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Metal-induced oxidative stress in contaminated soils affects plant growth.

In the present study, we evaluated the role of seed endophyte FXZ2 on

Dysphania ambrosioides Zn/Cd tolerance and accumulation. A series of pot

experiments were conducted under variable Zn (500, 1,000, and 1,500 mg

kg−1) and Cd (5, 15, 30, and 60 mg kg−1). The results demonstrated

that FXZ2-inoculation significantly enhanced the growth of D. ambrosioides

and improved its chlorophyll and GSH content. In the rhizosphere, FXZ2

inoculation changed the chemical speciation of Zn/Cd and thus affected their

uptake and accumulation in host plants. The exchangeable and carbonate-

bound fractions (F1 + F2) of Zn decreased in the rhizosphere of FXZ2-

inoculated plants (E+) as compared to non-inoculated plants (E-) under

Zn stress (500 and 1,000 mg kg−1), correspondingly, Zn in the shoots of

E+ decreased (p < 0.05). However, at Cd stress (30 and 60 mg kg−1), the

F1 + F2 fractions of Cd in E+ rhizospheric soils increased; subsequently, Cd

in the shoots of E+ increased (p < 0.05). FXZ2 could exogenously secrete

phytohormones IAA, GA, and JA. The study suggests that seed endophyte

FXZ2 can increase Zn/Cd tolerance of host plant by altering Zn/Cd speciation

in rhizospheric soils, as well as exogenous production of phytohormones

to promote growth, lowering oxidative damage while enhancing antioxidant

properties. For Zn/Cd accumulation, it has opposite effects: Zn uptake in

E+ plants was significantly (p < 0.05) decreased, while Cd accumulation in

E+ plants was significantly (p < 0.05) increased. Thus, FXZ2 has excellent

application prospects in Cd phytoextraction and decreasing Zn toxicity in

agriculturally important crops.
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Introduction

Plants rely on various metals for normal physiology, but
higher or excess metals in the soil not only deteriorate the
soil health and change the native microbial community but
also adversely affect the physiology and metabolism of plants
(Kidd et al., 2012; Chen et al., 2014; Parmar and Singh, 2015;
Etesami, 2018). Zinc (Zn) is an essential element for plants,
but a higher concentration of Zn in the soil adversely affects
plant growth via root growth inhibition, mitotic efficiency,
chromosomal aberrations as well as oxidative stress (Jain et al.,
2010). Cadmium (Cd) is a non-essential trace element that can
cause toxicity even at lower concentrations (Wagner, 1993; Nan
et al., 2002; Kuriakose and Prasad, 2008), accumulates readily in
the soil and enters the food chain via enrichment in food crops
(Wang et al., 2022). The bioavailability, mobility, and toxicity
of these metals to plants depend on their chemical forms rather
than the total contents (Liu et al., 2007). Therefore, the chemical
speciation of metals in the soil may have an important impact
on plants (Tüzen, 2003; Ahlf et al., 2009).

It is well known that metal-contaminated soils cause various
problems to the surrounding environments, such as plants
survival, agricultural production, food safety, and human health;
therefore, the remediation of these metal-contaminated soils
is of utmost importance (Hussain et al., 2022). Some plants
growing in highly metal-contaminated environments evolved
to tolerate metal stress; they have potential applications in
phytoremediation. Previous studies have demonstrated that
plant-associated microbes, i.e., endophytes can increase host
plants’ metal tolerance properties, enhance their growth, and
influence their metal accumulation (Sharma et al., 2019;
Rattanapolsan et al., 2021; Ważny et al., 2021; Hussain
et al., 2022). It is believed that endophytes induced tolerance
and growth improvement of host plants to metal stress by
detoxification through chelation and compartmentalization of
metal ions, increasing nutrient absorption and root growth,
changing the distribution of metal in plant cells, modulating
the antioxidative system, and secretion of phytohormones (Bilal
et al., 2018; White et al., 2019; Chang et al., 2021; Akhtar et al.,
2022).

FXZ2 is a fungal seed endophyte that has been isolated
from Arabis alpina, and it has been identified to be Epicoccum
nigrum (GenBank accession number is ON209455) (Chu
et al., 2017). Our previous studies have demonstrated that
FXZ2 has high tolerance and adsorption capacity for lead
(Pb) and Cd, and it can significantly enhance host plants’
growth under Zn/Cd stress. Seed endophytes are attributed to
providing beneficial traits such as improving nutrient uptake,
reducing susceptibility to drought and temperature stress, and
improving the growth of host plants. However, the role of seed
endophytes on the plants’ metal tolerance and accumulation
as well as its mechanisms are still unknown. For the beneficial
characteristics that the seed endophyte can be transferred to the

next generation through vertical transmission (Li et al., 2019),
therefore, in practice, it has more advantages than the other
symbiotic microbes. For example, the seed endophyte RE3-3
Herbaspirillum frisingense was successfully transmitted to the
next generation seeds of Phragmites australis and, consequently,
enhanced seedling development and growth under Cd stress
(Gao and Shi, 2018).

