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Abstract

While whole‐genome and exome sequencing have transformed our collective

understanding of genetics' role in disease pathogenesis, there are certain conditions

and populations for whom DNA‐level data fails to identify the underlying genetic

etiology. Specifically, patients of non‐White race and non‐European ancestry are

disproportionately affected by “variants of unknown/uncertain significance” (VUS),

limiting the scope of precision medicine for minority patients and perpetuating

health disparities. VUS often include deep intronic and splicing variants which are

difficult to interpret from DNA data alone. RNA analysis can illuminate the

consequences of VUS, thereby allowing for their reclassification as pathogenic

versus benign. Here we review the critical role transcriptome analysis plays in

clarifying VUS in both neoplastic and non‐neoplastic diseases.
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1 | INTRODUCTION

Next‐generation sequencing (NGS) technology has revolutionized

and facilitated the genetic diagnosis of disease. Clinicians and

researchers can now routinely sequence at a genome‐wide level

rather than performing the tedious process of sequencing and

interrogating one gene at a time. However, with this scientific

windfall a new problem emerges: the challenge of identifying

pathogenic variants from millions of benign variants. Some variants

can be excluded with confidence upon the basis of allele frequencies

or gene pathways. However, there are many variants of unknown/

uncertain significance (VUS) for which it is not as evident whether a

variant is benign or pathogenic. VUS can take a significant

psychological and emotional toll on patients and their families and

may lead to clinical mismanagement. Importantly, VUS affect

minority populations disproportionately (Culver et al., 2013; Gelfman

et al., 2017; Maurano et al., 2012; Park et al., 2018; Qian et al., 2021;

Vaz‐Drago et al., 2017).

VUS have served as the subject of entire special issues of

this journal, Human Mutation (e.g., 2008) (Tavtigian et al., 2008). The

precise meaning of VUS depends upon context and connotation. The

American College of Medical Genetics (ACMG) (Richards et al., 2018),

the Association for Molecular Pathology (AMP) (M. M. Li, et al., 2017),

and the International Agency for Research on Cancer (IARC) (Plon

et al., 2008) have delineated definitions and guidelines for the

interpretation of VUS. At a simple level, the sheer numbers of

intronic, synonymous, and other “deep” variants contribute to their

overall predictive value as a variant class. However, in clinical testing,
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entire variant classes (such as synonymous variants) are presumed to

be likely benign from the outset, ensuring that VUS are less

frequently reported. This is despite the fact that important disease‐

causing variants can fall into these neglected, “opaque” areas of

variant interpretation.

There is an overwhelming need for better tools to elucidate the

functional consequences of rare molecular events and, thereby,

illuminate how genetic variation impacts biology and disease

pathogenesis. Analysis of DNA‐level information alone in the context

of clinical phenotypes is unlikely to provide clarity given rare events'

limited sample size and lack of statistical power. Compared to

genomic analysis—which outlines the repertoire of functions encoded

in DNA that a cell could perform—transcriptomic analysis enables a

deeper understanding of how a cell is actually functioning. In other

words, RNA expression profiling provides critical insight into how

genotype translates into phenotype (Mantione et al., 2014).

Here, we will highlight how gene expression profiling provides

functional insight into variants beyond the initial 2 base pairs (bps) of

a splice junction. We will review the emerging role of RNA

sequencing as a tool to differentiate VUS as pathogenic versus

benign, especially in populations of diverse races, ethnicities, and

genetic ancestries, as individuals of non‐European ancestry have

significantly higher rates of VUS (Petrovski & Goldstein, 2016).

Finally, we will explore how transcriptomic analysis can be translated

into clinical diagnostics for cancer (i.e., detection of causative

variants, both germline and somatic) and how it can be applied to

address cancer disparities.

1.1 | Leveraging the transcriptome for molecular
diagnoses

The term “RNA‐seq” was coined in 2008. Around the same time,

several landmark studies promoted the potential diagnostic utility of

RNA sequencing data using short‐read NGS. One major RNA‐focused

effort was the ENCODE Project Consortium, which stated: “to

understand the human genome… and the ways in which its defects can

give rise to disease, we need a more transparent view of the information

it encodes” (Birney et al., 2007). An understanding of human disease

necessitates an understanding of the link between genomic variation

and transcription; this was also the goal of the Genotype‐Tissue

Expression (GTEx) project started in 2010 (GTex Consortium, 2013).

Analogous to the 1000 Genomes Project, which aimed to provide a

catalog of common variation, GTEx aimed to catalog genotype and

gene‐expression correlations across dozens of tissues and thousands

of individuals.

Addressing VUS necessitates an improved ability to predict the

consequences of genetic variation on transcription. RNA analysis

allows for the appreciation of phenomena like differential expression,

allele‐specific expression (ASE), alternative splicing, isoform switch-

ing, and many other events that would not be readily apparent in

DNA data. Current approaches are largely limited to the annotation

of variant classes that are both rare and predictable for transcript

disruption, such as nonsense mutations that lead to loss of transcript

expression. Compared to rare variants, more common variant classes

have higher prevalence but lower accuracy when it comes to

predicting gene expression consequences.

Germline variants and somatic mutations can impact RNA species

in a variety of ways. They are often grouped into categories according

to functional impact (i.e., High, Moderate, Low/Modifier) using

annotation ontology software such as ANNOVAR (Wang et al., 2010;

Yang & Wang, 2015) and SnpEff (Cingolani et al., 2012) (Table 1).

Variants falling into the High functional impact category include

nonsense variants that introduce premature stop‐codons, start‐ and

stop‐loss mutations, and 5‐prime (5′) untranslated region (UTR)

premature start codons. Many of these lead to lowered transcription

levels or full loss of transcripts through nonsense‐mediated decay

(NMD) (Chakravorty & Hegde, 2018). Another relatively rare variant

class includes splice‐site disrupting variants within the exon‐intron

boundaries' +/−2bp region. These variant classes can impact splicing

and result in exon skipping, exon usage, mutually exclusive/inclusive

exons, or intron retention (Woolfe et al., 2010). Variants within the

Moderate category are typically those predicted to impact amino

acid composition (missense), including non‐synonymous variants and

in‐frame insertions/deletions.

The remainder of variants are frequently found on a per‐genome

basis and are often pragmatically filtered out due to their low

predictive value. These include synonymous variants, regulatory

region variants, 3‐prime (3′) UTR variants, 5′ UTR variants, and

intronic variants (e.g., splice region variants proximal to exon

boundaries). Importantly, as shown in Figure 1A, events beyond the

2bp exon donor/acceptor window can still impact function. Variants

annotated as missense and synonymous can alter splicing, exposing

so‐called cryptic splice‐sites and splice‐enhancing or silencing

elements (Woolfe et al., 2010). Variants deep within the intron—as

far out as 18bp—can impact spliceosome binding at a key motif

referred to as the “lariat junction.”

There are numerous examples of disease driven by these “opaquer”

variants. These include cryptic splice‐sites (e.g., NM_000518.5:c.316‐

146T>G in the hemoglobin subunit beta gene, HBB, causing

β‐thalassemia), UTR variants (e.g., NM_000166.6:c.−103C>T in the

gap junction protein beta 1 gene, GJB1, causing Charcot‐Marie‐Tooth

neuropathy), and other deep intronic events (e.g., NM_033380.3:c.385‐

719G>A in collagen type IV alpha 5 chain, COL4A5, causing Alport

Syndrome) (Dobkin et al., 1983; King et al., 2002). The mechanism of

impact is frequently evident in transcriptome data.

