
Optimal Signal Processing in Small Stochastic
Biochemical Networks
Etay Ziv1,2*, Ilya Nemenman5, Chris H. Wiggins3,4

1 College of Physicians and Surgeons, Columbia University, New York, New York, United States of America, 2 Department of Biomedical Engineering,
Columbia University, New York, New York, United States of America, 3 Department of Applied Physics and Applied Mathematics, Columbia University,
New York, New York, United States of America, 4 Center for Computational Biology and Bioinformatics, Columbia University, New York, New York,
United States of America, 5 Computer, Computational and Statistical Sciences Division and Center for Nonlinear Studies, Los Alamos National
Laboratory, Los Alamos, New Mexico, United States of America

We quantify the influence of the topology of a transcriptional regulatory network on its ability to process environmental
signals. By posing the problem in terms of information theory, we do this without specifying the function performed by the
network. Specifically, we study the maximum mutual information between the input (chemical) signal and the output (genetic)
response attainable by the network in the context of an analytic model of particle number fluctuations. We perform this
analysis for all biochemical circuits, including various feedback loops, that can be built out of 3 chemical species, each under
the control of one regulator. We find that a generic network, constrained to low molecule numbers and reasonable response
times, can transduce more information than a simple binary switch and, in fact, manages to achieve close to the optimal
information transmission fidelity. These high-information solutions are robust to tenfold changes in most of the networks’
biochemical parameters; moreover they are easier to achieve in networks containing cycles with an odd number of negative
regulators (overall negative feedback) due to their decreased molecular noise (a result which we derive analytically). Finally,
we demonstrate that a single circuit can support multiple high-information solutions. These findings suggest a potential
resolution of the ‘‘cross-talk’’ phenomenon as well as the previously unexplained observation that transcription factors that
undergo proteolysis are more likely to be auto-repressive.
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INTRODUCTION
Genetic regulatory networks act as biochemical computing

machines in cells, measuring, processing, and integrating inputs

from the cellular and extracellular environment and producing

appropriate outputs in the form of gene expression. The behavior

of these networks is not deterministic; many of the molecules

involved in genetic regulation (e.g., DNA, mRNA, transcription

factors) are found in low copy numbers, and are thus subject to

severe copy number fluctuations. In living cells, the origins and

consequences of stochasticity are well-studied [1–6]; one can

analyze propagation of noise through cellular networks [7] and

disambiguate noise from different sources (e.g., intrinsic vs. extrinsic

[8–10]). Surprisingly, cells function in the presence of noise

remarkably well, often performing close to the physical limits

imposed by the discreteness of the signals and the signal processing

machinery [11,12].

From a signal-processing or information-theoretic perspective

[13], noise intrinsic to the gene network presents an obstacle for

signal transduction and biochemical computation: with too much

noise, the information about the state of the environment (the

signal) may be lost. So strong is the perception that the noise

dominates the dynamics of regulatory networks, that the standard

model of gene regulation has been that of Boolean logic [14–18],

effectively implying that, at best, only two distinct states (on or off)

can be resolved in the noisy genetic output. However, one can

build stable binary biochemical switches with just tens of copies of

a transcription factor molecule [19], which begs the question: Can

we do even better with slightly more molecules? That is, is the

genetic regulation, indeed, binary?

In fact, many biochemical networks often need to respond (and

do respond [20]) with much finer detail than binary logic. As an

example, the well-studied p53 module responds to ionizing

radiation in a ‘‘digital’’ manner [21,22], initiating a number of

disparate cellular responses, including cell cycle arrest, apoptosis,

and induction of cellular differentiation, among others [23]. The

p53 module (whose elements have been estimated to be at low

copy number [22]) must not only transduce a simple binary

answer (was there DNA damage or not?), but also more specific

information (What was the damage? How severe? What should be

done about it?) It is not evident that a few tens of molecules, whose

abundance is subject to intrinsic copy number fluctuations, can

successfully perform this task. Of note, a series of recent papers

studying the effect of single allele loss in various tumor suppressor

genes, including p53, challenge the classic two-hit model of

tumorigenesis [24] by demonstrating dosage-dependent modula-

tion of phenotype (see [25–27] and references therein).