Dysphania ambrosioides (L.) Mosyakin and Clemants is a
dominant plant in Pb-Zn mining sites of Huize County, Yunnan
Province, China. It has been reported as a Cd-accumulator
and a Pb-hyperaccumulator, which showed potential application
in phytoremediation of multi-metal-contaminated sites (Wu
et al., 2004; Li et al., 2012; Li X. et al., 2016). The present
study aimed to investigate the role of fungal seed endophyte
FXZ2 on D. ambrosioides Zn/Cd tolerance under variable
Zn (500, 1,000, and 1,500 mg kg−1 soil) and Cd (5, 15,
30, and 60 mg kg−1 soil) stress. Further, the speciation of
Zn/Cd in rhizospheric soils of D. ambrosioides was tested
by Tessier sequential extraction methods. The objective of
this study is to elucidate how the seed endophyte FXZ2
altered the metals’ chemical speciation in rhizospheric soils and
thus affected their absorption, translocation, and accumulation
in host plants. The novelty of this work is that it gives
important information about the function of seed endophytes
in increasing the survival and growth of host plants under metal
stress conditions.

Materials and methods

Fungal seed endophyte FXZ2

The fungal seed endophyte FXZ2 was previously isolated
from the seeds of Arabis alpina, which were collected from
the Pb-Zn mining sites of Huize County, Yunnan Province,
Southwest China (25◦28′17′′ N, 103◦37′34′′ E) (Chu et al.,
2017). FXZ2 was identified to be Epicoccum nigrum based
on its morphological features and molecular analysis (Chu
et al., 2017), and its GenBank database accession number is
ON2094551. The isolate showed better Pb and Cd tolerance
and adsorption capacity, and has been authorized by the Patent
Office of the People’s Republic of China (ZL 2017 1 0028569. 2).
It was submitted to the Chinese General Microbiological Culture
Collection Center (CGMCC NO.13573).

Phytohormone production

To assess for phytohormones jasmonic acid (JA), indole-
3-acetic acid (IAA), and gibberellic acid (GA) production, the

1 http://www.ncbi.nlm.nih.gov/
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isolate FXZ2 was grown in PDB (potato dextrose broth) at
28 ± 2◦C for 21 days in a shaker. After that, the culture was
filtered and the broth was collected and extracted three times
with ethyl acetate, followed by concentration using a vacuum
rotary evaporator. Finally, the extract was dissolved in methanol
for phytohormone tests according to the manufacturer of plant
hormone kits (MLBIO Biotechnology Co., Ltd., Shanghai).
A change in the color of the reaction mixture was measured
by a spectrophotometer at a wavelength of 450 nm. And
the concentrations of IAA, GA, and JA in the extracts were
calculated by comparing the OD of the extracts to the standard
curve of the IAA, GA, and JA. Three replicates were performed.

Pot experiments

The mature seeds were collected from naturally growing
D. ambrosioides and surface sterilized as Li et al. (2012).
Subsequently, the seeds were germinated on a plastic tray that
contained a fixed soil substrate (perlite: peat moss, 3:7, vol:vol)
in a light incubator (25 ± 1/18 ± 1◦C, 16/8 h day/night cycle,
60% relative humidity). Twenty-one days later, the germinated
seedlings with equal size were transplanted to the pots (1
seedling/pot), which contained 150 gm of sterilized soil substrate
mixed with the overages of ZnSo4.7H2O or CdCl2.2.5H2O to
the final concentration of 0, 500, 1,000, and 1,500 mg Zn kg−1

and 0, 5, 15, and 30 mg Cd kg−1, respectively. The pots were
kept in a random configuration and exposed to artificial plant
lighting (16/8 h day/night cycle). Every 2–3 days, the plants
were irrigated with autoclaved water, and once a week Peter’s
General Purpose 20-20-20 fertilizer (Grace Sierra Horticultural
Products, Milpitas, CA, USA) was given.

For the inoculation, FXZ2 was grown on PDA plates at 25◦C
for 7 days. Then, the mycelia were scraped off and suspended in
autoclaved distilled water and divided equally into two portions
(A and B). Suspension B was autoclaved at 121◦C for 20 min.
The pots were randomly divided into two groups (I and II).
Further, the plants of group-I were sprayed with suspension A
(E+) and group II with autoclaved suspension B (E-) at different
time intervals 7, 15, 30, and 45 days of the transplant. The plants
were harvested after growing for 60 days, and the fresh leaves
were collected from E+ and E- and flash frozen right away with
liquid nitrogen, preserved at −80◦C, and used within 2 weeks
for biochemical analysis. Simultaneously, the rhizospheric soil
from each pot was collected, air-dried, and kept in poly-bags
with proper labels for subsequent analysis.