Novel RNA functions/phenomena have been elucidated extend-

ing far beyond the traditional protein‐coding role described by the

“central dogma.” We are also beginning to better understand how

messenger RNA (mRNA) can be processed—chiefly by alternative

splicing, RNA editing, and crosstalk between the two processes – to

create the great variety that characterizes the human transcriptome

(Tang et al., 2020). Examples of unique phenomena into which gene

expression data provides insight, and which have significant disease

implications, include splicing mutations, deep intronic truncating

mutations leading to NMD and loss of mRNA, and ASE.
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TABLE 1 Selected RNA‐seq software and databases.

Selected tools
Software Purpose Source

ANNOVAR Variant annotation and functional effect prediction https://github.com/WGLab/doc‐ANNOVAR/

SnpEff Variant annotation and functional effect prediction http://pcingola.github.io/SnpEff/

DeepSplice Deep learning‐based splice junction sequence classifier https://github.com/zhangyimc/DeepSplice/

SQUIRLS Interpretation of splicing variants outside of the canonical splice sites https://github.com/TheJacksonLaboratory/
Squirls/

SpliceAI Deep learning‐based splice variant identification https://github.com/Illumina/SpliceAI/

LeafCutterMD Outlier splicing detection https://davidaknowles.github.io/leafcutter/

FRASER Detection of rare splicing events https://github.com/c‐mertes/FRASER/

SpliceSeq Analysis/visualization of alternative splicing and functional impacts https://github.com/MD‐Anderson‐
Bioinformatics/SpliceSeq/

SpliceV Analysis/visualization of linear and circRNA splicing, expression, and
regulation

https://github.com/flemingtonlab/SpliceV/

STAR RNA‐seq aligner with support for splice‐junction detection https://github.com/alexdobin/STAR/

Cufflinks/cuffdiff2 Transcriptome assembly and differential expression analysis for
RNA‐seq data

http://cole‐trapnell‐lab.github.io/cufflinks/

DiffSplice Detection of differential splicing events from RNA‐seq data http://www.netlab.uky.edu/p/bioinfo/
DiffSplice/

DEXSeq Inference of differential exon usage from RNA‐seq data https://bioconductor.org/packages/release/
bioc/html/DEXSeq.html/

edgeR Differential expression analysis of RNA‐seq expression profiles https://bioconductor.org/packages/release/
bioc/html/edgeR.html/

JunctionSeq Detection/visualization of differential exon and splice juntion usage from
RNA‐seq data

https://github.com/hartleys/JunctionSeq/

limma Differential expression analysis of microarray data https://bioconductor.org/packages/release/

bioc/html/limma.html/

dSpliceType Detection of differential splicing and expression events from RNA‐seq data http://dsplicetype.sourceforge.net/

MAJIQ/Voila Detection, quantification, and visualization of local splicing variations from

RNA‐seq data

https://majiq.biociphers.org/

rMATS Detection of differential alternative splicing events from RNA‐seq data http://rnaseq‐mats.sourceforge.net/

MISO Quantification of expression of alternatively spliced genes and
identification of differentially regulated isoforms or exons from
RNA‐seq data

http://hollywood.mit.edu/burgelab/miso/

SUPPA/SUPPA2 Differential splicing analysis https://github.com/comprna/SUPPA/

Salmon RNA‐seq expression quantification https://combine‐lab.github.io/salmon/

DESeq2 RNA‐seq differential gene expression analysis based on the negative
binomial distribution

https://bioconductor.org/packages/release/
bioc/html/DESeq2.html

Kallisto RNA‐seq expression quantification based on pseudoalignment https://pachterlab.github.io/kallisto/about/

UclncR Detection of lncRNAs from RNA‐seq data https://bioinformaticstools.mayo.edu/

research/uclncr‐pipeline/

miRDeep2 Identification of novel and known miRNAs in deep sequencing data https://github.com/rajewsky‐lab/mirdeep2/

CAP‐miRSeq Analysis of miRNA‐seq data https://bioinformaticstools.mayo.edu/

research/cap‐mirseq/

iMir Analysis of small ncRNA data https://tools4mirs.org/software/isomirs_

identification/imir/
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1.2 | Aberrant splicing mutations beyond the
canonical donor/acceptor window

Functionally, splicing occurs via a conglomerate of proteins and

small nuclear RNAs called the spliceosome, forming complementary

RNA‐RNA complexes with target RNAs (Anna & Monika, 2018). The

spliceosome catalyzes the splicing of pre‐mRNA into mRNA and circular

lariat RNAs (Talhouarne & Gall, 2018). Variants disrupting RNA splicing

can occur throughout a given gene and, without RNA‐based functional

evidence, can be annotated into less‐obvious categories including

synonymous, intronic, and UTR variants. The spliceosome catalyzes the

splicing of pre‐mRNA into mRNA and circular lariat RNAs, the latter of

which are destroyed (Talhouarne & Gall, 2018). Variants at the canonical

boundary motifs between exons and introns—that is, GT (at the 5′ end)

and AG (at the 3′ end)—are generally prioritized but, as shown in

Figure 1a, variants upstream and downstream can disrupt function at a

lower certainty/frequency (Anna & Monika, 2018). Adding to this

mechanistic complexity is the existence of a variety of spliceosomes

TABLE 1 (Continued)

Selected tools
Software Purpose Source

piPipes Analysis of piRNA and transposons via small RNA‐seq, RNA‐seq,
degradome‐ and CAGE‐seq, ChIP‐seq, and genomic DNA sequencing

https://github.com/bowhan/piPipes/

UEA sRNA

workbench

Analysis of smallRNA data https://github.com/sRNAworkbenchuea/UEA_
sRNA_Workbench/

omiRas Differential expression analysis of miRNAs derived from small RNA‐
seq data

http://tools.genxpro.net/omiras/

sRNAtoolbox Analysis of smallRNA data https://arn.ugr.es/srnatoolbox/

FlaiMapper Annotation of small ncRNA‐derived fragments https://github.com/yhoogstrate/flaimapper

tDRMapper Mapping, naming, and quantification of tRNA‐derived RNAs https://github.com/sararselitsky/tDRmapper

UROBORUS Identification of circRNA from total RNA‐seq data https://github.com/WGLab/UROBORUS

PredCircRNA Classification of circular RNA from other long noncoding RNA https://github.com/xypan1232/PredcircRNA

find_circ Analysis of circular RNAs https://github.com/marvin‐jens/find_circ

CircExplorer Annotation and analysis of circRNA https://github.com/YangLab/CIRCexplorer

CIRI De novo circular RNA identification https://bio.tools/CIRI‐full

iSeeRNA Identification of lincRNA transcripts from RNA‐seq data https://sunlab.cpy.cuhk.edu.hk/iSeeRNA/
webserver.html

Sebnif Identification of novel lincRNAs https://sunlab.cpy.cuhk.edu.hk/sebnif/

webserver/

LncRNA2Function Functional investigation of lncRNAs from RNA‐seq data http://mlg.hit.edu.cn/lncrna2function