The above example is just one of many instances of ‘‘cross-

talk’’–a perplexing phenomenon observed across many cellular

signaling systems in which a single noisy biomolecular species,
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presumably existing in just two states (active/inactive), is able to

transmit complex information. Perhaps the most well studied

example of cross-talk occurs in the protein signaling mitogen-

activated protein kinase (MAPK) pathways. MAPK cascades

transduce multiple stimuli from the environment into distinct

genetic programs. Many of these signals are transmitted by

common components [28], and, for example, the ensuing cross-

talk can be exploited by cancer cells to initiate uncontrolled cell

growth [29] even in the presence of chemotherapeutic agents

targeting individual signaling pathways. In these systems, cells

establish specificity by sequestration including cell type, subcellular

localization, temporal, or with scaffold proteins [28,30–33]. In

some cases sequestration mechanisms are not available and

specificity is achieved via signaling kinetics. For example, in

mammal pheochromoctyoma cells, ligands triggering distinct

programs (proliferate or differentiate) activate the same receptor

tyrosine kinase pathway but with different amplitudes [34]. In fact,

by increasing or decreasing receptor expression, the wrong

program may also be initiated [35], implying that poor control

of kinetics may have pathological consequences. Since the number

of molecules involved in the decision making can be rather small

even for a large number of total molecules [36], a natural question

is: What kind of limits does the intrinsic noise put on the specificity

of transduction of multiple signals? Or, equivalently: How many

binary signals can be transduced by a biochemical network with

small number of molecules?

In this paper, we demonstrate that generic small networks under

biological constraints can transduce more information than a simple

binary switch, often coming close to the optimal transmission fidelity,

which we calculate numerically and analytically from physical

constraints. In particular, this argues against using Boolean

descriptions of regulatory or signaling networks and provides a firm

justification behind kinetics-based solution for the cross-talk

paradox. In our analysis, we choose a general information-theoretic

measure of quality of signal transduction by a circuit, thus obviating

the problem of requiring prior knowledge of the function of the

network [37–44], which is obviously network-specific and often

unknown, and the related problem that a given network may

perform multiple functions [45–47]. We also demonstrate that the

presence of an odd number of negative regulators in a feedback

loop confers an advantage to the circuit in terms of noise regulation

and thus information transmission. Finally, we show that the ability

to transduce information reliably is insensitive to most large

(tenfold) deviations of a network’s kinetic parameters.

Measure of Quality of a Biochemical Computation
To motivate our approach, consider the experimental setup of

Guet et al. [15]. Probing experimentally the relationship between

structure and function in transcriptional networks, Guet and

coworkers built a combinatorial library of 3-gene circuits and

looked at the steady-state expression G of a reporter gene (GFP),

coupled to one of the genes in the circuit, in response to four

different chemical inputs C, namely two binary states of two

different chemicals. The chemicals interacted with the transcrip-

tion factor proteins in the circuits and affected their ability to

regulate transcription of the target genes. Thus the circuits acted as

transducers, converting chemical signals into genetic response.

Guet et al. found that some topologies could perform different

behaviors (that is, behave as different logic gates), while others

could achieve only one particular function. Of note, while some

circuits responded differently to different inputs, for other circuits,

the reporter expression did not depend on the chemical input

state. The latter are clearly ‘‘broken circuits,’’ transducing no

information about the inputs.

Notice that the responses in [15] appear binary and deter-

ministic due to a two-state discretization (G is either on or off). In

fact, the actual number of GFP reporters in each cell clearly is not

repeatable due to the stochastic nature of the involved cellular

machinery. For this reason, the input-output relation for a circuit

should be described not in terms of a deterministic transfer or

dose-response function, but by some conditional probability

distribution P(g|c);P(G = g|C = c), where c stands for particular

chemical states, and g measures the number of reporter molecules.

Then a natural measure of a circuit’s quality is the mutual

information between its inputs and outputs [13]

I(C,G)~

ð
dgdcP(g,c) log ,

P(gjc)

P(g)
ð1Þ

where log is taken always with the base 2, unless noted otherwise.