Plant growth parameters

Shoot, root length, and the dry biomass
The harvested plants were washed under tap water

and finally rinsed with deionized water. After that, the

plants were divided into shoots (all aboveground parts)
and roots (all belowground parts), and the length was
measured. Finally, the shoots and roots were oven-dried
at 50–60◦C to constant weight, and then the dry biomass
was recorded. The dried plant samples were used for metal
content analysis.

Total chlorophyll content
Ten plants were selected randomly from each group before

harvesting, and the total chlorophyll content of the youngest
fully developed leaves of each plant was analyzed using a
chlorophyll meter (SPAD-502Plus, Konica Minolta, Inc., Tokyo,
Japan). And the final chlorophyll content of each group was an
average of 10 plants.

Lipid peroxidation
A chemical assay kit (Nanjing Jiancheng Bioengineering

Institute, Nanjing, China) was used to measure the lipid
peroxidation extent, which was expressed in nanomoles
of malondialdehyde (MDA) formation per gram of
tissue. Three replicates were made. To do this, the
frozen leaves’ tissue was crushed in a chilled phosphate
buffer (50 mM, pH 7.2). Then, the homogenate was
centrifuged for 10 min at 3,500 rpm and 4◦C. After that,
the supernatant was transferred to a new tube and the
MDA was measured spectrophotometrically (MAPADA
UV-1800 PC).

Glutathione content
The total glutathione (T-GSH) and oxidized glutathione

(GSSG) assay kits were used for GSH analysis (Nanjing
Jiancheng Bioengineering Institute, Nanjing, China). To do this,
the frozen leaves were homogenized in an extraction buffer (1:4
ratio, wt/vol). Then, the homogenate was centrifuged for 10 min
at 3,500 rpm and 4◦C. After that, the supernatant was used for
GSH analysis (Rahman et al., 2006).

The absorbance of the assay mixture was measured
according to the manufacturer’s protocol, and the T-GSH and
GSSG content was calculated using the given formulas. The
GSH content was expressed in micromoles per gram of fresh
leaves, which was the calculated difference of GSSG content
from the T-GSH content according to the formula mentioned
in the kit.

Cd/Zn accumulation in the plants

The dried root/shoot samples were homogenized into fine
powders, respectively. Then, 0.2 g powders were digested in
5 ml HNO3 (65% w/w) at 110◦C for 2 h. After cooling
1 ml H2O2 (30% w/w) was added and the mixture was
heated for 1 h. The digests were then diluted to 50 ml
with triple-distilled water (Shen et al., 2013). Finally, the
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concentrations of Cd/Zn were estimated by flame atomic
absorption spectrometry (Li et al., 2014). The test was performed
in triplicate.

Chemical speciation of Cd/Zn in
rhizospheric soils

The chemical speciation of Zn/Cd in rhizospheric soils was
tested according to the method of Tessier et al. (1979). The
method consists of five steps that give rise to five fractions
operationally defined as F1 (exchangeable), F2 (carbonate
bound), F3 (Fe-Mn oxides bound), F4 (organic bound), and
F5 (residual). Briefly, 1 gm fine powder of the soil was taken
into a 50-ml polycarbonate centrifuge tube. First fraction was
extracted with 20 ml 1.0 M MgCl2 (pH 7.0) for 1 h with
continuous agitation. The second fraction was extracted with
10 ml 1.0 M sodium acetate (pH adjusted to 5.0 with acetic
acid) for 5 h with continuous agitation. The third fraction
was extracted with 20 ml 0.04 M NH2OH.HCl in 25% sodium
acetate (pH 2.0) for 6 h at 96◦C in a water bath with occasional
agitation. The fourth fraction was extracted with 3 ml 0.02 M
HNO3 and 5 ml 30% H2O2 (pH adjusted to 2.0 with HNO3)
for 2 h at 96◦C in a water bath with occasional agitation;
after that, 3 ml 30% H2O2 (pH 2.0 with HNO3) was added
and extracted for 2 h at 96◦C in a water bath with occasional
agitation; subsequently, after cooling, 5 ml 3.2 M ammonium
acetate in 20% (v/v) HNO3 was added, and the samples were
diluted to 20 ml and agitated continuously for 30 min. The
fifth fraction was the residue left from the organic fraction.
It was digested with 4 ml HCl-HNO3 (3:1, v/v) mixture at
80◦C for 30 min, then 100◦C for 30 min, and finally 120◦C
for 1 h. After that, cooled and 1 ml HClO4 was added to
continue digestion at 100◦C for 20 min, followed by 120◦C
for 1 h. The concentrations of Zn/Cd were determined by
flame atomic absorption spectrometry in different fractions
(Li et al., 2014). Triplicates were made. The effect of FXZ2
inoculation (FE) was introduced to evaluate the influence
on the chemical speciation of Zn/Cd in the rhizospheric
zone. Here, FE = (FE+ - FE−)/FE−, where FE+ and FE−