Database

dbscSNV Database of SNVs within splicing consensus regions and their functional
annotations

http://www.liulab.science/dbscsnv.html

ValidSpliceMut Database of validated splicing mutations allowing for prediction/
exploration of user data

https://validsplicemut.cytognomix.com/

ClinVar Database of human variation and associated phenotypes https://www.ncbi.nlm.nih.gov/clinvar/

gnomAD Database of aggregated/harmonized, summary‐level exome and genome
sequencing data

https://gnomad.broadinstitute.org/

RNAcentral Database of noncoding RNA sequences https://rnacentral.org/

SpliceDB Database of canonical and noncanonical mammalian splice sites http://www.softberry.com/spldb/
SpliceDB.html

ORNA‐seq Ontology for annotation of RNA‐seq data https://github.com/safisher/oRNA‐seq

GTEX Database of tissue‐specific gene expression and regulation https://gtexportal.org/home/

miREV Database of small RNA‐seq data from extracellular vesicle enriched
samples

https://www.physio.wzw.tum.de/mirev/
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(“major” and “minor”) as well as noncanonical—aka “cryptic” or

“pseudo”—splice site sequences (e.g., GC‐AG and AT‐AC). The presence

of cis‐acting regulatory elements (i.e., splicing enhancers vs. suppressors)

and the physical structures of a branch site and polypyrimidine tract

(sequences that bind spliceosome proteins) influence which splice site

ends up being used (Anna & Monika, 2018).

To minimize false‐positive rates, candidate variant lists derived

from DNA sequencing typically only take into consideration canonical

changes to boundary motifs (as mentioned earlier: 5′‐GT and 3′‐AG) or

variants that lie within 100 base pairs of canonical splice sites (i.e., not

deep intronic variants). This approach is pragmatic, as these variants are

both rare and highly‐penetrant, allowing for overall high precision (or

positive predictive value). Without additional functional data, the large

number of variants existing further down‐ or upstream would lead to

low overall precision. However, evidence is mounting in support of the

fact that deep‐intronic, noncanonical splicing variants can drive disease

pathology (Blakes et al., 2022; Koster et al., 2021).

RNA‐seq data can provide a direct functional measure of splicing,

allowing for fewer variants (with higher inherent accuracy and

precision) to be considered. Furthermore, it provides a direct measure

of spliced events. As shown in Figure 1b, there are at least 7 classes

of splicing events including: (1) exon skipping, (2) mutually‐exclusive

exons (i.e., a coordinated set of splicing events where, as a result, only

one of two exons is retained), (3) exon scrambling, (4) intron

retention, (5) alternative promoters and terminators, and (6, 7)

alternative donor and acceptor sites (aka alternative 5′ and 3′ splice

F IGURE 1 Splice site motifs and variants. (a) A schematic of two exons separated by an intron in pre‐mRNA. Shown above the pre‐mRNA
are the corresponding, relative‐weighted DNA nucleotide motifs at splicing donor and acceptor sites. Though the canonical/consensus boundary
motifs are GT (or GU, in RNA, after the 3′ end of exon #1) and AG (before the 5′ end of exon #2), these are probabilistic. Other boundary motifs
exist and positions up/downstream of the motifs are also important for splicing. RNA‐seq data can help isolate functionally relevant, potentially
pathogenic splicing variants. Canonical boundary motifs are demarcated with dashed boxes. (b) Depicted are schematics of seven representative
types of splicing mutations, their mechanisms in pre‐mRNA, and their potential consequences in mature mRNA. mRNA, messenger RNA. Figure
created with BioRender.com
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sites). We have used the phrasing “at least” here because there is no

true consensus as to the number of splicing events possible and most

bioinformatic tools do not define/detect all seven of these events

(Halperin et al., 2021; Shen et al., 2014; Wang et al., 2015).

Transcriptome data also facilitates consideration of other, typically

filtered‐out variants including synonymous and UTR variants (Chen &

Weiss, 2015; Pohl et al., 2013; Shi et al., 2018).

The emergence of RNA‐seq in conjunction with germline DNA

sequencing spurred the optimization, development, and training of

new bioinformatic tools for splice‐site prediction and detection.

Splice‐site prediction focuses on using advanced algorithms and

artificial intelligence (AI) methods to predict whether a variant

will impact splicing from DNA data alone. Pragmatically, these

approaches have higher utility when RNA‐seq data is also available,

as the combined analysis reduces the overall search space. Splice

variant prediction tools typically employ one of two strategies:

adaptive models or random forest analysis. The essential difference

between these two methods is whether one uses large databases

from which nonpathogenic versus pathogenic splice variants can be

trained. Methods like those employed by Liu et al. (2016) utilize

random forests to generate probability scores that can be used to

estimate the potential of a 3–12bp window within the lariat RNA

junction. Super Quick Information‐content Random‐forest Learning

of Splice variants (SQUIRLS) is a recently‐published algorithm

specializing in the interpretation of splicing mutations outside of

canonical splice sites (Danis et al., 2021) (Table 1). DeepSplice is an

example of a tool that utilizes deep convolutional neural networks,

as well as paired events to reduce false positives (Zhang et al., 2018)

(Table 1). SpliceAI uses a deep neural network to model mRNA

splicing from noncoding sites, yielding a 10% rate of pathogenic

variant discovery in neurodevelopmental disorders (Jaganathan

et al., 2019; Sanders et al., 2020) (Table 1). These are just

a few emerging algorithms and, in practice, databases serve as

vehicles for querying calculated predictive scores, such as with

dbscSNV (a database of SNVs within splicing consensus regions

and their functional annotations) (Jian et al., 2014) (Table 1).

ValidSpliceMut is a database of validated splicing mutations

that allows users to predict and explore splicing variants (Mucaki

et al., 2020) (Table 1).

Other informatic algorithms directly utilize RNA‐seq data in their

analysis, such as LeafCutterMD (Jenkinson et al., 2020) and FRASER

(Find RAre Splicing Events in RNA‐seq) (Mertes et al., 2021) (Table 1).

SpliceSeq is an example of a tool that utilizes “splice graph” models

(Ryan et al., 2012) (Table 1). Tools like SpliceV facilitate discovery and

visualization of splicing events (Ungerleider & Flemington, 2019)

(Table 1). Underlying these approaches lies layers of additional

nuance with variation in alignment strategies (such as variant‐aware

aligners like STAR) and assembly (Hong et al., 2018). Other RNA‐seq

bioinformatic tools that can aid RNA splicing analysis include

Cufflinks/cuffdiff2, DiffSplice, DEXSeq, edgeR, JunctionSeq, limma,

dSpliceType, MAJIQ/Voila, rMATS, MISO, SUPPA/SUPPA2, Salmon,

Kallisto, and DESeq2 (Halperin et al., 2021; Mehmood et al., 2020;

Muller et al., 2021) (Table 1).

As methods rapidly evolve, implemented approaches vary

substantially across and within labs, adversely impacting database

resources. One useful metric when it comes to assessing alternative

splicing events and harmonizing data is “PSI” or percent spliced in;

also known as the exon‐inclusion ratio, PSI indicates how often a

given exon occurs in all isoforms of the gene that contains said exon

(Tanner et al., 2021). One recently published study found that a

standardized RNA diagnostic protocol was capable of reclassifying

75% of putative splicing variants (Bournazos et al., 2022).

