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ABSTRACT

Gene autorepression is widely present in nature and
is also employed in synthetic biology, partly to re-
duce gene expression noise in cells. Optogenetic
systems have recently been developed for control-
ling gene expression levels in mammalian cells, but
most have utilized activator-based proteins, neglect-
ing negative feedback except for in silico control.
Here, we engineer optogenetic gene circuits into
mammalian cells to achieve noise-reduction for pre-
cise gene expression control by genetic, in vitro neg-
ative feedback. We build a toolset of these noise-
reducing Light-Inducible Tuner (LITer) gene circuits
using the TetR repressor fused with a Tet-inhibiting
peptide (TIP) or a degradation tag through the light-
sensitive LOV2 protein domain. These LITers provide
a range of nearly 4-fold gene expression control and
up to 5-fold noise reduction from existing optoge-
netic systems. Moreover, we use the LITer gene cir-
cuit architecture to control gene expression of the
cancer oncogene KRAS(G12V) and study its down-
stream effects through phospho-ERK levels and cel-
lular proliferation. Overall, these novel LITer opto-
genetic platforms should enable precise spatiotem-
poral perturbations for studying multicellular pheno-
types in developmental biology, oncology and other
biomedical fields of research.

INTRODUCTION

Gene expression levels and variability (noise) dictate tran-
script and protein production that define the properties of
living cells in health and disease (1,2). Depending on the
interplay between gene function and environmental condi-
tions, expression levels and noise in cellular populations can
confer a variety of cellular advantages and disadvantages
(3–8). The importance of gene expression noise in cellular

processes may be one reason why natural gene regulatory
networks contain noise-modulating network motifs (9–11).
For example, Negative-Feedback (NF) is a critical and fre-
quent network motif that can reduce noise (11–14) in bi-
ological processes as diverse as circadian rhythm, immuno-
logical responses or stress signaling in cancer (15–17). Engi-
neering gene circuits that control gene expression levels and
noise simultaneously can reveal important thresholds and
sensitivities for broad biological phenomena such as metas-
tasis, epithelial-to-mesenchymal (EMT) transition and drug
resistance (18).

A few decades ago, bacterial regulator-based systems
emerged capable of controlling intermediate gene expres-
sion levels (19–21). Despite this advancement, these systems
often suffered from high noise since they lacked feedback
regulation, therefore leaving gene expression variability as
an uncontrolled parameter (22). Adjusting noise has also
been neglected by traditional methods of gene expression
control, which tend to focus on extreme gene expression
changes (e.g. knockout and overexpression) in cells or or-
ganisms.

Engineered solutions have emerged more recently using
NF in synthetic gene circuits to fine-tune protein expres-
sion proportional to an extracellular chemical inducer while
also reducing noise (23). However, existing NF gene cir-
cuits respond relatively slowly to chemical stimuli and do
not enable single-cell level gene expression control (22–25).
Optogenetic systems have the potential to overcome these
limitations within living cells (26,27). Yet, most optoge-
netic gene circuits have been studied by transient transfec-
tion and their ability to deliver spatiotemporal control with
low noise in single cells remains unknown (28,29). Addi-
tionally, most existing optogenetic systems are activator-
based, incompatible with noise-reduction by in vitro, genetic
NF (28,29). Currently, NF in optogenetics has only been
achieved through in silico control of microbes (30,31), leav-
ing genetic, in vitro feedback control unexplored, especially
in mammalian cells.

Here, as a step toward precisely controlling single-cells
with light, we engineer a series of stable human cell lines ex-
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pressing NF optogenetic gene circuits developed from pre-
viously constructed ‘Linearizers’ (23,28). To achieve this,
we introduce two novel peptide elements for controlling the
Tet-repressor (TetR). We fuse TetR with a light-responsive
protein domain (LOV2) (27,32,33), which is further fused
to either a Tet-inhibiting peptide (TIP) (34) or a degrada-
tion tag consisting of four amino acids (35). These com-
ponents remain hidden until illuminated, at which point
they ensure light-dependent inhibition or degradation of
the TetR protein (34–36). The modified TetR regulators re-
press a stably-integrated fluorescent reporter, enabling light-
dependent gene expression measurements. To assess the per-
formance of these novel optogenetic systems, we compare
them with the existing optogenetic LightOn system (28) in-
tegrated into the same parental cell line. Finally, we also
study the versatility of these optogenetic circuits for control-
ling the mutated KRAS(G12V) gene, relevant to pancreatic
and colon cancer (37,38).

Overall, we present novel optogenetic tools that can en-
able a wide-dynamic range of gene expression in response
to light stimuli and ensure low noise for controlling sin-
gle mammalian cells by using genetic, in vitro NF. These
synthetic biology tools have the potential to be utilized in
single-cell studies of processes as diverse as embryonic de-
velopment, cancer metastasis and neuron migration.

MATERIALS AND METHODS

Transient transfections

Transient transfections had ∼75 000 cells in 500 �l of com-
plete supplemented DMEM media added to each well of
a VisiPlate-24 well black plate (PerkinElmer, catalog num-
ber: 1450-605) and were first grown for 24 h. After 24 h, 500
ng of total plasmid DNA was added to Opti-MEM™ me-
dia (Thermo Fisher Scientific, catalog number: 31985062),
P3000 reagent and Lipofectamine 3000 reagent (Thermo
Fisher Scientific, catalog number: L3000001), outlined in
the Lipofectamine 3000 reagent protocol. Transfection so-
lutions were incubated at room temperature for 10 min and
added to the cells where mixing occurred by gently shak-
ing. Analysis of all experiments was performed 24–72 h af-
ter transfections were completed.