represent the corresponding fractions of metals in the E+ and
E- treatments, respectively. The FE data were represented as
heatmap drawn using Heatmap function of R version 4.1.1
(2021).

Statistical analysis

Boxplots were drawn using the ggboxplot function of
the ggpubr package (version “0.4.0.999”) in R version 4.1.1
(Core TeamR, 2021) and RStudio 2021.09.0 (R Studio Team,
2021). The difference between E+ and E- was determined
using Student’s t-test significant at the level of <0.05%

performed in RStudio and one-way ANOVA and Duncan test
(p < 0.05).

Results and discussion

The effect of FXZ2 on Dysphania
ambrosioides growth

No matter at Zn or Cd stress, FXZ2 significantly improved
the shoot length of D. ambrosioides (p < 0.05) (Figures 1, 2).
However, it had different effects on the root length and dry
biomass of D. ambrosioides under Zn stress and Cd stress.
At all Zn concentrations, FXZ2 decreased the root length
of D. ambrosioides, but the difference was only significant
(p < 0.05) at 1,500 mg kg−1 Zn stress (Figure 1). Both
the dry biomass of shoots and roots of E+ were significantly
(p < 0.05) higher than those of E- at all Zn concentrations.
Contrary to this, at all Cd concentrations, FXZ2 improved the
root length of D. ambrosioides (p > 0.05) except at 30 mg
kg−1 Cd stress (p < 0.05) (Figure 2). The dry biomass of
E+ shoots was significantly (p < 0.05) higher than that of E-
shoots. However, the dry biomass of E+ roots was more than
that of E- roots at all Cd concentrations, but the difference
was only significant (p < 0.05) at 15 and 60 mg kg−1

Cd stress.
Although Zn is an essential element required for plant

growth, its high concentration in the soil could affect essential
plant metabolic functions and cause retarded growth and
senescence (Yadav, 2010). High Cd concentration negatively
affects mineral nutrition and carbohydrate metabolism and
consequently decreases plant biomass production (John et al.,
2009). Increased Cd also alters the activity of antioxidant
enzymes, including superoxide dismutase, peroxidase, etc.
(Sun et al., 2007). In the present study, it was found that
with the increase of Zn/Cd concentration in the soil, both
the dry biomass of E+ and E- shoots and roots decreased
(Figures 1, 2). But still, the dry biomass of E+ was better
than E-. The finding suggests that fungal seed endophyte FXZ2
improved D. ambrosioides growth under different Zn/Cd stress.
These results are similar to previous studies that microbial
inoculation positively affected the plant biomass under Zn
and/or Cd stress (He et al., 2013; Bilal et al., 2018; Singh
et al., 2018; Zhu et al., 2018; Zhai et al., 2022). In addition,
the present study showed that the plant exposure to Cd
stress affects the biomass in a dose-dependent manner; similar
observations were also reported by other authors (Sun et al.,
2007; Kamran et al., 2015; Khan et al., 2015; Shahid et al., 2019;
Zhang et al., 2019).

In general, FXZ2 induced enhancement of plant growth
indicators such as shoot and root lengths. Their dry weight
indicates a plant’s ability to tolerate Zn and Cd stress
and has shown positive growth (Kamran et al., 2015).
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FIGURE 1

The effect of FXZ2 on the growth of Dysphania ambrosioides under Zn stress (*p < 0.05, **p < 0.005, ***p < 0.0005, ****p < 0.00005, ns
p > 0.05 t-test).

Both bacterial and fungal endophytes have been linked
to the improved plant growth-related characteristics of the
host plants under metal stress (Bilal et al., 2018; Zhu
et al., 2018; Shahid et al., 2019; Rattanapolsan et al., 2021;
Hussain et al., 2022).