It is worth noting that such splicing analysis has both diagnostic

and therapeutic utility. For instance, tumors with identified splicing

variants could be targeted with therapies that inhibit the spliceo-

some, splicing regulatory proteins, or aberrant splicing products

(Lee & Abdel‐Wahab, 2016; Scotti & Swanson, 2016).

1.3 | Indirect insights from allele‐specific
expression and nonsense‐mediated decay

Another indirect phenomenon into which RNA‐seq can provide insight

(and which DNA‐only analysis cannot appreciate) is ASE. The initial

definition of ASE was a purely germline one: preferential expression of

one parental allele in a heterozygous individual (Shao et al., 2019). The

definition of ASE has since expanded to encompass somatic events.

Fundamentally with RNA‐seq, ASE requires heterozygous proxy

variants, often single‐nucleotide polymorphism (SNPs), that facilitate

phasing (or at least quantification) of the relative expression between

maternally and paternally inherited chromosomes (Figure 2). These

proxy‐SNPs include common and rare synonymous, UTR, and

missense variants. With ASE, one often infers the loss of a pathogenic

allele by monogenic expression of the wild‐type allele. Processes such

as NMD will actively remove transcripts containing pathogenic

mutations. NMD is the process whereby a trimeric complex of

proteins degrades mRNA that would otherwise result in potentially‐

pathogenic truncated proteins; it has been posited that NMD also

plays a role in the regulation of normal mRNA expression, as well as

regulation of alternative splicing via degradation of splice variants with

premature termination codons (Brogna & Wen, 2009).

Detection of ASE can lead to discoveries of VUS and cancer‐

related genes. One common mechanism in the pathogenesis of cancer

is a nonsense, somatic mutation in a tumor suppressor that leads to

NMD and, by means of haploinsufficiency or dominant‐negative

effects, loss of function. A study in individuals with hereditary

pancreatic cancer identified a heterozygous SNP (rs144848) in the

gene BRCA2 DNA repair associated (BRCA2) that displayed ASE in

RNA. The mechanism underlying this VUS was determined to be a

truncating mutation leading to NMD (Tan et al., 2008).

One key historical example of ASE involves the measure of

X‐chromosome inactivation or “skewing” (a physiological process normal

in females) and genomic imprinting to gain insight into the preferential

selection of variants along the X‐chromosome (Shao et al., 2019). In

genetic females, ASE also reflects the loss of transcript expression from

one allele due to X‐inactivation, an important methylation‐driven “dosage
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compensation mechanism” (Shvetsova et al., 2019). Historically,

X‐skewing has been detected using the human androgen receptor

(HUMARA) assay, which takes advantage of differential methylation at

the androgen receptor locus. However, RNA‐seq along expressed

X‐chromosome genes provides additional insights. One can better

observe skewing directionality (e.g., 95% skewing in X and preferential

expression of wild‐type alleles) (Szelinger et al., 2014).

A specific, translational example of how consideration of ASE in

RNA‐seq data can lead to a molecular diagnosis is that of a candidate

variant within the X‐linked gene TATA‐box binding protein associ-

ated factor 1 gene (TAF1) in a male pediatric patient. Our group

leveraged RNA‐seq data for the boy's healthy mother, which showed

extreme X‐skewing towards the protective wild‐type allele and away

from our candidate VUS (Hurst et al., 2018). In other words, RNA‐seq

was used to evaluate a model whereby X‐skewing protected the

mother. Further sequencing showed that the de novo event was

founded within the mother and was likely selected for, given the

boy's parents' history of unsuccessful pregnancies. This example has

generalizability as it is relevant to other X‐linked disorders, including

Alport, Charcot‐Marie‐Tooth, Fabry, Fanconi, Fragile X, Hunter, Rett,

and Wiskott‐Aldrich syndromes (Migeon, 2020).

1.4 | Outlier analysis as a solution to power
problems

Case–control studies are feasible for common variants but are far

more difficult for rare VUS where the controls overwhelmingly

F IGURE 2 A hypothetical variant of unknown significance (VUS) leads to nonsense‐mediated decay (NMD), monoallelic allele‐specific
expression (ASE), and loss of messenger RNA (mRNA) transcripts. Phasing of alleles (maternal vs. paternal) is indicated by pink (maternal) and
blue (paternal) highlights. In the left‐hand panels we depict the hypothetical case of a loss‐of‐function intronic VUS (depicted as a yellow
sunburst symbol) on the DNA‐level. Also shown schematically is a coding heterozygous single‐nucleotide polymorphism (SNP) upstream (shown
as green and magenta color‐coded alleles). The VUS in this case causes intron fragment inclusion and when a premature stop codon is reached,
premature truncation. The truncated mRNA is degraded via NMD, and complete loss of associated mRNA transcripts is observed. This is
evidenced by the fact that in the bottom left sashimi plot, (1) we do not see expression of the magenta allele (a phasing proxy for the VUS), and
(2) we do see monoallelic ASE of the green allele. ASE is the process whereby only one allele is expressed in RNA despite the fact that an
individual is heterozygous at that position in their DNA. Key to recognizing whether an individual is displaying ASE is the identification of a
coding heterozygous SNP up/downstream that can act as a phasing proxy. In contrast, in the right‐hand panels, we depict the scenario of a
benign VUS whereby we do not see a loss of function in RNA; instead, in the sashimi plot, we see a roughly equal expression of both alleles
(magenta and green) at the upstream heterozygous locus, as well as the correct “dosage” of expression. Figure created with BioRender.com.

1596 | POSTEL ET AL.

https://BioRender.com


outnumber the cases. Various solutions have been put forth to solve

this problem. These include likelihood ratio tests, burden tests with

genetic scores, adaptive burden tests with data‐adaptive weights/

thresholds, variance‐component tests, exponential combination tests,

normal transformation with trait “winsorization” (to find a balance

betweenType I error and statistical power), or a combination thereof

(Auer et al., 2016; Li et al., 2021).

Alternatively, one key solution to address the inherent lack of

statistical power when analyzing rare variants is to use gene

expression outlier analysis. Rare variants are often associated with

extremes of expression, whether over‐ or underexpression (X. Li, Kim,

et al., 2017). Variants can be interpreted through careful integration

of DNA data with RNA‐seq data from other patients or from public

resources. Cummings et al. (2017) were one of the first groups to

demonstrate the fact that consideration of such “outlier” variants in

RNA‐seq data results in an improved diagnostic rate (35% in that

study, specifically) (Cummings et al., 2017). Gene expression outlier

analysis has often been employed in cancer genomics to identify

cancer drivers for a specific subset of cancer types or cancer outliers

(Alshalalfa et al., 2012; Mori et al., 2013). Outlier analysis does not

actually identify a mechanism but rather a gene that is different from

others expressed in a cohort. As will be discussed later, there is a

fundamental presumption that the comparison cohort is relevant.

2 | UTILITY OF RNA FOR THE DIAGNOSIS
OF NEOPLASTIC AND NON‐NEOPLASTIC
DISEASE

While analytical validity refers to the sensitivity, specificity, and

accuracy of a diagnostic test in terms of its ability to measure a

biomarker in a lab setting, clinical validity refers to that test's accuracy

and predictive value when it comes to predicting clinical diagnosis.