Mammalian cell culture

A Flp-In 293 cell line (Thermo Fisher Scientific catalog
number R75007) was the parental cell line for all stable-
integration cell lines engineered as well as the cell line used
for transient transfection. All cell lines were incubated and
sustained in a constant environment at 37◦C and 5% CO2.
The cell lines were grown in high glucose Dulbecco’s mod-
ified Eagle’s medium (DMEM, Thermo Fisher Scientific,
catalog number: 11965-092) that was supplemented with 50
ml of 10% fetal bovine serum (FBS, Sigma-Aldrich, cata-
log number: 12303C), 5 ml of 10 000 units/ml of Penicillin
antibiotic and of 10 000 �g/ml of Streptomycin antibiotic
(Thermo Fisher Scientific, catalog number: 15140122). Sta-
ble cell lines with synthetic gene circuits were maintained
under 50 �g/ml of hygromycin drug selection to prevent
loss or silencing of genetically integrated payload (Thermo
Fisher Scientific, catalog number: 10687010).

Stable cell-line integration

Gene circuits were introduced into Flp-In 293 cells
(Thermo Fisher Scientific catalog number R75007) us-
ing lipofectamine 3000 (Thermo Fisher Scientific, catalog
number: L3000001) according to company protocol with
3 × 105 cells and 1 �g of plasmid DNA. Cells were trans-
fected with the gene circuit of interest and the Flp recom-
binase (pOG44, Thermo Fisher Scientific catalog number
V600520) plasmid at a ratio of 1:9, respectively. Around 24
h later, cells were washed and given fresh media. Two days
later, cells were split to 25% confluency and incubated for
several hours, after which hygromycin was added at a con-
centration of 50 �g/ml. Cells were grown under hygromycin
drug selection for several weeks, with media and drug be-
ing changed every 3–4 days. After ∼3 weeks, cells were split
into T25 filter cap TC flask (USA Scientific, catalog num-
ber CC7682-4825) to be frozen down into polyclonal popu-
lations or directly sorted into monoclonal populations with
flow cytometry. Monoclonal gene circuit populations were
expanded and then frozen down according to the Flp-In
protocol (Thermo Fisher Scientific).

Quantitative RT-PCR and quantitative PCR

Seventy-two hours post experimental induction, total RNA
was extracted from cells from stable-cell lines created using a
RNeasy Plus Mini Kit (Qiagen, catalog number: 74134) fol-
lowing the manufacturer’s protocol. After RNA extraction,
reverse transcription was performed using iScript kit (Bio-
Rad Laboratories, catalog number: 1708890) following the
manufacturer’s protocol. Following RT-PCR, quantitative
PCR was performed using TaqMan Fast Advanced Master
Mix (Thermo Fisher Scientific, catalog number: 4444557).
TaqMan probes for KRAS and GFP were utilized with
FAM dye label (Thermo Fisher Scientific, catalog num-
ber: 4331182, Hs00932330 m1 KRAS and Mr04097229 mr
EGFP/YFP Assay Id, respectively). For normalization,
TaqMan probes for glyceraldehyde-3-phosphate dehydro-
genase (GAPDH) levels were also utilized with VIC dye la-
bel (Thermo Fisher Scientific, catalog number: 4326317E).

Fluorescence microscopy

Microscopy was performed 24 or 72 h after experimental
induction. Cell lines were grown on VisiPlate-24 well black
plates and imaged on a Nikon Eclipse Ti-E inverted micro-
scope with a DS-Qi2 camera (14-bit) for phase contrast and
fluorescence images. Images were taken with 20× Ph1 ob-
jective in phase contrast and GFP mode. The microscope is
equipped with Chroma cubes including DAPI 1160B NTE
(catalog 49000, Excitation 395/25, Emission 460/50) for
DAPI, ET GFP (catalog 49002, Excitation 470/40, Emis-
sion 525/50) for FITC/GFP and ET mCH/TR (catalog
49008, Excitation 560/40, Emission 630/75) for TX Red.
Experimental data collection and image analysis were per-
formed using Nikon NIS Elements AR v4.40.00 (Build
1084). All images obtained within a single experiment were
collected at the same exposure time per field of interest, un-
derwent identical processing and were normalized to the
same fluorescent intensities.
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Flow cytometry

Prior to flow cytometry, cells were trypsinized with 0.25%
trypsin-EDTA (Thermo Fisher Scientific, catalog number:
25053CI) at 37◦C for 5 min. After 5 min, trypsin-EDTA was
neutralized with supplemented DMEM, after which cells
were filtered and read on a BD Fortessa flow cytometer.
About 10 000 cells per sample were collected per experi-
ment.

Immunofluorescence

Prior to immunofluorescence staining, cells were
trypsinized with 0.25% trypsin-EDTA at 37◦C for 5
min. After 5 min, trypsin-EDTA was neutralized with sup-
plemented DMEM. Cells were centrifuged for 5 min at 400
g. Supernatant was discarded, and cells were resuspended
in 1 ml of 4% paraformaldehyde in 1× PBS. Cells were
incubated at room temperature for 15 min. Cells were then
washed with excess PBS, centrifuged for 5 min at 400 g, and
supernatant was then discarded. Cells were then incubated
in 1 ml of ice-cold methanol for 30 min at –20◦C. Cells
were then washed with excess PBS, centrifuged for 5 min at
400 g, and supernatant was then discarded. Cells were then
resuspended in 100 �l primary KRAS (Sigma-Aldrich,
catalog number: WH0003845M1) or ERK (Cell Signaling
Technology, catalog number: 4370S) antibody at a dilution
of 1:800 for 1 h at room temperature in incubation buffer
(1× PBS and 0.5 g BSA). Cells were then washed with 1
ml incubation buffer PBS, centrifuged for 5 min at 400
g, and supernatant was then discarded. Cells were then
resuspended in 100 �l secondary antibody at a dilution
of 1:800 for KRAS (Invitrogen, catalog number: A11005)
or 1:2000 for ERK (Cell Signaling Technology, catalog
number: 8889S) for 30 min at room temperature in incuba-
tion buffer. Cells were then washed with 1 ml incubation
buffer, centrifuged for 5 min at 400 g, and the supernatant
was then discarded. Cells were resuspended in 500 �l
PBS, filtered and read on a BD Fortessa flow cytometer
with 10 000 cells per sample.