The effect of FXZ2 on Dysphania
ambrosioides Zn/Cd accumulation

The uptake and accumulation of Zn/Cd in the shoots and
roots of E+ and E- are shown in Table 1. Generally, the
Zn concentrations in E+ and E- plants differed from the Zn
concentration in the soil (Table 1). At 0 mg kg−1 Zn stress,
the Zn content in the shoots of E+ plants was significantly
(p < 0.05) high than that of E- plants, however, this was
only slightly more (p > 0.05) in the roots of E+ plants.
Contrary to this, at 500 and 1,000 mg kg−1 Zn stress, the shoot
Zn content in E+ plants was significantly (p < 0.05) lower

than that in E- plants, while only slightly more (p > 0.05)
in E+ plants at 1,500 mg kg−1 Zn treatment. Similarly, the
root Zn content was more (p > 0.05) in the E- plants than
E+ plants at 500 and 1,000 mg kg−1 Zn treatment, while
less (p > 0.05) in E- plants at 0 and 1,500 mg kg−1 Zn
treatments.

The results suggest that the effect of FXZ2 on Zn uptake
and accumulation was variable with the Zn content in
the soil. Bilal et al. (2018) reported that the consortia
endophytic microbes decreased Al and Zn content in
the shoots and roots of Glycine max L. under 2.5 mM
Al and Zn stress. Garg and Singh (2018) found that
Rhizophagus irregularis combined with silicon amended
soil and individually also decreased leaves and roots Zn
content under Zn stress (600 and 1,000 mg kg−1). While
the other studies showed different results; for example,
the endophytic bacterium Sphingomonas sp. increased Zn
uptake in Sedum alfredii (Chen et al., 2014). Similarly,
dark septate endophyte Exophiala pisciphila increased Pb,
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FIGURE 2

The effect of FXZ2 on the growth of Dysphania ambrosioides under Cd stress (*p < 0.05, **p < 0.005, ***p < 0.0005, ****p < 0.00005, ns
p > 0.05 t-test).

Zn, and Cd content in the roots and decreased in the
shoots of Zea mays L. (Li et al., 2011); rhizobacterium
Enterobacter ludwigii increased the Zn content in wheat
under metal stress (Singh et al., 2018). This indicates that
different microbes have different effects on host plant metal
accumulation. Therefore, artificial manipulation of these
microbes can be exploited to achieve the desired beneficial
response.

At 0 mg kg−1 Cd stress, the Cd content was more (p > 0.05)
in the shoots and roots of E- than E+ plants. However, the
shoot and root Cd contents were higher in E+ plants at
all Cd treatments than those in E- plants. The difference
was significant (p < 0.05) at 60 mg kg−1 Cd stress, while
the difference was non-significant (p > 0.05) at 5, 15, and
30 mg kg−1 Cd (Figures 1, 2 and Table 1). FXZ2-induced
Cd content increase in the shoots and roots was consistent
with other studies (Ren et al., 2006; Soleimani et al., 2010;
Wan et al., 2012; Deng et al., 2013; He et al., 2013). Besides,
plant growth-promoting bacteria such as Rhizobium sullae and
Pseudomonas sp. (Chiboub et al., 2019), arbuscular mycorrhizal

fungi (Berthelot et al., 2018; Rafique et al., 2019), and arbuscular
mycorrhiza and silicon amended soil in combination as well
as alone (Garg and Singh, 2018) were also found to increase
Cd accumulation in host plants. However, the finding was
opposite to some previous studies that reported relatively
lower Cd content in the roots and shoots and roots of the
endophyte inoculated plants under Cd stress (Wang et al., 2016;
He et al., 2017; Zhan et al., 2017; Shahid et al., 2019).
Nevertheless, it is interesting to note that in both cases, growth-
promoting endophyte inoculation has potential applications: If
the endophyte can increase metal accumulation in host plants,
it can be potentially used in phytoextraction. On the other
hand, if the endophyte can decrease metal accumulation in host
plants, it can be potentially used to reduce the metal content
of agriculturally important crops to safe levels of consumption.
Generally, metal contents in plant samples depend on the
bioavailability of metals in soil (Kim et al., 2015), but this study
provides sufficient evidence that endophytes can affect metal
accumulation and growth under metal stress (Figures 1, 2 and
Table 1).
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TABLE 1 Zn/Cd accumulation in the shoots and roots of FXZ2 inoculated plants (E+) and non-inoculated plants (E-).