Both terms are distinct from clinical utility, which refers to a test's

ability to make a difference—that is, its potential to impact patient

quality of care/life by guiding clinical decision‐making (Byron

et al., 2016). Here we will outline the clinical utility of transcriptome

analysis for diagnosing both neoplastic and non‐neoplastic diseases.

2.1 | RNA diagnostics for Mendelian disorders

Transcriptome analysis is a boon to the diagnosis of rare Mendelian

diseases. Historically, genetic counseling has relied upon whole‐

exome sequencing to identify causative disease variants; however,

this DNA‐only approach has left up to 75% of patients without

genetic diagnoses (Abou Tayoun et al., 2016; Aggarwal, 2021;

Ellingford et al., 2016; Kopajtich et al., 2021; Lee et al., 2014; Liu

et al., 2021; Rajagopalan et al., 2021; Stenton & Prokisch, 2020;

Volodarsky et al., 2021; Yang et al., 2014). When integrated with

genome sequencing—and, especially, in situations when said genome

sequencing encompasses both exons and introns—gene expression

profiling has been shown to significantly boost molecular diagnostic

rates; yields have been shown to increase by 10%–35% (Lee

et al., 2020; Maddirevula et al., 2020; Murdock et al., 2021; Stenton

& Prokisch, 2020; Yépez et al., 2021). This is because RNA data both:

(1) puts any variants identified in DNA into context by revealing their

transcript‐level consequences (e.g., ASE due to NMD, imprinting,

and/or expression of splice variants), and (2) illuminates phenomena

(like gene expression outliers) that may not pass the threshold of

detection in DNA data alone (but that are crucial to the pathogenesis

of a given disease) (Lee et al., 2020).

Gene expression profiling has also improved clinicians' ability to

diagnose, stratify, and subtype autoimmune diseases, like systemic

lupus erythematosus, as well as degenerative diseases like Age‐

Related Macular Degeneration (Alarcón‐Riquelme, 2019). Addition-

ally, transcriptome analysis has shed light on the fact that many of

these diseases are heterogenous with a spectrum of causative

molecular events (Morello et al., 2019). RNA‐seq is also capable of

overcoming the “bottleneck of variant interpretation” in patients with

inborn errors of metabolism, mitochondriopathies, and/or unsolved

muscle disorders, leading to significantly increased diagnostic yields

(Kremer et al., 2018; Thompson et al., 2020).

It is important to note that recent studies have shown,

particularly for monogenetic neuromuscular disorders, that blood‐

based RNA‐seq is not sufficient for diagnosis. However, RNA‐seq

performed on myotubes generated by trans‐differentiation of patient

fibroblasts could identify a molecular culprit (predominantly splicing

variants) in 36% of patients for whom DNA‐only analysis had failed to

do so (Gonorazky et al., 2019). These findings highlight the fact that

several methodological improvements must be made to hasten the

progress of translating transcriptome analysis from the benchtop to

the bedside and to enhance diagnostic sensitivity. These include

refinement of ex vivo trans‐differentiation of accessible cells to more

disease‐relevant cell types (Lee et al., 2020).

2.2 | RNA‐seq facilitates molecular diagnoses for
hereditary cancers

Cancer genomic analysis involves the identification of inherited

(“germline”) risk variants and acquired (“somatic”) mutations in DNA

and RNA (Koeppel et al., 2018). Transcriptome analysis has been

shown to be capable of identifying rare, causative variants by

revealing changes in splicing and gene expression that were

undetected by DNA sequencing (Yuan et al., 2020). Since examples

of RNA‐seq analysis in the conjunction of cancer risk prediction is

more recent, we will dissect these papers in greater detail. Before we

do, two key distinctions should be made regarding hereditary cancer

studies. First, there is a general bias towards using RNA‐sequencing

in conjunction with panel‐based clinical sequencing to reduce the

genomic search space. If one focuses on all oncogenic or tumor‐

suppressor genes, the prevalence of background events changes and,

with it, the precision and diagnostic yield. Second, the context of

variant reporting is distinct from that for studies of Mendelian

disease.
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A series of papers from 2019 2021 illustrate and give further

insight into these distinctions. First, Conner et al. (2019) found that

by supplementing DNA genetic testing with RNA, heterozygous

duplication events in mutS homolog 2 (MSH2), which were previously

classified as VUS in five individuals with Lynch Syndrome, were able

to be reclassified as pathogenic or likely pathogenic (Conner

et al., 2019). Similarly, Karam et al. (2019) showed that, by

supplementing DNA with RNA genetic testing in cases suspicious

for hereditary cancer in which the variant in question involved a

potential splice site alteration, (1) inconclusive DNA‐based results

were resolved in 49 of 56 inconclusive cases (88%) studied, with 26

(47%) being reclassified as clinically actionable and 23 (41%) being

clarified as benign; and (2) approximately 2% of patients receiving

paired DNA/RNA testing would benefit by the addition of RNA by

further characterization of splice‐site VUS (Karam et al., 2019). Two

other studies found that the addition of transcriptomic analysis to

hereditary cancer testing enabled 60% and 20%, respectively, of

splicing VUS to be reclassified as (likely) pathogenic (Agiannitopoulos

et al., 2021; Rofes et al., 2020). Landrith et al. (2020) performed

germline RNA‐seq to profile 18 genes—that is, APC regulator of WNT

signaling pathway (APC); ATM serine/threonine kinase (ATM); BRCA1

and BRCA2 DNA repair associated (BRCA1, BRCA2); BRCA1

interacting helicase 1 (1BRIP1); cadherin 1 (CDH1); checkpoint kinase

2 (CHEK2); mutL homologs 1, 2, and 6 (MLH1, MSH2, and MSH6);

mutY DNA glycosylase (MUTYH); neurofibromin 1 (NF1); partner and

localizer of BRCA2 (PALB2); PMS1 homolog 2 (PMS2); phosphatase

and tensin homolog (PTEN); tumor protein p53 (TP53); and RAD51

paralogs C and D (RAD51C and RAD51D)—in patients with suspected

hereditary cancer syndromes. The investigators demonstrated a 9.1%

relative increase in the detection of pathogenic variants afforded by

augmenting DNA data with RNA analysis (Landrith et al., 2020). Deep

intronic variants have also been identified in BRCA1/2, by virtue of

RNA analysis, in patients with familial breast and ovarian cancers

(Anczuków et al., 2012; Montalban et al., 2019).

As is evident from the studies mentioned above, deep intronic

mutations and splicing aberrations are unique mechanisms of

carcinogenesis which, based upon DNA data alone, are still often

classified as VUS (Urbanski et al., 2018). Splicing mutations (which

can be present in both pre‐mRNA exons and introns, the latter of

which has historically been harder to detect using traditional DNA

analyses) lead to abnormal mRNA phenomena (e.g., exon skipping,

intron inclusion, and cryptic splice site activation) and the production

of abnormal proteins with diagnostic value (Shi et al., 2018).

Expression changes in splicing regulators can be used as biomarkers

for cancer diagnosis (e.g., heterogeneous nuclear ribonucleoprotein

A2/B1, hnRNPA2/B1, an RNA‐binding protein involved in mRNA

splicing, is a sensitive and specific early‐diagnostic marker of lung

neoplasms) (Zhang et al., 2021). RNA‐seq has shown utility for the

diagnosis of germline splicing variants in hereditary cancer genes that

were not evident in DNA analysis (Urbanski et al., 2018). While

splicing variants makeup 11% of hereditary cancer gene VUS, they

make up 55% of those VUS that are “likely pathogenic” (Parsons

et al., 2019).