This dimensionless, nonmetric quantity measures in bits the extent

to which C and G are dependent (complete independence implies

P(g,c) = P(g)P(c), and thus I(C,G) = 0). The mutual information is

bounded, 0#I(C,G)#min[H(C), H(G)], where H(X) is the entropy,

H(X )~{
X

x

P(x) log P(x). In [15], there were ||C|| = 4

possible input states cM{1,2,3,4} = {ci} and two possible output

states, GFP on or off. For a circuit with a constant g, H(G) = 0, and

then I(G,C) = 0. At the other extreme, if the reporter gene is on for

exactly two of the four equiprobable chemical inputs, then each

reporter state has P = 1/2, and I(C,G) = 1 bit. Similarly, for

multinomial distributions of g, the mutual information seamlessly

takes into account all possible relations between g and c.

Note that Eq. (1) avoids any binning or thresholding of data.

This makes it possible to make precise the intuition that response

states with, say, 10 and 15 molecules of GFP are less different from

each other than those with 10 and 150 molecules, even though

both pairs can be separated by simple thresholding. Indeed,

because of the fluctuations, P(g|c) will be overlapping for the

former pair, resulting in small I(C,G), while the overlap will be

small in the second case. In fact, one of the central questions of our

work is whether in realistic biochemical dynamics, states with

small molecule numbers are essentially distinct and thus capable of

high-fidelity information transmission.

In a more complicated case where c and g are both time-

dependent, one can generalize Eq. (1) to consider the mutual

information between the entire temporal profiles of c(t) and g(t),

which would treat the biological circuit as a Shannon communi-

cation channel [13]. However, such a treatment requires

specifying a time-varying input distribution—a subject not yet

addressed in the related experiments. We focus instead on Eq. (1),

which is equivalent to studying communication properties of

biological circuits under an assumption that the signals c(t) vary

slower than the circuits’ relaxation times.

A crucial advantage in adopting mutual information as a quality

measure is that it can be evaluated independently of the function

of the circuit. For steady state responses considered here, the only

reasonable way to define a qualitative function of the circuit, or to

characterize the computation performed by it, is to consider how

<g(c)> are ordered. As long as all ||C|| responses are sufficiently

resolved, the mutual information will be ,log||C||, irrespective

of the ordering. Thus the mutual information-based circuit quality

measure is insensitive to the type of computation performed by the

circuit, and is only concerned with whether the computation

assigns a different output to each input. Furthermore, due to the

data processing inequality [13], high I(C,G) is a sufficient condition for

a high-quality realization of any computational function that

depends (stochastically or deterministically) on P(g,c). High I(C,G) is
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especially important for sensory stages in biochemical signaling,

where the same biomolecular species may control responses of

many different biochemical modules, requiring high quality

information about many different properties of the signal at the

same time.

Proposal
We propose to investigate how the topology of a regulatory circuit

affects its computational and information transmission properties,

as measured by the steady state signal-response mutual in-

formation, Eq. (1). While the results of [15] may be interpreted

as revealing that some circuits may perform better than others, this

effect can be caused in part by operating at suboptimal kinetic

parameters, some of which are biologically easy to adjust to

improve the information transmission fidelity. In fact, several

identical topologies in [15], differing only in their kinetic

properties, performed markedly different functions. To avoid the

problem, we study instead the maximum mutual information

attainable by the circuit under realistic conditions. Specifically, for

a regulatory topology t, with a set of kinetic parameters

q = {q1,q2,…}, which responds to inducer (input) concentrations

C = {ci} = {c1,c2,…} with different genetic (output) expression

levels P(g|c,q), we propose to investigate numerically

I t
�~ maxqI t(C,G).

We emphasize that we do not expect maximization of mutual

information to be the sole driving force behind natural selection,

and additional constraints (some of which we discuss below) will be

important. However, it is also true that, without transmitting

information, organisms would not be able to survive. Thus

optimization of information transmission may be a relevant

selection strategy, at least in some corners of biology (e. g., sensing

and morphogenesis [20,48,49]). Our work can be viewed as

focusing on such corners.

As in [15], we limit ourselves to 3-gene topologies where each

gene is regulated by exactly one transcription factor (see Figs. 1

and 2 for the list of these topologies, and Materials and Methods:

Topologies for their more detailed description). We measure the

output of the circuit in terms of the probability distribution of

steady-state expression of the reporter gene, which is always

downregulated by another gene denoted Z (see Figs. 1 and 2). This

limits us to 24 possible circuits, cf. Materials and Methods: Topologies.