Growth assay

Cells were grown on VisiPlate-24 well black plate at a den-
sity of ∼1200 cells per well. Cells were incubated on an
LPA for 72 h at different light intensities and sustained
in a constant environment at 37◦C and 5% CO2. After
72 h, cells were incubated with NucBlue reagent (Thermo
Fisher Scientific, catalog number: R37605) and imaged un-
der the Nikon Eclipse Ti-E inverted fluorescence micro-
scope. Bright spot detection was performed on each repli-
cate under DAPI channel excitation, quantified into num-
ber of cellular objects and analyzed for cell number within
MATLAB.

Statistics and reproducibility

Two-sample t-tests were performed for significance of fold-
change calculations between maximum and minimum ex-
pression states of various gene circuits. Additionally, two-
sample t-tests were performed for analyzing the significance

of growth assays, KRAS levels and ERK levels. Kruskal–
Wallis test was performed for analyzing significance in CV
differences between gene circuits and various light doses.

Software

Flow cytometry data were analyzed using FCS Express.
Fluorescence microscopy data were analyzed using the NIS
Elements AR v4.40.00 package. qRT-PCR data were ana-
lyzed using Thermo Fisher Scientific’s Relative Quantifica-
tion App in the Thermo Fisher Cloud. Experimental data
were plotted in MATLAB R2018a. Computational models
were written in MATLAB & in Dizzy with the parameters
given in the Supplementary Information. To test the agree-
ment between the deterministic and stochastic models, we
solved for the steady states and performed 10 000 stochas-
tic simulations for each model parameter.

RESULTS

Testing the precision of gene expression control with an es-
tablished optogenetic gene circuit

To study the precision of gene expression control for an ex-
isting optogenetic benchmark system, we first constructed
a stable Flp-InTM 293 cell line integrating the LightOn
system expressing the green fluorescence protein, mNeon-
Green (Figure 1A) (28). Previous studies have explored gene
expression of the LightOn system with transient transfec-
tions but have not analyzed stably-integrated mammalian
cell lines (39–41). Subsequently, we will refer to this stable
engineered cell line as VVD.

To characterize the light responsiveness of VVD cells, we
sought a robust illumination platform that could allow a
wide-range of tunability for various light parameters. Thus,
we turned to the recent light plate apparatus (LPA) system,
which is easily customizable for in vitro assays, allowing pa-
rameter scans for light intensities, pulses and complex light
patterns (42). We constructed several LPA systems allowing
up to 24 illumination patterns to be probed simultaneously
per device (Supplementary Figure S2).

To explore VVD cell response to light, we first ana-
lyzed gene expression under increasing light intensities with
continuous illumination of the LPA device that has 4096
grayscale (g.s.) levels. We observed nearly 14-fold change of
gene expression induction (Figure 1D). However, around
the LPA induction of 500 g.s., the response of VVD cells
reached a maximum and then dropped for increasing light
intensities (Supplementary Figure S3). This behavior has
not been described before, potentially because previous
studies have utilized custom light apparatuses with limited
light probing capabilities. Moreover, we also noticed large
gene expression noise, with a coefficient of variation (CV)
∼5-fold higher compared to existing chemically inducible
NF gene circuits (23). This observation led us to design
light-controllable systems with low noise since high CV may
be non-optimal for precise single-cell gene expression con-
trol.
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Figure 1. Gene expression control by VVD, TIP-LITer1.0 and Deg-LITer1.0 gene circuits with constant illumination at increasing light intensities. (A-
C) Simplified and detailed schematics of VVD (A), TIP-LITer1.0 (B) and Deg-LITer1.0 (C) gene circuits stably integrated within the Flp-In 293 cell
genome. ‘V’ is the VVD protein, ‘T’ is the TetR regulator with either TIP or Degron and ‘G’ is the Reporter output. (D) Fluorescence histograms for
flow cytometry performed for each gene circuit under light intensity titration. Numbers within graph represent grayscale value from LPA for stimulating
constant light intensity. (E) Fluorescence microscopy of cells with corresponding gene circuits over light intensity titration. (F) Flow cytometry mean
fluorescence versus light intensity titration for the LITer1.0 gene circuits. (G) Mean fluorescence values normalized by maximum fluorescence intensity for
the three gene circuits. Error bars represent standard deviations; N = 3. (H) Coefficient of variation (CV) over light intensity titration for the three gene
circuits. Two-sample t-test was performed on maximum and minimum mean fluorescence data values. TIP-LITer1.0 ON/OFF had a P-value of 3.21E-06,
Deg-LITer1.0 ON/OFF had a P-value of 5.40E-10 and VVD ON/OFF had a P-value of 1.28E-04. Kruskal–Wallis test was performed for CV dataset
differences. TIP-LITer1.0 versus VVD had a P-value of 2.87E-09 and Deg-LITer1.0 versus VVD had a P-value of 2.88E-09.

LITer1.0 gene circuits improve the precision of single-cell
gene expression control

To achieve lower noise than observed in the VVD cells, we
began exploring gene circuit designs that reduce noise. Con-
sidering the noise-reducing ability of NF, we moved to inte-
grate negative autoregulation into optogenetic circuits. No-
tably, most optogenetic systems currently rely on transcrip-
tional activation, which is incompatible with negative au-
toregulation (28,29). Thus, we turned to existing chemical-
inducible mammalian gene expression systems that uti-
lized TetR negative feedback to precisely control GFP re-
porter expression (23). We hypothesized that upgrading
these chemical tools into optogenetic systems could repli-
cate their wide dynamic range of gene expression induction
with low noise (23).