Larger‐scale reports have been published by clinical genetic

companies where RNA‐seq was used in conjunction with panel‐based

studies across thousands of individuals. Ambry recently released a

series of “RNA Case Studies” that demonstrate the clinical diagnostic

utility of transcriptomic data, particularly for identifying intronic

variants (AmbryGenetics, 2019). One such scenario was the case of a

33‐year‐old male, with a personal and family history of colon polyps,

for whom no clinically significant variants could be detected via DNA‐

only analysis. When the genetic analysis was supplemented with

transcriptomic analysis (i.e., Ambry's +RNAinsight® panel), abnormal

APC transcripts were detected, prompting further investigation via

targeted Sanger DNA sequencing. This resulted in the confirmation

of a deep intronic, likely pathogenic variant. Transcriptomic data

enabled the patient's provider to make a genetic diagnosis of Familial

denomatous polyposis (AmbryGenetics, 2019). Other examples

include a likely pathogenic intronic variant identified outside of

DNA analytical range in the gene ATM (NM_000051.4:c.497‐

2661A>G), and exon skipping variants in MSH6 leading to Lynch

Syndrome. Ambry's +RNAinsight® panel, mentioned in the cases

above, analyzes 91 cancer driver genes, and can be paired with most

DNA panels; it has shown to be capable of reclassifying >70% of VUS

(AmbryGenetics, 2021).

Similarly, a recent study by Invitae aimed to exemplify the utility

of RNA analysis for reclassifying splicing VUS (Truty et al., 2021). The

investigators analyzed a significantly large sample consisting of nearly

700,000 patients from a clinical cohort plus individuals from two

large public datasets (i.e., ClinVar and Genome Aggregation Data-

base/gnomAD) (Truty et al., 2021) (Table 1). In their clinical cohort,

Invitae found that 5.4% of individuals had at least one splicing VUS

(most of which were identified outside of essential splice sites), and

that splicing variants represented 13% of all variants classified as

(likely) pathogenic or VUS. They estimated that, in the clinical cohort,

RNA analysis would be capable of clarifying/reclassifying splicing

VUS in 1.7% of cases. In comparison to the clinical cohort, in ClinVar

and gnomAD, Invitae observed that splicing VUS comprised nearly 5%

and 9% of reported variants, respectively. Invitae concluded that, in

all three cohorts, individuals would have a tangible, clinical‐diagnostic

benefit from RNA testing (Truty et al., 2021).

Not only can transcriptome characterization classify VUS as

(likely) pathogenic, but it can also clarify variants as benign. For

example, RNA data supported a variant downgrade of a likely

pathogenic splice site variant at a canonical splice site (Shamseldin

et al., 2021). In the case of CDH1 NM_004360.5:c.387+1G>A,

various clinical laboratories initially reported the variant in multiple

Hispanic/Latino patients as “likely pathogenic” on the basis of the

“+1” position of the variant. This led to the diagnosis of hereditary

diffuse gastric cancer syndrome, a condition requiring complex

management because of its association with a very high risk of early

onset gastric cancer and lobular breast cancer. However, the variant

was studied in more detail because the patients with this variant

lacked the associated phenotype of the condition. The variant was

experimentally demonstrated to result in the activation of a cryptic

in‐frame donor splice site, leading to the recommendation by ACMG
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and AMP that variants at this position not be considered as likely

pathogenic (Maoz & Culver, 2016).

Due to space and scope, we have limited this review to germline‐

inherited variation. However, RNA‐sequencing has utility in the

context of somatic variation and can guide treatment decisions. The

histological subtypes of certain cancers are more strongly associated

with transcriptomic signatures than genomic ones (Ghatak et al., 2022;

Tang et al., 2021). Indeed, since the discovery of the BCR::ABL fusion

gene in chronic myeloid leukemia, paired DNA/RNA‐seq has allowed

for groundbreaking discoveries of targetable fusion genes in both

hematological and solid tumors (Tsang et al., 2021). Multiple,

patented cancer diagnostic panels function by detecting fusions in

RNA, such as the Fusion‐STAMP targeted RNA‐seq panel and the

Oncomine®Focus RNA Fusion assay (Nohr et al., 2019; Williams

et al., 2018). It is worth highlighting that a 2021 study in Oncogene

examined somatic variation across over 1000 pan‐cancer, paired

whole genomes and transcriptomes to understand the role of splicing

mutations in tumorigenesis (Jung et al., 2021). The investigators

identified about 700 somatic intronic mutations; nearly half were

within deep intronic regions and, of those, 38% activated cryptic

splice sites. A subset of the deep intronic mutations resulted in

splicing enhancer/silencer alterations.

3 | LIMITATIONS AND FUTURE
DIRECTIONS

The progress of RNA‐based diagnostics is encouraging, especially

as new and translational transcriptomic techniques emerge (Wang

et al., 2020). Gene expression profiling allows for the identification of

fusion transcripts and the detection of phenomena like differential

expression, ASE, alternative splicing, and the presence of noncoding

RNAs (Conner et al., 2019). Both targeted RNA microarrays and

RNA‐seq have shown analytical validity in diagnostics for pediatric,

adolescent/young adult, and adult patients (Vaske et al., 2019).

3.1 | Conflicting lines of evidence

One fallacy of reasoning—commonly and erroneously applied to

the analysis of variant lists such as variant call format (VCF) files—is

the assumption that the absence of a transcript variant means that the

variant is absent from the specimen. This common misconception led

to the development of genomic VCFs (gVCFs) which call every

position—both variant and wild type/reference.

The only way to move forward with statistical power and

confidence is through collaborative efforts and the creation of

diverse and devoted databases. ClinVar (Rehm et al., 2017) and

gnomAD (Karczewski et al., 2020) are under‐appreciated summary‐

level datasets (Table 1). gnomAD's focus on categorizing rare events

was foundational. At the RNA‐level, this approach has not yet been

adopted outside of isolated cases; burgeoning examples are

RNAcentral (a database of noncoding RNAs) (Petrov et al., 2015)

and SpliceDB (a database of canonical and noncanonical mammalian

splice sites) (Burset et al., 2001) (Table 1).

With the clinical implementation of any new “translational”

technology, one must approach variant curation and interpretation of

functional evidence with caution. Interpretation can be more complex

than anticipated; there are many potential pitfalls. For example, Nix

et al. once posited that a partial exon‐skipping mutation identified in

BRCA2 was pathogenic; it was later found to occur in many healthy

controls (Mundt et al., 2017).

3.2 | Differences in RNA‐seq library preparation
and analysis methods

Unlike genomic sequencing of DNA, differences in collection

methods, library preparation, tissue sources, etc. fundamentally

impact RNA‐seq analysis and interpretation. The first and most

apparent variable is RNA tissue source and its relevance to a given

disease or phenotype. For example, how well can RNA from whole

blood provide insight into neurological disorders? GTEx provides an

initial framework to evaluate this question, showing that typically

>40% of neurological genes are expressed at reasonably high levels in

blood (GTEx Consortium, 2013). Still, investigators must carefully

consider the tissue from which they are isolating RNA given that

expression patterns differ across tissues (and, on the circadian level,

RNA expression can even differ in the same tissue at different time

points) (Maddirevula et al., 2020). Customized assays leveraging

enrichment may increase the dynamic range of RNA species.