The kinetics associated with these topologies are described in

Materials and Methods: Model and Parameters. Note in particular that

even though we use the genetic regulation terminology throughout the

paper, the kinetic model is general enough to account for protein

signaling and other regulatory mechanisms as well.

For each of the chosen topologies, we need to find stable fixed

points of the dynamical systems that describe the circuit,

cf. Materials and Methods: Determining Stable Fixed Points, evaluate the

distribution P(g|c) describing fluctuations around these fixed points,

estimate the corresponding mutual information I(C,G), and then

optimize I(C,G) with respect to the kinetic parameters. Note that all

of the parameters of the system that we treat as variable, in fact, can

be adjusted by the cell easily over its lifetime by means of many

biological mechanisms, cf. Materials and Methods: Model and Parameters.

Rather than discretizing the reporter output, as in [15], we take

into account the actual numbers of the reporter molecules.

Assuming mesoscopic (i.e., practically real-valued) copy numbers,

we use the linear noise approximation (cf. Sec. Materials and

Methods: Linear Noise Approximation and Text S1) to derive the

reporter gene distribution as a sum of Gaussians with means at the

stable fixed points. This approximation is common in systems

biology literature [50]. Under this assumption, the mutual

information between the two random variables, C — representing

the discrete chemical (input) states — and G — measuring the real

valued reporter expression (output) — is

I(C,G)~
1

M

XjjCjj
c~1

XMc

i~1

ð
dgN gc

i ,sc
i

� �
log

1
M

PMc

j~1 N gc
j ,sc

j

� �
Mc

M
1

M

PjjCjj
d~1

PMd

k~1 N gd
k ,sd

k

� � :ð2Þ

Here M is the total number of fixed point calculations

performed for the circuit, and Mc is the number of those done

with C = c; N gc
i ,sc

i

� �
denotes the output response for the i’th

calculation with C = c, which is a Gaussian distribution with mean

Figure 1. Table of circuits (top 12 by the optimality statistic).
Extrapolated average mutual information over range of 25 to 120
molecules at c = 0.001 and c = 0.01.
doi:10.1371/journal.pone.0001077.g001
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gc
i and variance sc

i

� �2
. Many calculations at each point in the

parameter space, q, are needed to explore multiple stable fixed

points of the dynamical system (see Materials and Methods:

Determining Stable Fixed Points ). Finally, we choose each chemical

state with equal probability, P(c) = const = 1/||C||.

When optimizing Eq. (2) with respect to q (see Materials and

Methods: Optimization), we need to consider two computationally

trivial (and biologically unrealistic) ways of achieving high I(C,G).

First, given discrete c and an infinite range of g, achieving the

upper bound I(C,G) = H(C) is easy: as the number of molecules of

the reporter gc increases, the magnitude of its fluctuations, as

measured by its standard deviation sc, grows slower as sc*
ffiffiffiffiffi
gc
p

,

so the responses to all c’s can be separated well if we allow for an

infinite number of molecules. However, producing many copies of

a molecule takes time and energy, both of which are limited. In

fact, here we are interested only in solutions that involve low copy

numbers, as this is precisely the regime in which gene regulatory

networks function. We note also that many apparently de-

terministic, high copy number systems may actually fall into this

regime if the threshold of the system can be overcome with only

a few molecules [36,51–54].

Second, and perhaps less obvious, a trivial solution can also be

obtained if we allow for multi-scale (stiff) systems. For example, if

the response time of the reporter tG is very large relative to that of

the upstream regulators tZ, then all of the noisy upstream

fluctuations will be filtered [11,12]: effectively, the reporter

measures NZtG/tZ&1 molecules of Z per reporter’s response time

(here NZ is the mean number of Z molecules), and fluctuations are

small. However, living cells must respond in a timely manner to

changes in the environment, so infinite response times are also not

biologically relevant.