To enable NF in optogenetics, we turned toward the blue-
light responsive (450 nm) LOV2 protein domain that has
been fused to various proteins previously (27,33). We fused
the LOV2 protein domain with the repressor protein TetR
(Figure 1B) and added the Tet-inhibiting peptide (TIP) (34)
capable of inhibiting the TetR protein to the C-terminal end
of LOV2. To achieve this, we used the hTetR variant codon
optimized for human cells, with a nuclear localization se-
quence (23). We fused this hTetR with the LOV2 domain
by adding a six amino acid sequence (ASGAGA) linker be-
tween the two domains. Then, we fused TIP directly with the
LOV2 domain in the C-terminal region at the J�-helix re-

gion without any linker (Supplementary Figure S1). We rea-
soned that blue light stimulation should open up the LOV2
protein domain, exposing the TIP to bind and inactivate
TetR, de-repressing GFP and enabling its expression. Fi-
nally, we incorporated this TetR–LOV2–TIP fusion protein
under the control of a CMV-based D2ir promoter with two
Tet operator (TetOx2) sites, allowing feedback regulation
(23). Additionally, an identical D2ir promoter drove the ex-
pression of the reporter GFP (Figure 1B). We constructed
the entire gene circuit into a single vector, stably integrated
into Flp-InTM 293 cells and sorted for monoclonal cells.
Henceforth, we refer to the cells expressing this gene circuit
as TIP-based Light-Inducible Tuner or TIP-LITer1.0.

To complement the TIP-LITer1.0, we next modified the
gene circuit by replacing the TIP with a degradation tag
consisting of four amino acids (RRRG, Figure 1C) (35).
The gene circuit with the degradation tag uses the same
hTetR variant, a six amino acid linker (ASGAGA) to fuse
the hTetR and LOV2 domains, and the RRRG sequence
directly fused with the J�-helix region without any linker
(Supplementary Figure S1). Like the TIP-LITer1.0 system,
the gene circuit is in the OFF-state under darkness. Upon
blue light stimulation, the LOV2 protein domain opens and
exposes the RRRG tag leading to degradation of the TetR
fusion repressor, allowing the expression of GFP. Hence-
forth, we refer to the cells expressing this gene circuit as
Degron-based Light-Inducible Tuner or Deg-LITer1.0.
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Next, to compare the characteristics of these new gene
circuits with an existing optogenetic circuit, we performed
the same light intensity dose–response measurements on
TIP-LITer1.0 and Deg-LITer1.0 as we did with the VVD
system. We observed a wide dynamic range of gene expres-
sion induction (Figure 1D and E). Importantly, at the popu-
lation level, we observed much tighter fluorescence distribu-
tions for both the TIP-LITer1.0 and the Deg-LITer1.0 than
for VVD, indicating lower gene expression noise.

For quantitative comparisons of the three gene circuits’
gene expression levels, we examined the mean fluorescence
output at full induction (Figure 1F and G). Interestingly,
the Deg-LITer1.0 had the highest expression, the TIP-
LITer1.0 had an intermediate expression, and the VVD had
the lowest level of expression. We achieved ∼3-fold stable
gene expression fold-induction for all light doses for both
LITer1.0 systems as opposed to the VVD system, which
became inactivated at prolonged periods of high-intensity
light exposure (Supplementary Figure S3). Consequently,
we performed subsequent measurements on the VVD sys-
tem at 24-h terminal time-points and the LITer1.0 systems
at 72-h terminal time points.

To compare the noise of the three systems, we examined
their CV. Strikingly, we observed up to 5.5- and 4.5-fold
lower CV of TIP-LITer1.0 and Deg-LITer1.0, respectively,
compared with the VVD system (Figure 1H). We hypoth-
esize three possible sources for this noise reduction. First,
negative feedback is known to reduce gene expression noise
(12,43). Second, the slow photocycle kinetics of the VVD
protein versus the fast photocycle kinetics of the LOV2 pro-
tein domain may lead to higher variation among induced
VVD cells (44,45). Third, monomers of the LOV2 protein
domain can induce gene expression while VVD activation
requires dimerization, possibly increasing cooperativity and
noise amplification.

Considering the dose–response linearity of chemically
inducible NF gene circuits (23) and to explore the use
of LITer1.0 gene circuits for analog gene expression con-
trol, we also inspected the linearity of their light inten-
sity dose–response (Supplementary Data). The LITer1.0
dose–responses were approximately linear up to 225 g.s.
from the LPA (Supplementary Figure S4), complementing
other systems that exhibit linearity with pulsed illumina-
tion (46). The linearity was reduced in the LITer1.0 gene
circuits compared to chemically inducible systems, because
of two main dose–response features. First, the gene circuit
did not respond at very low light intensities, causing the
dose–response to start off flat (Supplementary Figure S4).
Second, even after this flat part, the dose–response did not
remain linear for a wide inducer range, starting to curve
downwards at 225 g.s. (Supplementary Figure S4). To in-
vestigate the sources of these deviations from standard lin-
earizer characteristics, we generalized earlier deterministic
models (23), allowing basal gene expression, reversion of in-
duced LOV2 into its inactive state and adjustment of the
Hill parameters. Indeed, elevated basal gene expression ex-
plained the flat start-off, while Hill parameter adjustments
captured the reduced linearity (Supplementary Figure S5
and Supplementary Data). Additionally, increased refold-
ing of LOV2 into an inactive state increased the light needed
to induce a specific level of GFP. When combining all these

parameters into a single model (Supplementary Figure S5),
the dose response more closely matched the experimental
results.

Finally, to examine potential clonal effects on gene cir-
cuit behavior in the engineered cell lines, we compared
dose–responses of polyclonal versus monoclonal popula-
tions of the VVD, TIP-LITer1.0 and Deg-LITer1.0 cell lines
(Supplementary Figure S6). Since each polyclonal popu-
lation consists of multiple clones, if clonal isolates affect
gene circuit behavior then the polyclonal and monoclonal
dose–responses should differ from each other. Remark-
ably, the monoclonal populations had nearly identical dose–
responses to the polyclonal populations, despite these lat-
ter populations consisting of many clones. Accordingly, the
dose–responses of mean fluorescence intensity and gene ex-
pression noise for monoclonal and polyclonal populations
were very similar, indicating minimal clonal effects on gene
circuit behavior. This is consistent with the minimal clonal
effects and variation of the Flp-In 293 cell line observed by
Thermo Fisher Scientific and by other research groups (47)
as the genomic FRT site location (48) is identical in all cells
(e.g. descended from parental Flp-In 293 cells).