Nevertheless, many of the studies highlighted showed >10%

improvement in diagnostic yield despite such limitations.

The ability to probe DNA variation across thousands of

individuals (using resources like gnomAD) has profoundly influenced

how we interpret genomic variants. Normalization/harmonization

of RNA‐seq techniques is a necessary next step (and an active area of

research beyond the scope of this review).

When examining consortiums such as PsychENCODE (Psych

et al., 2015) and AMP‐AD (Hodes & Buckholtz, 2016), it becomes

clear that elimination of technical variation from RNA‐seq data is

challenging, especially if one is interested in rare events. To illustrate

this point, we consider the recent release of 4,871 longitudinally

collected samples from 1,570 clinically phenotyped individuals from

the Parkinson's Progression Marker Initiative (PPMI), conducted using

random priming for PaxGene‐collected whole‐blood with paired

whole‐genome sequencing (Craig et al., 2021). Forthcoming efforts

from TopMED will utilize the same PaxGene whole‐blood protocols

but will differ in the use of mRNA‐seq from poly‐A priming. These

two methods lead to different species with random priming, showing

pre‐spliced RNA and non‐poly‐A‐tailed transcripts. Algorithms

trained on these methods will fundamentally differ in their core

measures, such as PSI. We have observed significant differences in

gene/exon usage even within the same data set, depending on read

lengths of paired 100 bp versus a 125 bp subset. While daunting,

solutions are emerging for aggregating RNA, such as through the
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ARCHS4 aggregation across mouse and human RNA‐seq studies

(Lachmann et al., 2018).

3.3 | Fragmentation of RNA‐seq databases and
standards

Though the RNA‐based diagnostics described here have potential,

obstacles must be overcome before they become routine clinical

practice. These challenges include the need for scientific rigor,

reproducibility, accuracy, precision, clinical validity, and clinical utility.

Standards must be created for test thresholds and normalized

reporting, and databases must be established (Tahiliani et al., 2020;

Wang et al., 2020). These databases must be designed to not fall prey

to any logical fallacies (e.g. the “marker‐positive fallacy”).

Issues of database size, diversity, and representation (both in the

sense of race/ethnicity and cases/controls), population structure, and

cryptic relatedness must be considered (National Research Council

(US) Committee, 1996). Fisher et al. created Ontology of RNA

Sequencing (ORNASEQ) to capture, annotate, and manage prove-

nance stores from RNA‐seq studies (Fisher & Kim, 2018) (Table 1).

We must also acknowledge, and attempt to address, limitations

(e.g., the half‐life/stability of RNA) and potential confounders (e.g.,

temporal changes in RNA expression, differences in RNA capture

from fresh frozen vs. formalin‐fixed paraffin‐embedded samples, and

phenomena like clonal hematopoiesis of indeterminate potential in

liquid biopsies) (Wang et al., 2020).

It is important to balance preference for minimally invasive

techniques with considerations of differential tissue expression. One

recent study found that when comparing brain versus blood versus

human B‐lymphoblastoid cell lines (LCL), LCLs possessed isoform

diversity for neurodevelopmental genes similar to that of brain tissue;

LCLs also expressed these genes more highly compared to blood

(Rentas et al., 2020). The authors of this article described an RNA‐seq

pipeline with 90% sensitivity and claimed that findings in LCLs

outperformed those in blood and had implications for the molecular

diagnosis of >1,000 genetic syndromes (Rentas et al., 2020).

Rowlands et al. recently championed the use of a gene‐ and tissue‐

specific metric of their design—i.e., minimum required sequencing

depth (MRSD)—for standardized prediction of RNA‐seq utility,

specifically for the diagnosis of splicing mutations in Mendelian

diseases (Rowlands et al., 2022).

Another limitation is the fact that expression quantitative trait

loci (eQTL) databases—like GTEx Portal—are limited to common

variants (i.e., variants with a minor allele frequency >1%) (Table 1).

This means that such datasets are not applicable toward under-

standing VUS which, although rare in the general/overall population,

disproportionately impact non‐White/European groups. RNA analysis

is also limited by the fact that most tools utilize transcripts defined by

a Gene Transfer Format (GTF) file and find it difficult to annotate the

3′ UTR (Shenker et al., 2015). Therefore, there exists a critical need

for more rigorous, reproducible, and representative RNA databases

and tools.

3.4 | Future direction: Investigating the
“other” RNAs

A burgeoning area of transcriptomic research is the detection of

noncoding RNAs (ncRNAs), so named because, unlike mRNAs, they

are not translated into protein. There is hope that ncRNAs will have

diagnostic utility (Ellingford et al., 2021; McQuerry et al., 2021),

particularly for cancer diagnosis (Coley et al., 2021; Distefano

et al., 2022; Lu et al., 2021; Osan et al., 2021; Ren et al., 2021;

Sun et al., 2021; Tabury et al., 2022; Zhu et al., 2021). Examples of

ncRNAs include miRNAs, small interfering RNA (siRNA), lncRNAs

including circular RNAs (circRNAs, which are produced by non-

canonical “back‐splicing”), small nuclear RNA (snRNA), small nucleolar

RNA (snoRNA), and PIWI‐interacting RNA (piRNA) (Hasegawa

et al., 2021; Junqueira‐Neto et al., 2019; Mussack et al., 2020; Solé

et al., 2021; Wen et al., 2021). Particular effort has been devoted to

assessing the efficacy of minimally invasive “liquid biopsies” (samples

of bodily fluids like saliva, serum, and urine) for the detection of

cancer‐related ncRNAs; these methods are currently being rigorously

validated and must be standardized before they become universally

adopted as best clinical practice (Zeuschner et al., 2020).

One of the benefits of using noncoding RNAs versus protein‐

coding RNAs is that ncRNAs have been shown to display more tissue‐

specific gene expression (Iaccarino & Klapper, 2021); this renders

ncRNA a potential tumor‐associated and tumor‐specific marker. Both

gene expression microarray and RNA‐seq‐based techniques can

identify lncRNA biomarkers; RNA‐seq allows for a discovery‐type

approach, whereas microarrays necessitate a targeted approach

(Sun, 2015). The most comprehensive study, to date, analyzed >7,000

RNA‐seq libraries and identified >7,000 cancer‐associated lncRNAs

(Sun, 2015). Several promising lncRNA candidates include prostate

cancer‐associated 3 (PCA3) and SWI/SNF complex antagonist

associated with prostate cancer 1 (SChLAP1) (specific markers for

prostate cancer which can be identified in urine); hepatocellular

carcinoma upregulated long noncoding RNA (HULC) in pancreatic

cancer; lung cancer‐associated lncRNA 1 (LCAL1) in lung carcinomas;

H19 imprinted maternally expressed transcript (H19), hepatocellular

carcinoma upregulated EZH2‐associated long noncoding RNA (HEIH),

HOX transcript antisense RNA (HOTAIR), and HOXA distal transcript

antisense RNA (HOTTIP) in hepatocellular carcinoma; long intergenic

non‐protein coding RNA 261 (LINC00261) and PCA3 in chorio-

carcinoma; and ADAMTS9 antisense RNA 2 (ADAMTS9‐AS2),

HOXA11 antisense RNA (HOXA11‐AS), and cancer susceptibility 2

(CASC2) in glioma (Di Fiore et al., 2021; Ebrahimi et al., 2021; Huang

& Tang, 2021; Lanzafame et al., 2018; Sun, 2015; Xi et al., 2017).