These observations suggest that our objective function to be

maximized requires some biologically reasonable constraints. For

this reason, we have investigated many different realizations of the

constraints, and, instead of maximizing the mutual information,

we chose to maximize the following constrained mutual information

L~I C,Gð Þ{lSNT{cSqT, ð3Þ

where l and c are chosen such that the average number of

molecules of all of the components in the system

SNT~
1

jjCjjMcNs

XjjCjj
c~1

XNs

i~1

XMc

j~1

Nc
ij (where Nc

ij is the average

number of molecules of species i for fixed point j given C = c, and

Ns = 4 is the total number of species in the system) does not exceed:

102, and the average stiffness of the system SqT~
X

i

ri=rG (where ri

are the decay rates of the transcription factors, and rG is the decay

rate of the reporter) does not exceed: 103.

We note in passing that the copy number and the stiffness

constraints are related. Indeed, a standard bandwidth-gain

tradeoff in linear signal processing, also studied in a biochemical

context [55], suggests that both the copy number and the stiffness

can constrained by limiting the energy dissipated by a circuit.

However, the actual interplay between the speed and the

magnitude of the response with a single constraint is very difficult

to pinpoint in our general nonlinear setting, and we chose to utilize

the two independent constraints in Eq. (3).

RESULTS

Transmitting More Than 1 Bit at Low Copy Number
We tested the ability of each of the 24 different circuits to reliably

transduce input signals. For each circuit, we numerically optimized

Eq. (3) at different l and c. The results of a single optimization thus

give us a local maximizer q*(l,c) of L. For each numerically obtained

q* we then plot the corresponding mutual information I* [as

calculated by Eq. (2)] as a function of the actually observed average

number of reporter molecules SNGT~
1

jjCjjMc

XjjCjj
c~1

XMc

i~1
gc

i .

Note that, while I* is a function of the reporter copy number, and we

plot I* as this function, the stochasticity of all transcription factors is

taken into account in the constraint in L, since these are presumably

all at low copy number. For example, in Fig. 3 we show the results of

multiple maximizations for two typical circuits. Each point on the

Figure 2. Table of circuits (bottom 12 by the optimality statistic).
Extrapolated average mutual information over range of 25 to 120
molecules at c = 0.001 and c = 0.01.
doi:10.1371/journal.pone.0001077.g002
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plot corresponds to a q*(l,c). The blue squares and the red diamonds

correspond to the two different c values and the solid lines

correspond to the ‘‘best’’ solutions which we determine by finding

the convex hull of the set of all maxima. Convex hull is used because

the noise grows with <NG>, making an equivalent increase in the

number of reporters less potent in transducing more bits at larger

<NG>.

Not surprisingly, as the l constraint is weakened, and higher

molecule numbers are allowed, more information is transduced on

average (the blue and red curves always increase monotonically),

though some particular solutions do not follow the trend. Similarly,

as the c constraint is increased, and the stiff solutions are constrained,

less information is transduced (the red curve is always less than or

equal to the blue curve). We report that all 24 topologies can pass

more than 1 bit of information with molecule numbers far smaller

than 100. In fact, at 25 molecules, most circuits can pass nearly 2 bits

of information. In short, generic topologies under biological

constraints of response time and molecule numbers can still transduce

more information than a simple binary switch. Therefore, analyzing such

networks in terms of Boolean logic should be questioned.

Determining Optimal Bounds
To determine how well the circuits performed compared to the

optimal behaviour, we first note that all solutions are upper

bounded by the entropy of the input distribution, which in our

case is H(C) = 3 bits. Next, recall that the reporter protein, G, must

be at least subject to its own intrinsic noise, and the variance of this

noise must be at least that of a Poisson distribution

(P(x) = exp(2m)mx/x!) with mean m = gc (since the reporter does

not have any feedback) [50]. Given this lower bound and

a probability distribution over inputs C (in this case, eight equal

delta functions), we can numerically calculate an optimal trans-

duction curve. That is, we optimize

~LL~I(C,~GG){lSN~GGT, ð4Þ

with respect to the mean genetic responses ~ggc, where

SN~GGT~
1

jjCjj
XjjCjj

c~1
~ggc, and P gj~ggcð Þ is Poisson. For different

values of l, we can define an optimal curve ~II vs. SN~GGT, where ~II is

the mutual information at the maximum of ~LL. All 24 topologies are

upper-bounded by the same resulting curve. Finally we note that ~II
itself is bounded by the channel capacity I0, which is defined to be the

maximum of I over all input distributions and can be approximated

analytically as in Eq. (27) (see Materials and Methods: Maximum Mutual

Information for a Fixed Copy Number). For <NG> = 25 molecules,

I0<2.32 bits, and for <NG> = 100 molecules, I0 = 3.32 bits.