In the Flp-In system, a promoter (promoter trap) initially
driving the expression of a LacZ-Zeocin fusion protein is
part of the genomic integration site. Proper plasmid inte-
gration at the genomic FRT site ensures that the hygromycin
resistance gene inserts downstream from the promoter trap
replacing the LacZ-Zeocin expression, allowing drug selec-
tion for cells with proper integration. Cells with random
integration die since their hygromycin genes will have low
chance for a native promoter to drive hygromycin resistance
gene transcription. Since the plasmid backbone design is
the same for all gene circuits involved, drug selection en-
forces that each gene circuit integrates and remains within
the same genomic locus for all cells, which we ensure by
maintaining constant hygromycin exposure for all cell lines.

Overall, these intensity dose–response experiments pro-
vide initial characterization of a classical and two newly en-
gineered optogenetic systems, which we next explored under
pulsed light-induction regimes.

Responses of VVD and LITer1.0 gene circuits to pulsed inputs

To characterize the response of VVD and LITer1.0 gene cir-
cuits to discontinuous light-induction regimes, we next in-
vestigated by fluorescence microscopy and flow cytometry
measurements how single light pulses of variable duration
and fixed LPA intensity (1000 g.s.) affect gene expression
(Figure 2A and Supplementary Figure S7).

We found nearly 4-fold change of gene expression in-
duction for the LITer1.0 gene circuits compared to 21.9-
fold for VVD for different pulse lengths. Interestingly, VVD
expression saturated for pulsed illumination (Figure 2B–
D), implying that shorter (<24 h) illuminations and in-
termediate intensities eliminate the fall in activity at high
doses with continuous illumination. Importantly, we also
observed around 4-fold lower gene expression noise for both
LITer1.0 gene circuits compared with the VVD system (Fig-
ure 2E).

As another discontinuous light-induction regime, we
tested the effects of varying the duty cycle (percent of time
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Figure 2. Gene expression control by VVD, TIP-LITer1.0 and Deg-LITer1.0 gene circuits with pulsed illumination. (A) Schematic illustration of single
pulse experiment. (B) Fluorescence histograms for single light pulse titration. Numbers on histograms represent minutes of single pulse duration. (C) Flow
cytometry mean fluorescence expression versus pulse length for single pulse experiment of LITer1.0 gene circuits. (D) Normalized mean fluorescence values
versus pulse length for single pulse experiment. (E) Coefficient of variation (CV) versus pulse length for single pulse experiment. (F) Schematic illustration of
duty cycle experiment. (G) Fluorescence histograms for duty cycle experiment. Percentages on histograms indicate duty cycles (fraction of each 1 h period
for which light was on). (H) Flow cytometry mean fluorescence versus duty cycle for LITer1.0 gene circuits. (I) Normalized mean fluorescence values versus
duty cycle. (J) CV versus duty cycle. Error bars represent standard deviation; N = 3. Two-sample t-test was performed on maximum and minimum mean
fluorescence data values for pulse and duty-cycle experiments. TIP-LITer1.0 ON/OFF had a P-value of 1.76E-06, Deg-LITer1.0 ON/OFF had a P-value
of 7.77E-06 and VVD ON/OFF had a P-value of 7.03E-05 for single pulse experiment. TIP-LITer1.0 ON/OFF had a P-value of 3.17E-06, Deg-LITer1.0
ON/OFF had a P-value of 0.0083 and VVD ON/OFF had a P-value of 0.0092 for duty-cycle experiment. Kruskal–Wallis test was performed for CV
dataset differences. TIP-LITer1.0 versus VVD and Deg-LITer1.0 versus VVD had a P-value of 2.88E-09 for the pulse experiment. TIP-LITer1.0 versus
VVD had a P-value of 2.88E-09 and Deg-LITer1.0 versus VVD had a P-value of 2.87E-09 for the duty-cycle experiment.

ON) for periodic light stimuli on the gene circuits. We chose
a stimulus period of 1 h and measured gene expression at
increasing duty cycle percentages (Figure 2F). Again, we
found broad distributions in the VVD system and tight dis-
tributions for the LITer1.0 systems (Figure 2G). The VVD
system could achieve around 2-fold induction with as little
as 6% duty cycle for which the LITer1.0 systems required
12.5% duty cycle (Figure 2H and I). As before, the CVs of
the LITer1.0 gene circuits were several-fold lower (Figure
2J).

Interestingly, low duty cycles could achieve near maximal
expression implying there may be benefits to low ON/OFF
ratios versus continuous light, perhaps due to cellular toxic-
ity at long exposures (49,50). Overall, the LITer1.0 gene cir-
cuits had lower noise than VVD, but their basal expression
was high for expressing functional genes. To optimize these
optogenetic circuit prototypes for functional gene expres-
sion, we next turned to computational modeling to reveal
experimental parameters that could be adjusted to lower
basal expression.

Computational models suggest improvements for LITer1.0
gene circuits

To examine strategies for optimizing the LITer1.0 architec-
ture by lowering basal expression, we asked if reducing the
system from two promoters to one promoter would lower

the basal expression. We reasoned that decreasing the num-
ber of TetO operator sites competing for TetR might in-
crease the effective time for which TetR would be bound,
and would lead to stronger repression of GFP expression.
Therefore, we developed deterministic and stochastic mod-
els of basal expression in double-promoter LITer1.0 sys-
tems versus single-promoter LITer2.0 systems, considering
a set of simple reactions including transcription, transla-
tion, degradation, TetR binding, TetR unbinding and ex-
pression leakage (Supplementary Figure S8A and B). The
deterministic model using identical parameters for all genes
based on previous models (23) (Supplementary Figure S8C,
and Supplementary Tables S2 and S3) indicated no differ-
ence between LITer1.0 versus LITer2.0 systems except when
allowing DNA-bound TetR to degrade. A stochastic com-
putational model using the Gillespie algorithm in MAT-
LAB and the Dizzy software package for validation (Sup-
plementary Data) (51–53) matched the deterministic model,
showing insignificant changes in basal expression for the se-
lected parameters (Supplementary Figure S8C).