The original concentration of
Zn/Cd in the soils (mg kg−1)

The treatment of FXZ2 The concentration of
Zn/Cd in the plants (mg kg−1)*

Shoots Roots

Zn 0 E- 253.83± 4.83a 142.03± 19.15a

E+ 500.55± 69.23b 197.67± 110.19a

500 E- 2,113.00± 113.86d 660.50± 65.30ab

E+ 1,850.00± 36.72c 591.20± 17.41ab

1,000 E- 2,646.33± 79.10e 1,766.33± 453.99c

E+ 2,184.67± 190.17d 1,281.33± 90.98bc

1,500 E- 3,180.33± 48.79f 3,074.33± 947.53d

E+ 3,370.33± 236.05f 3,576.33± 345.30d

Cd 0 E- 0.16± 0.08a 0.32± 0.11a

E+ 0.14± 0.02a 0.27± 0.13a

5 E- 5.10± 0.07ab 23.75± 1.56ab

E+ 8.39± 1.30ab 24.91± 8.18ab

15 E- 12.28± 0.98abc 43.23± 6.63ab

E+ 16.97± 0.88bc 59.50± 6.73ab

30 E- 23.48± 0.75cd 97.28± 24.17bc

E+ 34.48± 3.98d 167.08± 24.79c

60 E- 91.09± 14.61e 445.72± 125.30d

E+ 120.79± 16.51f 739.48± 38.62e

*The values are Mean ± Std, n = 3; The different letters indicate the significant difference (p < 0.05, one-way ANOVA, Duncan test) between the individual plant part and metal in the
different treatments.

The effect of FXZ2 on Zn/Cd speciation
in rhizospheric soils

Zinc and Cd chemical speciation in rhizospheric soils of
E+ and E- plants were shown in Figure 3. It was found that
under Zn stress (500, 1,000, and 1,500 mg kg−1 Zn), most of
Zn was in F1 (exchangeable fraction). Interestingly, at 500 and
1,000 mg kg−1 Zn stress, the Zn content of F1 + F2 was relatively
less in rhizospheric soils of E+ than E- plants, while it was
rather more in E+ plants in the 1,500 mg kg−1 Zn treatments.
This can be correlated to the Zn concentration in the shoots
and roots of E+ and E- plants in 500, 1,000, and 1,500 mg
kg−1 Zn treatments. The metal in F4 (organic matter-bound
fraction) and F5 (residual fraction) was the least available to
plants. Together, these fractions were found relatively more in
E+ than E- plants in 500 and 1,000 mg kg−1 Zn treatments,
while it was relatively less in E+ plants in the 1,500 mg
kg−1 Zn treatments. Results differed from previous studies, in
which arbuscular mycorrhizal fungi (AMF) and plant growth-
promoting rhizobacteria (PGPR) inoculation increased soil Zn
mobility by changing Zn to high available fractions from low
available fractions (Boostani et al., 2016).

Under Cd stress, no definite trend was observed in the
relative percentage of the different fractions, especially at the
low Cd stress (5 and 15 mg kg−1 Cd), while under high
Cd exposure (30 and 60 mg kg−1 Cd), F1 + F2 were higher

in E+ than E- plants. Wang et al. (2016) also reported a
difference in the chemical speciation of Cd in the dark septate
endophyte inoculated maize. In another study, endophyte
inoculation to Brassica juncea increased F1 + F2 fractions of
Cd in the rhizosphere compared to the control plants (Wang
et al., 2020). The possible mechanism of the distinct shift in
the chemical speciation of an element in rhizospheric soils is
by modifying pH through the secreted root exudates (Long
et al., 2013). Endophyte inoculation could affect the subcellular
fractions of Cd in the host plant and its chemical forms.
For example, AMF colonization increases Cd accumulation in
Medicago sativa L. by changing Cd into inactive forms, having
low toxicity (Wang et al., 2012). Similar AMF colonization
affected Cd uptake and subcellular distribution by changing
Cd chemical speciation in rice (Li H. et al., 2016; Luo
et al., 2017). Besides, the observed results of Zn and Cd
speciation might affect the anions and pH from ZnSO4.7H2O
and CdCl2·2.5H2O supplemented to induce Zn and Cd stress,
respectively (Wang et al., 2016).

FXZ2 inoculation affected the chemical speciation in root
zone soils of D. ambrosioides only to some extent. The
effect of FXZ2 inoculation (FE) was variable for the different
fractions of Zn and Cd in rhizospheric soils (Figure 3).
The effect was not significant for all fractions of Zn in the
different treatments, while in the case of Cd, there were six
significant alterations out of a total 25 alterations by FXZ2
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FIGURE 3

The effect of FXZ2 inoculation (FE) on the chemical forms of Zn/Cd in rhizospheric soils of Dysphania ambrosioides under Zn/Cd stress. F1:
exchangeable fraction; F2: carbonate-bound fraction; F3: Fe-Mn oxides bound; F4: organic bound fraction; F5: residual fraction. The asterisks
indicate a significant difference between FE+ and FE− (*p < 0.05, **p < 0.005, t-test).

inoculation. Chemical speciation in the rhizosphere regulates
toxicokinetics, i.e., the uptake and translocation of metals
by the plants from the root zone (Uchimiya et al., 2020).
The manipulation of the phytomicrobiome can change the
rhizosphere by the secretion of root exudates, which can alter
the microbial signaling compounds and chemical speciation
(Bhatt et al., 2020). It has to be noted that in this study,
we evaluated the chemical speciation in the rhizosphere soil
only at the time of harvest (60 days). It would be interesting
to evaluate how the chemical speciation of metals changes
in the rhizosphere when the plant is inoculated with FXZ2
during different time intervals as the plant grows in metal stress

conditions and further how it affects the rhizosphere microbial
community.