(Almost) Optimal Circuits
We find that all 24 circuits are able to achieve close to the optimal

transmission fidelity, implying that they are able to tune the noise

from the upstream factors to almost negligible values (see Figs. 3–5

and Text S1, Figs. S1,S2,S3,S4,S5,S6,S7,S8,S9,S10,S11,S12). To

quantify how well the circuits perform compared to the optimal

bound and to each other, we define the statistic

SIT~
1

b{aj j

ðb

a

I SNGTð ÞdSNGT, ð5Þ

Figure 3. (a) Circuit 19 with an odd number of negative regulators in cycle and (b) Circuit 11 with an even number of negative regulators in cycle. (c)
and (d) We ran multiple optimizations q* = argmaxqL. For each optimization run, we plot the mutual information I* = I(C,G|q*) vs. the mean number of
molecules of the reporter protein <NG>. Below 10 copies we saw poor LNA performance (cf. Text S1). Input distribution p(c) = 1/||C|| and ||C|| = 8 so
that I(C,G)#H(C) = 3 bits. Blue squares and red triangles are for c = 0.001 and c = 0.01, respectively. The blue and red linearly interpolated lines
correspond to the convex hull for each respective c value. The black solid curve gives the numerically evaluated optimal bound (cf. Results:
Determining Optimal Bounds) and dashed curve gives analytic bound for any input distribution (cf. Materials and Methods: Maximum Mutual
Information for a Fixed Copy Number). Inset: <I> as a function of the inverse fraction of data included m [cf. Results: (Almost) Optimal Circuits] in the
analysis. Blue and red correspond to two different c values. Linear regression extrapolated to case of infinite data (y-intercept). The results represent
two typical circuits with 1-cycles. Note that here, as in Fig. 4 and Fig. 5, circuits on the left have higher <I> values as well as narrower gaps between
the two c values than circuits on the right.
doi:10.1371/journal.pone.0001077.g003
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where I is the linearly interpolated convex hull and a and b are set

to 25 and 120 molecules, respectively. Note that, for our discrete

input distribution, we can upper bound <I>#2.75 bits, where we

use the linearly interpolated curve derived numerically ÎI , as

described in Results: Determining Optimal Bounds; similarly, for any

input distribution we can upper bound <I>#3.03 bits, where we

use the analytic approximation I0 derived in Eq. (27).

Since the convex hull area can only grow with the number of

optimizations we run, there is a bias in our calculated statistic <I>.

That is, with k optimization runs, <Ik>$<Ik21>. We are

interested in <I> = <I‘>, but this is clearly unattainable.

Moreover, for different topologies, <I> may be approached with

different speeds as a function of k, making comparisons between

topologies suspect. We use jackknifing to estimate the bias. That is,

Figure 4. (a) Circuit 23 with an odd number of negative regulators in cycle and (b) Circuit 5 with an even number of negative regulators in cycle. (c)
and (d) Same as in Fig. 3 for these two circuits with 2 cycles.
doi:10.1371/journal.pone.0001077.g004

Figure 5. (a) Circuit 13 with an odd number of negative regulators in cycle and (b) Circuit 17 with an even number of negative regulators in cycle. (c)
and (d) Same as in Fig. 3 for these two circuits with 3 cycles.
doi:10.1371/journal.pone.0001077.g005
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in the spirit of [56,57], instead of the total number of optimization

runs Nopt, we use only Nopt/m of them to calculate <I>. Then one

can estimate <I‘> by fitting

SI(m)T~SI?TzA1mzA2m2z � � � , ð6Þ

where Ai are some constants. In the insets of Figs. 3–5 we show the

dependence of <I> on m, the inverse fraction of data included. We

see that, for the most part, <I(m)> is well fit by a straight line, and

contributions from the higher order corrections are insignificant.