Recent research has shown that circRNAs—which (1) are dysregu-

lated in a tumor‐specific manner, (2) display stage‐specific expression

patterns, and (3) are more stable than linear RNAs due to their

circular conformation—could be used as diagnostic markers for lung,

liver, colorectal, gastric, and bladder cancers (Sawaki et al., 2018; Solé

et al., 2021).

Before lncRNA‐based diagnostics become commonplace in

the clinical setting, investigators still must determine whether: (1)
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tumor‐associated lncRNAs are being expressed by the tumor cells

themselves versus other cells in the tumor microenvironment; (2)

whether lncRNA expression is confounded by cancer subtype and/or

patient demographics (Iaccarino & Klapper, 2021); and (3) whether

lncRNA structure reflects function (this could be probed using

Clustered Regulatory Interspaced Short Palindromic Repeat, CRISPR,

screening) (Wong & Wong, 2021). One example of a bioinformatic

tool for RNA‐seq‐based detection of lncRNAs is UclncR (Sun

et al., 2017) (Table 1).

Two other important species of noncoding RNA, which both play

roles in gene regulation, are siRNAs (which target specific mRNA) and

miRNAs (which have multiple mRNA targets) (Lam et al., 2015).

Hundreds of clinical trials are currently evaluating the application of

miRNAs to human diseases (Krishnan & Damaraju, 2018). Studies

have suggested that miRNAs could be used for the molecular

diagnosis of gastric cancer and high‐grade cervical intraepithelial

neoplasia (Causin et al., 2021; Sawaki et al., 2018). Two promising

miRNAs are miR‐20a‐5p for the detection of renal cell carcinoma and

miR‐21 for pancreatic cancer (Oto et al., 2021; Xi et al., 2017).

miRNAs are also proving to be capable of serving as early diagnostic

biomarkers for diseases lacking clear modes of inheritance and

biomarkers (Tan et al., 2021).

Techniques for the isolation of miRNA must be optimized, and

reference databases must be established. One group has developed

an ultrasensitive, single‐molecule, amplification‐free, multiplexed

assay for the detection of miRNAs directly from small samples of

human serum (Cai et al., 2021). The database miREV contains >400

miRNA sequencing data sets; such datasets may prove to be critical

resources going forward (Hildebrandt et al., 2021) (Table 1).

The application of ncRNA species other than those outlined

above is still in its infancy (Byron et al., 2016). Promising candidates

include the piRNA piR‐651 for the diagnosis of lymphoma; the

snoRNAs SNORD33, SNORD66, and SNORD76 for the diagnosis of

non‐small cell lung cancer; and the circRNA Hsa_circ_002059 for the

diagnosis of gastric cancer (Xi et al., 2017).

A recent paper published in Human Mutation enumerated the

most used bioinformatics tools for the analysis of ncRNA data

(Veneziano et al., 2016). These include miRDeep2, CAP‐miRSeq, iMir,

piPipes, UEA sRNA workbench, omiRas, sRNAtoolbox, FlaiMapper, and

tDRMapper for analysis of small ncRNAs; UROBORUS, PredCircRNA,

find_circ, CircExplorer, and CIRI for analysis of circular ncRNAs; and

iSeeRNA, Sebnif, and LncRNA2Function for analysis of lncRNAs

(Veneziano et al., 2016) (Table 1).

3.5 | Future direction: Targeting VUS to alleviate
cancer disparities

One anecdotal trend that we have noticed within our group and

across collaborative efforts is that RNA data identifies previously

missed variation, particularly in individuals of non‐European ancestry.

In Human Mutation we reported a variant within 3bp of the exon

boundary using an outlier approach in individuals of African ancestry.

The molecular consequences of this variant included exon skipping,

altered isoform usage, and loss of canonical isoform expression—

events not evident in DNA data alone (McCullough et al., 2020).

Patients who self‐identify as Hispanic/Latino, Black/African, and

Asian/Pacific Islander experience more advanced stage disease at the

time of screening, significantly lower diagnostic yields, and higher

rates of VUS and variant reclassification compared to their European/

Caucasian counterparts (Dutil et al., 2019; Kinney et al., 2018;

Kowalski et al., 2019; Marco‐Puche et al., 2019; Ndugga‐Kabuye &

Issaka, 2019; Roberts et al., 2020; Slavin et al., 2018; Urbina‐Jara

et al., 2019). Individuals from non‐European populations will have

more “private” variation for one of three reasons: (1) they are poorly

represented in reference data sets, (2) they have greater African

ancestry, or (3) they come from a population that has undergone

recent expansions (e.g., Bangladesh) (Halperin et al., 2017).

A recent study reported by Ambry Genetics found that their

BRCAplus, BreastNext, and CancerNext panels yielded ≈2–3x fewer

VUS for Non‐Hispanic Whites than for minority populations

(AmbryGenetics, 2017). Another study reports VUS frequencies in

the tumor suppressor genes BRCA1/2 to be 4.4% in Caucasians, 8.9%

in African Americans, and 8.0% in Hispanic/Latinos; for larger

hereditary cancer panels, this study reported VUS frequencies of

22.1% in Caucasians, 30.3% in African Americans, and 24.9% in

Hispanic/Latinos (Appelbaum et al., 2020).

One important distinction to make here is the difference

between race/ethnicity and genetic ancestry. While race and

ethnicity are social constructs, ancestry is a biological/genetic

construct resulting from human migrations throughout history

resulting in biogeographical genetic variation (Batai et al., 2021). An

example of how genetic ancestry can further clarify race/ethnicity‐

based disparities is the fact that higher African ancestry in Hispanic/

Latinos (who are typically “admixed” with genetic contributions from

African, European, and American Indian aka Native/Indigenous

American ancestries) is associated with more aggressive breast

cancer subtypes and a greater likelihood of receiving inconclusive

VUS during genetic testing (Chapman‐Davis et al., 2021; Dutil

et al., 2019; Kinney et al., 2018; Kowalski et al., 2019; Marco‐Puche

et al., 2019; Ndugga‐Kabuye & Issaka, 2019; Roberts et al., 2020;

Slavin et al., 2018; Urbina‐Jara et al., 2019; Virlogeux et al., 2015).

Interestingly, in turn, genetic ancestry can clarify the interpretation of

VUS by providing information about the local and global “genomic

context” of a variant (Wang et al., 2021). Thus, gene expression

profiling may be able to help shed light on and alleviate cancer

disparities (Frésard et al., 2019; Wai et al., 2020).

4 | CONCLUSIONS

VUS cause significant psychological distress to patients and

disproportionately limit the promise of precision medicine for

minority patients (Landry et al., 2018). RNA data provide critical

answers to the question of VUS, particularly in terms of clarifying

deep intronic and splicing variants as pathogenic versus benign. This

POSTEL ET AL. | 1601



necessitates the development of more rigorous, reproducible, and

representative RNA databases and analytical tools.
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