The effect of FXZ2 on biochemical
factors of Dysphania ambrosioides

FXZ2 inoculation had a positive effect on the total
chlorophyll content of host plants (Figure 4). With the
exception of 1,500 mg kg−1, E+ plants had a relatively higher
total chlorophyll content in Zn treatments than E- plants.
The differences were significant at 0 and 1,500 mg kg−1 Zn
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while non-significant (p > 0.05) at 1,000 mg kg−1 Zn. In Cd
treatments, FXZ2 colonization significantly (p< 0.05) increased
the total chlorophyll content of the host plants except at 30 mg
kg−1 Cd stress (p > 0.05). With the increase of Zn and Cd
concentration in the soil, the total chlorophyll content was
decreased both for E+ and E- plants. The chlorophyll content
is a significant indicator of plant growth status (Chen et al.,
2010). Exceptionally high Zn in the soil can cause stress in
plants, leaf chlorosis, and reduce photosynthesis (Broadley
et al., 2007). Moreover, Cd-induced toxicity can adversely affect
the plant chlorophyll biosynthesis by preventing δ-
aminolevulinic acid dehydratase, porphobilinogen deaminase,
and protochlorophyllide reductase activity and changing the
photosynthetic electron transport at PS-II (Zulfiqar et al., 2021).

Our results supported the finding that the chlorophyll
content decreased for the toxicity of Zn or Cd (Zhang et al.,
2010; Kamran et al., 2015; Bilal et al., 2018). However, the
chlorophyll of E+ plants was relatively higher than that of E-
plants. The results agree with Hunt et al. (2005), who recorded
that endophyte inoculation to perennial ryegrass increased
chlorophyll content. Bilal et al. (2018) also reported that
endophytic microbial consortia could significantly enhance the
chlorophyll content of the inoculated plants under normal and
Al/Zn stress. The low chlorophyll content under the influence
of abiotic stress is generally due to the stress-related ROS
generation and membrane lipid peroxidation, which further
affects the fluidity and selectivity of the membrane (Verma
and Mishra, 2005). Furthermore, in plant tissue metal stress
results in the generation of ROS, which in the form of hydrogen
peroxide and superoxide anion mimic and interrupt normal
cellular functions by changing the oxidation/reduction cycle
(Khan et al., 2015).

Tripeptide glutathione is one of the crucial plant metabolites
having an essential role in the plant defense system as a ROS
scavenging molecule. In plants, it occurs mainly in reduced
form (GSH), and abundant production in the stress-adapted
plant is related to a strongly activated defense system (Gill
and Tuteja, 2010). The GSH analysis showed that FXZ2
inoculation affected the GSH content of host plants (Figure 4).
In general, the GSH content of E+ plants was higher than
E- plants under both Zn and Cd stress. The differences
were significant (p < 0.05) at 500 and 1,000 mg kg−1

Zn stress, while under Cd stress, the difference was non-
significant (p > 0.05). The thiol group of the glutathione
is of high-affinity nature, linked to the complexation and
detoxification of metals as a chelating compound, and takes
part in the antioxidant process (Schat et al., 2002; Yadav,
2010; Cao et al., 2018). Further, it reduces phytotoxicity by
forming an inactive glutathione-Cd complex and subcellular
compartmentalization (Adamis et al., 2004; Zhang et al., 2019).
The higher GSH content in E+ than E- plants suggests the
inoculated endophyte induced counteractive mechanisms to
check oxidative stress related to metal toxicity. Previous studies

also indicated that inoculation of endophytic microbe can
enhance the growth and tolerance of host plants to metal stress
through GSH regulation, though the effect on GSH can vary
with stress (Khan et al., 2015; He et al., 2017; Zhan et al.,
2017).