To more realistically match experimental conditions, we
then began exploring changing parameters between GFP
and TetR synthesis. Despite both GFP and TetR having the
same promoters (D2ir), equal parameters in the LITer1.0
models were not realistic because only GFP contains a
Kozak sequence and an intron in the 5′ region to increase
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translational and transcriptional efficiencies respectively,
compared to the TetR protein. We therefore moved to ex-
plore how such differential transcriptional and translational
efficiencies affected the basal expression of GFP in LITer1.0
versus LITer2.0 systems. Thus, to reflect the lack of a TetR
intron, we set TetR transcriptional synthesis and leakage
rate at 50% of GFP in LITer1.0, obtaining a clear increase in
basal GFP expression versus the LITer2.0 system (Supple-
mentary Figure S8D). Next, to reflect the lack of a Kozak
sequence, we set TetR translational synthesis rates at 50%
of GFP in LITer1.0 (Supplementary Figure S8E), which in-
creased basal GFP expression further versus the LITer2.0
systems. These results indicate two mechanisms that should
diminish high basal expression upon converting LITer1.0
into LITer2.0 systems.

Finally, we applied both parameter modifications simul-
taneously to test if greater basal expression reduction in
LITer2.0 could occur (Supplementary Figure S8F). Indeed,
the basal expression decreased more than for each indi-
vidual parameter change alone. Overall, these models pre-
dicted that co-transcribing TetR and GFP would equalize
the transcription and translation rates of TetR and GFP,
suggesting simple molecular cloning modifications to lower
the basal expression of a GOI. Next, we tested these predic-
tions experimentally.

LITer2.0 gene circuits improve controllability and applicabil-
ity

To experimentally increase TetR transcriptional and trans-
lational efficiency, we incorporated the P2A sequence to al-
low polycistronic gene expression under a single promoter
(27) (Figure 3A and B). We stably integrated these opto-
genetic gene circuits termed henceforth TIP-LITer2.0 and
Deg-LITer2.0, and sorted cells into monoclonal cultures.

To test the performance of these single-promoter
LITer2.0 gene circuits, we studied the same illumination
regimes as for the LITer1.0 gene circuits, starting with a
light intensity titration with continuous illumination. In
agreement with model predictions, the experimental results
indicated that increasing TetR transcription and translation
efficiency drastically lowered the basal expression by 82.3%
and 97.1% for the TIP-LITer2.0 and Deg-LITer2.0 systems,
respectively (Supplementary Figures S8F and S3C). Flow
cytometry histograms and fluorescence microscopy indi-
cated tight expression control for the two new gene circuits
with over 3-fold gene expression induction (Figure 3D–G).
Interestingly, the order of basal expression levels flipped
compared to the LITer1.0 versions, with the TIP-LITer2.0
having the highest basal expression, while the Deg-LITer2.0
had a similar basal expression to the VVD. Remarkably, de-
spite the massive decrease in basal expression, the CVs of
both LITer2.0 gene circuits remained nearly identical to the
corresponding LITer1.0 versions, up to 5-fold lower than
the VVD system (Figure 3H).

To test the effects of light pulsing on the LITer2.0 sys-
tems, we next examined how single pulse duration affects
the mean and noise of gene expression. The LITer2.0 ver-
sions had a similar dynamic range to the LITer1.0 systems
(Figure 4A–C). Strikingly, the noise remained up to 5.9
times lower for the LITer2.0 gene circuits compared to VVD

(Figure 4D). We also analyzed the effect of the duty cycle
(Figure 4E–G) and found around 3-fold gene expression in-
duction and up to 4.8-fold noise reduction for the LITer2.0
circuits compared to VVD (Figure 4H).

To test whether the four LITer gene circuits still re-
sponded to chemical inducers, we also performed dose–
response experiments with the small molecule inducer doxy-
cycline (Supplementary Figure S9). We found higher fold-
induction for all LITer gene circuits (16.8, 4.6, 26.1 and
51.2 for TIP-LITer1.0, Deg-LITer1.0, TIP-LITer2.0 and
Deg-LITer2.0, respectively). These results imply that future
modifications may further improve light-responsiveness of
these gene circuits.

Finally, as in the LITer1.0 versions, we inspected the lin-
earity of gene expression versus light intensity by fitting
dose–responses of the mean to linear functions (Supple-
mentary Figure S4). The LITer2.0 dose–response was linear
up to 225 g.s. from the LPA and its linearity improved com-
pared to the LITer1.0 versions. We attribute this improve-
ment to the increase in transcriptional and translational ef-
ficiencies for TetR in the LITer2.0 version, therefore match-
ing GFP production. Whereas linear functions did fit the
dose–response data at low induction, they were not the best
fit at high induction, where the shape became increasingly
non-linear. Consequently, Hill functions better captured the
full dose–responses of all gene circuits (Supplementary Fig-
ure S10), with the Hill coefficients around 2 for all sys-
tems (1.89 [1.46, 2.32], 1.81 [1.5, 2.11], 1.97 [1.62, 2.33] and
2.3 [1.77, 2.83] for the TIP-LITer1.0, Deg-LITer1.0, TIP-
LITer2.0 and Deg-LITer2.0, respectively).

Overall, these results show that the LITer2.0 gene circuits
are more compact, have lower basal expression, low gene
expression noise and a reasonable dynamic range of gene
expression induction for various light parameters, making
them preferable candidates for precisely controlling expres-
sion of a functional gene of interest (GOI).

