, we found that velocity, cadence, 
and stride length were dominant in explaining most of the 
variability at 24 hours and 12 weeks post-TBI. A number of 
clinical studies have observed significant reductions in velocity 
and cadence following TBI that can persist for months to even 
years in both adult and pediatric populations (Kuhtz-Buschbeck 
et al., 2003; Beretta et al., 2009; Williams et al., 2009; Martini 
et al., 2011). Consequently, as a result of a decreased velocity 
and motor stability, stride length may also become reduced in 
TBI patients (Kuhtz-Buschbeck et al., 2003; Chou et al., 2004). 
To our knowledge, this is the first study in a piglet TBI model 
to provide important information regarding potential gait 
biomarkers for injury using PCA. These results can be used in 
future studies to better predict TBI outcomes. 

TBI severity has been implicated to play an important role in 
motor function outcomes, especially in children who sustain a 
TBI at a young age (Gagnon et al., 2004). Increasing lesion size 
is well established to reflect TBI severity (Washington et al., 
2012; Baker et al., 2019). In this study, simple linear regression 
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Figure 3 ｜ Lesion volume and midline shift predict deficits in stride and 
step length. 
Linear regression demonstrated that increases in lesion volume resulted in a 
direct decrease in stride length (A) and step length (B; P < 0.05). Increases in 
midline shift resulted in a direct decrease in stride length (C) and step length 
(D; P < 0.05). 

Table 2 ｜ Linear regression demonstrates that lesion volume predicts 
stride length and step length. Midline shift also predicts stride length and 
step length

Model of parameters P-value

Stride length = 96.14 – 8.7 × lesion volume 0.0306
Step length = 48.68 – 4.52 × lesion volume 0.0219
Stride length = 68.79 – 4.45 × midline shift 0.0341
Step length = 34.5 – 2.26 × midline shift 0.0305

P-value of < 0.05 indicates significance.
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was performed to examine the relationship between lesion 
size and different spatiotemporal gait parameters. We found 
that increasing lesion size is predictive of decreases in stride 
and step length in this model. Similarly, increasing injury 
severity and lesion size have been found to be associated 
with motor function impairments in other pre-clinical rodent 
(Beaumont et al., 1999; Tsenter et al., 2008) and pig (Baker 
et al., 2019) TBI models. In pediatric TBI patients, increases 
in TBI severity were found to have a negative impact on 
motor performance and clinical measures (Jaffe et al., 1993; 
Kuhtz-Buschbeck et al., 2003). In addition, linear regression 
analysis in this study revealed that increases in midline shift 
are also predictive of decreases in step and stride length in 
this model. In human TBI patients, the presence of a midline 
shift > 5 mm was found to be associated with greater need 
of assistance with ambulation and worse GOS-E outcomes, 
but no direct comparisons to spatiotemporal gait parameters 
have been investigated (Englander et al., 2003; Puffer et al., 
2018). The results from this study have identified an exciting 
and clinically translatable predictive relationship between 
the MRI parameters lesion size and midline shift and the gait 
spatiotemporal parameters stride length and step length. This 
use of this approach may aid in more precise predictions of 
motor impairments following TBI. 

While this study shows the potential of PCA in identifying 
possible MRI biomarkers, there are a few limitations to 
our findings. First, the study sample size is limited and the 
analysis focused on only two timepoints after injury. The 
identification of prognostic measures using multivariate 
statistical models are more robust in TBI samples with larger 
sample sizes that enable the generation of more refined 
principal components. In addition, a longitudinal study with 
more intermediate and later gait and MRI time points would 
enable better characterization of dynamic changes and 
improved identification of potential TBI biomarkers. In this 
study, given the small sample size, data from 24 hours and 
12 weeks post-TBI were combined to assess the relationship 
between MRI and gait outcomes. This prevented the use of 
acute MRI data to predict long-term functional outcomes. 
In the future, a study with a larger sample size will allow for 
enhanced identification of MRI biomarkers at early timepoints 
that predict unfavorable motor function outcomes long-term. 
Furthermore, inherent differences in brain cytoarchitecture 
and vasculature between individuals are a major factor of the 
heterogeneous responses following TBI (i.e., differences in 
brain collateralization). In future studies with larger cohorts, 
predicting functional outcomes may be more accurate 
by grouping animals with unique injury types, such as 
hemorrhage volume or necrosis volume.  

Conclusions
In this study we have utilized advanced statistical approaches 
to identify potential MRI and functional biomarkers in a piglet 
TBI model. Principal component analysis revealed that the 
MRI parameters lesion volume and midline shift and the 
gait parameters velocity, cadence, and stride length may 
serve as potential biomarkers that are most reflective of TBI 
outcomes. Lesion volume and midline shift were also found 
to be significantly correlated with changes in stride and step 
length which lends support to the clinical utilization of MRI 
biomarkers to predict motor function outcomes. In the future, 
this model can be used to further explore the prognostic value 
of MRI biomarkers in predicting other functional outcomes 
such as behavior and cognition.  
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Additional Figure 1 Experimental design. 

Eighteen pigs underwent TBI surgery on day 0. At 24 hours post-TBI, gait collection was performed on all 18 pigs and MRI was performed on a 

subset of 6 pigs. 4 pigs were sacrificed at 24 hours, 1 week, and 4 weeks post-TBI. At 12 weeks post-TBI, gait collection and MRI were performed 

on 6 pigs, and then all pigs were sacrificed. MRI was performed on the same 6 pigs at 24 hours and 12 weeks post-TBI. *At 24 hours post-TBI, due 

to acquisition complications, T2-weighted (T2W) fast spin echo (FSE)/FLAIR was only acquired on 5 pigs (sequences not acquired for 1 pig). 

DWI/DTI was acquired on all 6 pigs. **At 12 weeks post-TBI, due to acquisition complications, T2 FSE/FLAIR was only acquired on 5 pigs 

(sequences not acquired for 1 pig) and diffusion-weighted imaging (DWI)/diffusion tensor imaging (DTI) was only acquired on 5 pigs (sequences 

not acquired for 1 pig). MRI: Magnetic resonance imaging; TBI: traumatic brain injury. 

 