Metal stress induces oxidative damage in plants, causing
lipid peroxidation that disturbs cellular functions and
membrane integrity; the injuries can be irreversible (Wan
et al., 2012; Khan and Lee, 2013; Khan et al., 2015; Bilal et al.,
2018). Malondialdehyde (MDA) is a byproduct of lipid peroxide
breakdown. Lower MDA in plant tissue signifies lesser lipid
peroxidation. The MDA content of different treatments is
presented in Figure 4. It was found that FXZ2 inoculation
lowered the MDA content of host plants. The differences were
significant (p < 0.05) at 500 and 1,500 mg kg−1 Zn stress and
higher Cd stress (30 and 60 mg kg−1). The relatively lower
MDA in E+ plants suggests that the endophyte FXZ2 had a
synergistic role against the oxidative stress due to elevated Zn
and Cd. Results from this study are consistent with previous
research that endophyte-infected plants had lower MDA
contents, for instance, Achnatherum inebrians inoculated with
endophyte Neotyphodium gansuense, and Solanum nigrum
inoculated with endophyte Serratia nematodiphila under Cd
stress (Zhang et al., 2010; Wan et al., 2012; Khan et al., 2015),
Glycine max L. inoculated with endophytic fungus Paecilomyces
formosus and bacteria Sphingomonas sp. under Al/Zn stress
(Bilal et al., 2018), and tomato inoculated with two dark septate
endophytes Phialophora mustea under Zn/Cd stress (Zhu et al.,
2018).

Phytohormone production by FXZ2

Phytohormone indole acetic acid (IAA) is responsible for
apical dominance, cell elongation, evolution of vascular tissue,
and improvement of plant stress tolerance (Wang et al., 2001;
Eyidogan et al., 2012). And gibberellic acid (GA) is primarily
responsible for seed germination, stem elongation, flower and
trichome initiation, fruit development, and leaf expansion
(Yamaguchi, 2008; Liu et al., 2009). Jasmonic acid (JA) has
been demonstrated as a significant signaling molecule during
plant defense, such as pathogens attack (Qi et al., 2016) and
metals stress (Bilal et al., 2017; Per et al., 2018). JA was
also reported to alter antioxidant potential, reduce H2O2 and
MDA concentrations, and improve photosynthetic pigments
concentrations under Pb and Cd stress in different plants
(Piotrowska et al., 2009; Ahmad et al., 2017). Some endophytes
can exogenously produce phytohormones to mitigate the effects
of abiotic stress to host plants (Khan et al., 2012; Bilal et al.,
2018; Chang et al., 2021). In the present study, it was found
that FXZ2 exogenously secretes IAA (3.21 ± 0.59 µM L−1),
GA (13.76 ± 0.20 pM L−1), and JA (257.70 ± 43.04 pM
L−1) in liquid culture. These phytohormones may play some
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FIGURE 4

The effect of FXZ2 on the Chlorophyll, GSH and MDA content of Dysphania ambrosioides under Zn/Cd stress (*p < 0.05, **p < 0.005,
***p < 0.0005, ****p < 0.00005, ns p > 0.05 t-test).

roles in plant growth and stress tolerance under Zn/Cd stress.
Similarly, some phytohormones producing fungal species, e.g.,
Fusarium oxysporum, Piriformospora indica, Phoma glomerata,
Penicillium sp., and Exophiala pisciphila, have found to improve
host plants’ growth and crop productivity (Hasan, 2002;
Yuan et al., 2010; Waqas et al., 2012; He et al., 2017).
Further, the effect of FXZ2 on the endogenous production
of phytohormones and host plants growth under metal stress
can be tested on mutant plant cultivars not able to produce
phytohormones, e.g., Waito-C (GA deficient mutant rice
cultivar) (Khan et al., 2012). This can be a reliable future strategy
to know how this endophyte improves the phytohormone
content of the host plant and subsequently their growth under
metal stress.

Conclusion

Under variable Zn/Cd stress, seed endophyte FXZ2
significantly improved D. ambrosioides growth and its
chlorophyll and GSH content. Our results demonstrated
that FXZ2 inoculation transformed the Zn/Cd speciation in
the rhizosphere of host plants, subsequently affecting their
uptake and accumulation. The readily available fractions,
i.e., exchangeable and carbonate-bound (F1 + F2) fractions
of Zn decreased in E+ as compared to E- plants at 500 and
1,000 mg kg−1 Zn stress, congruently, Zn in shoots of E+ plants
decreased significantly (p < 0.05). However, under Cd stress (30
and 60 mg kg−1), the effect was different, the Cd concentration
in F1 + F2 increased in rhizospheric soils of E+ plants, and
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subsequently, Cd accumulation in E+ plants was significantly
(p < 0.05) increased. Therefore, FXZ2 can have different
applications, for example, in agriculturally important crops
it can be used to improve Zn tolerance in contaminated
soils or in phytoextraction by increasing Cd bioaccumulation
at high Cd stress.

Moreover, FXZ2 could exogenously secrete phytohormones
IAA, GA, and JA, which could be a key mechanism for
promoting host plants’ growth under Zn/Cd stress. Further
study is required to investigate the role of FXZ2 in the
endogenous production of phytohormones in inoculated plants.
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