Controlling a phenotypically relevant gene with LITer gene
circuits

The above results support using LITer systems for con-
trolling gene expression rather than existing, activator-
based, feedback-lacking optogenetic systems because NF
improves the precision of gene expression control by lower-
ing gene expression noise compared to the latter. For exam-
ple, if we seek to determine how KRAS expression affects a
cellular phenotype, then uniform KRAS expression is ben-
eficial. Based on Figures 1–4, the VVD system could not
achieve uniform intermediate expression in all cells. Rather,
some cells will have basal expression while other cells will
have maximal expression, making it impossible to deter-
mine the phenotype for intermediate KRAS levels. On the
other hand, the LITer systems enforce uniform, tunable
expression, making it possible to answer the above ques-
tion. Thus, to explore the possibility of using these novel
optogenetic NF systems for expressing a functional GOI,
we moved toward adapting the TIP-LITer2.0 system to co-
express the mutant oncogene KRAS(G12V) with GFP by
incorporating an additional P2A sequence. We called the
new gene circuit LITer2.0-KRAS (Figure 5A). We built and
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Figure 3. Gene expression control by VVD, TIP-LITer2.0 and Deg-LITer2.0 gene circuits with constant illumination at increasing light intensities. (A,B)
Simplified and detailed schematics of the TIP-LITer2.0 (A) & Deg-LITer2.0 (B) gene circuits, where w/o is without light and w/ is with light. LITer2.0 gene
circuits were stably integrated within Flp-In 293 cell genome. ‘T’ is the TetR regulator with either TIP or Degron and ‘G’ is the Reporter output. (C) Basal
expression of LITer1.0 gene circuits vs LITer2.0 gene circuits. (D) Fluorescence microscopy of cells with corresponding gene circuits over light intensity
titration for the LITer2.0 gene circuits. (E) Fluorescence histograms from flow cytometry performed on cells with corresponding gene circuits under light
intensity titration. Numbers within graph represent grayscale values from the LPA for induction with constant light intensity. (F) Flow cytometry mean
fluorescence versus light intensity titration for the LITer2.0 gene circuits. (G) Mean fluorescence values normalized by maximum fluorescence level versus
light intensity for the three gene circuits. (H) Coefficient of variation (CV) versus light intensity titration for the three gene circuits. Error bars are standard
deviation; N = 3. Two-sample t-test was performed on maximum and minimum mean fluorescence data values. TIP-LITer2.0 ON/OFF had a P-value
of 2.55E-07 and Deg-LITer2.0 ON/OFF had a P-value of 1.02E-08. Kruskal–Wallis test was performed for CV dataset differences. TIP-LITer1.0 versus
VVD had a P-value of 2.88E-09 and Deg-LITer1.0 versus VVD had a P-value of 2.87E-09.

integrated the system into the Flp-InTM 293 genome and
created monoclonal cells lines.

To validate the gene circuit function, we performed flow
cytometry for the LITer2.0-KRAS system under an inten-
sity dose–response that indicated up to 3.1-fold gene expres-
sion induction for GFP and nearly 5-fold noise reduction
versus the VVD system (Figure 5B–D). Furthermore, we
also tested the duty cycle-response of the LITer2.0-KRAS
system, achieving over 80% expression at 25% duty cycle
compared to constant illumination (Supplementary Figure
S11). Analyzing the mRNA response of the gene circuit to
continuous illumination by qRT-PCR indicated increasing
KRAS and GFP mRNA expression (Figure 5E) with over
an order of magnitude fold-induction.

KRAS is a major activator of growth factor signaling
pathways. Usually, post-translational KRAS activity is con-
sidered most relevant for downstream signaling, and most
studies focus on KRAS-activating mutations. However, in-
creasing KRAS levels should also lead to higher down-
stream activity, an effect that has been much less studied.
The downstream effector ERK is phosphorylated indirectly
by KRAS activity through the intermediaries RAF and
MEK. If the LITer2.0-KRAS gene circuit produces increas-
ing levels of active KRAS, this should cause rising phospho-
rylation of ERK in response to light.

To test the direct and downstream effects of KRAS
expression tuning, we measured KRAS mean expression
levels and the activity of the downstream effector ERK

by immunofluorescence. KRAS levels rose nearly 2-fold
due to light induction (Figure 5F), indicating that the
gene circuit can induce dose-responsive changes in a func-
tional gene and the reporter simultaneously. Likewise, im-
munofluorescence indicated a rise in the downstream effec-
tor phosphorylated-ERK in response to light, confirming
that precisely controlled KRAS levels affect downstream
signaling (Figure 5G).

Finally, we checked whether the dose-responsive in-
creases in KRAS levels, and therefore phosphorylated-
ERK, could affect cell proliferation as previously demon-
strated (54,55). We grew cells for ∼72 h under various light
conditions. Afterwards, we stained cells with NucBlue™ and
imaged them by microscopy to count their total number
per field. Cell growth decreased with increasing light expo-
sure for LITer2.0-KRAS cells, while light did not affect the
growth of parental cells significantly (Figure 5H and Sup-
plementary Figure S12). Interestingly, we observed that the
uninduced basal expression for the LITer2.0-KRAS gene
circuit provides some benefit in cell growth compared to
parental cells. This indicates that an optimal, low KRAS
level may maximize cell growth, while higher KRAS may
lead to senescence (56). Accordingly, converting the cell
number into doubling time (Figure 5I) indicated faster
growth under low overexpression of KRAS and doubling
times reminiscent of parental cells at intermediate doses of
light. Finally, to validate that the observed effects were due
to KRAS induction and not light alone, we also analyzed
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Figure 4. Gene expression control by VVD, TIP-LITer2.0 and Deg-LITer2.0 gene circuits with pulsed illumination. (A) Fluorescence histograms for single
light pulse length titration. Numbers on histograms represent single pulse durations in minutes. (B) Flow cytometry mean fluorescence versus single pulse
duration for LITer2.0 gene circuits. (C) Normalized mean fluorescence values versus single pulse duration. (D) Coefficient of variation (CV) versus single
pulse duration. (E) Fluorescence histogram distributions for duty cycle experiment. Percentages on histograms indicate duty cycles (fraction of each 1 h
period for which light was on). (F) Flow cytometry mean fluorescence versus duty cycle for LITer2.0 gene circuits. (G) Normalized mean fluorescence
values versus duty cycle. (H) CV versus duty cycle for all 3 gene circuits. Error bars represent standard deviations; N = 3. Two-sample t-test was performed
on maximum and minimum mean fluorescence data values for pulse and duty-cycle experiments. TIP-LITer2.0 ON/OFF had a P-value of 7.72E-06 and
Deg-LITer2.0 ON/OFF had a P-value of 3.68E-06 for pulse experiment. TIP- LITer2.0 ON/OFF had a P-value of 1.01E-06 and Deg-LITer1.0 ON/OFF
had a P-value of 1.15E-05 for duty-cycle experiments. Kruskal–Wallis test was performed for CV dataset differences. TIP-LITer2.0 versus VVD and Deg-
LITer2.0 versus VVD had a P-value of 2.88E-09 for the pulse experiment. TIP-LITer2.0 versus VVD had a P-value of 2.88E-09 and Deg-LITer2.0 versus
VVD had a P-value of 2.87E-09 for the duty-cycle experiment.

KRAS and phosphorylated-ERK response to doxycycline
that recapitulated the light-controlled KRAS findings (Sup-
plementary Figure S13).

Overall, the LITer2.0 circuits are beneficial for precision
control of intermediate gene expression levels, while main-
taining low gene expression noise for a functional GOI, and
enabling future studies for single-cell control.

DISCUSSION

Optogenetic gene expression control in mammalian cells
has relied on transient transfection and on light-inducible
transcriptional activators. Therefore, the precision of these
systems is currently unknown. Negative feedback regula-
tion is a wide-spread mechanism of noise reduction in na-
ture and synthetic biology, but it requires repressors rather
than activators. This is possibly the reason why negative
feedback in optogenetic gene expression systems has only
been achieved by in silico control, using computers for au-
tomatic light intensity adjustments according to the ex-
pression of continuously monitored cultured microbial cells
(30,31). This type of in silico control requires expensive
computational and optical setups, and it is not ideal for con-
trolling single cells that move and divide. The possibility of
genetic negative feedback regulation by in vitro control has
been unexplored, especially in mammalian cells.

Here, we describe five novel optogenetic gene circuits that
can be utilized over various light parameters for controlling

gene expression levels and reducing noise, enabling single-
cell control systems.

We report that all LITer synthetic gene circuits can dras-
tically reduce noise compared to benchmark tools such as
LightOn (28), facilitating more precise control of gene ex-
pression in single cells in the future. The stable monoclonal
cells lines we developed or similar ones can be utilized for
exploring functional effects of gene expression levels and
noise in the RAS or other pathways, or various phenotypi-
cally relevant genes in future single-cell investigations.

Given the effects of various light exposure modes, peri-
odic pulsing may be an optimal mode for controlling opto-
genetic gene circuits for at least two reasons. First, the duty
cycle can minimize the time cells are exposed to light, pre-
venting unnecessary phototoxicity. Second, relatively mod-
est duty cycles can achieve expression levels approaching
those for continuous illumination, and for the VVD system,
they can even surpass it.

We show that all the systems remain responsive to chem-
ical induction with up to 51-fold change between ON/OFF
states, implying that there is ample room to improve circuit
architectures for enhanced responses with light. Specifically,
we envision these tools can be improved by probing addi-
tional peptides with higher affinities, more efficient LOV2
domains and more efficient degradation tags. We also ex-
pect further modeling will lead to architecture manipula-
tions that can achieve a wider dose–response to light, lower
basal expression, lower noise and higher fold-change.
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Figure 5. Gene expression control by LITer2.0-KRAS. (A) Simplified and detailed schematic of the LITer2.0-KRAS(G12V) gene circuit. ‘T’ is the TetR
regulator with TIP, ‘K’ is the KRAS(G12V) protein and ‘G’ is the Reporter output. (B) Mean fluorescence intensity dose–response of LITer2.0-KRAS
gene circuit with continuous illumination. (C) CV dose–response for LITer2.0-KRAS and VVD gene circuits. (D) Fluorescence histograms at different light
doses with continuous illumination. Numbers on histograms represent light intensities.(E) q-RT-PCR measurements of KRAS mRNA levels at increasing
doses of light using a log(y) axis. (F) KRAS protein levels measured by flow cytometry using a fluorescent secondary antibody. (G) Phosphorylated-ERK
levels measured by flow cytometry with fluorescent secondary antibody. (H) Cell growth measured by cell number for the parental (Flp-In 293) cell line and
LITer2.0-KRAS cells 72 h after induction. Light causes statistically significant reduction in cell growth compared to basal KRAS expression (uninduced
cells), while light has insignificant effects on the parental cell line. Cells were seeded at ∼1200 cells per well. (I) Cell growth measured by doubling times
for the parental (Flp-In 293) cell line and LITer2.0-KRAS cells 72 h after induction. Light causes statistically significant increase in cell doubling time
compared to basal KRAS expression (uninduced cells), while light has insignificant effects on the parental cell line. Experiments were performed with three
or four technical replicates. Error bars represent the standard deviation of replicates. Stars indicate statistical significance. Two-sample t-test was performed
on maximum and minimum mean fluorescence data values. LITer2.0-KRAS ON/OFF had a P-value of 3.79E-05. Kruskal–Wallis test was performed for
CV dataset differences. LITer2.0-KRAS versus VVD had a P-value of 2.88E-09. Two-sample t-test was performed on maximum and minimum KRAS and
ERK levels giving a P-value of 0.0071 and 0.014, respectively. Two-sample t-test was performed on cell growth (6H) yielding a P-value of 0.0048.

Finally, the gene circuit components we present here (in-
cluding small peptides and degradation tags that can be
synthesized in vitro) offer a platform for modifying exist-
ing Tet-based systems into light-responsive tools for pre-
cisely controlling single-cells. This will allow spatiotempo-
ral control that has remained cumbersome and restricted
by chemical induction alone. Future objectives of this work
will aim at scaling the feedback systems to libraries of GOIs
and perturbing these GOIs in a spatially restricted manner
with single-cell resolution. Such regulated systems provide
an ideal platform for producing accurate and precise gene
expression compared to unregulated gene circuits that can
achieve accurate expression but have wider gene expression
noise and therefore less precision. We also predict that TIP,
degradation tags and other peptides will offer a general-
purpose platform that can be utilized for expansion to other
common gene circuit architectures including positive regu-
lation, negative regulation and positive feedback that de-
pend on TetR and rtTA proteins.
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