The results of extrapolating <I> to m = 0 for each circuit are

reported in Figs. 1 and 2. The average <I> over all circuits is

2.4860.05 (mean plus/minus standard deviation of the set) and

2.3260.09 bits for c = 0.001 and c = 0.01, respectively. We find

that the circuits are within 10% of the optimal transduction

capacity of 2.75 bits, as explained above.

Ranking Circuits
The optimality measure <I> provides a ranking of the topologies

(see Figs. 1 and 2). While, strikingly, all of the circuits perform

close to the optimal bound, systematic differences still emerge.

Consider for example the 8 linear chains with autoregulation

(circuits 1, 19, 14, and 4 with negative feedback and circuits 21,

15, 16, and 11 with positive feedback). We note that the negative

feedback circuits all have higher <I> values than their positive

feedback counterparts. Moreover, the gap between the c = 0.001

and c = 0.01 curves is narrower for the negative feedback circuits.

That is, even when the stiffness is constrained, these circuits still do

well, whereas the positive feedback circuits are more reliant on stiff

dynamics. These results are consistent with the findings in [39]

that autorepressive circuits can help regulate noise. Interestingly,

this trend can be generalized to the circuits with longer cycles as

well. For example, we also find that for the 8 circuits with 2-cycles,

those that perform best are those that have opposite regulations

(one repressive, one activating) rather than two activating or two

repressing regulators. For the case of 3-cycles, those circuits with 1

or 3 negative regulators have on average higher values of <I>. In

Figs. 3–5, we display curves for typical 1-, 2-, and 3-cycles,

respectively, with both odd (left column) and even (right column)

number of negative regulators.

These findings imply that there are some structural constraints

that impart small but measurable limitations to the circuit’s

transduction capacity. In particular, those circuits with an odd

number of negative regulators (an overall negative feedback) in

their cycles are generally ranked higher than those circuits with an

even number of negative regulators (an overall positive feedback),

see Figs. 1 and 2. In Fig. 6, we show a bar graph of the values of

<I> for the two classes of circuits (odd and even number of

negative regulators in the cycle) for different c values and for

different length cycles. The average mutual information for the

circuits with an odd number of negative regulators is 2.5160.03

and 2.3960.05 for the two c values, whereas for the circuits with

an even number of negative regulators, it is 2.4460.03 and

2.2660.05 for the two c values. Between the two classes, these

values are more than one standard deviation apart. To test the

significance of this observation, we perform the non-parametric

Mann-Whitney U Test [58,59], which measures the difference in

medians between two samples. We find that, for c = 0.001, U = 8,

and the p-value is 0.0002; and, for c = 0.01, U = 10, and p-value is

0.0003. That is, the null hypothesis that the optimality measures

for the two classes of circuits (odd and even number of negative

regulators, or, alternatively, overall negative and positive feedback)

are drawn from the same distribution and, therefore, have the

same medians, is highly unlikely.

Noise analysis
Since circuits containing cycles with an odd number of negative

regulators are better signal transducers, we might expect that they

are able to control the noise variance better. In fact, using the

linear noise approximation (cf. Materials and Methods: Linear Noise

Approximation), we prove this assertion for a generic transcriptional

network in Materials and Methods: Network Noise Analysis Using Linear

Figure 6. Bar graphs for <I> values for the two classes of circuits: odd (blue) includes circuits with cycles containing an odd number of repressors and
even (green) includes circuits with cycles containing an even number of repressors. Top c1 = 0.001, middle c2 = 0.01, and bottom <I(c1)>2<I(c2)>. For
all 3 measures, there is a statistically significant difference between the two classes of circuits as calculated by the U Test (top p = 0.0002, middle
p = 0.0003 and bottom p = 0.01).
doi:10.1371/journal.pone.0001077.g006
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Noise Approximation. Furthermore, for simple networks, we demon-

strate that the overall negative feedback is a necessary and, in one

case, even a sufficient condition to achieve sub-Poisson noise

(variance less than the mean).

For example, let dwi=dt~fi:{riwizai wpi

� �
describe the

deterministic dynamics of gene i (see Materials and Methods: Model

and Parameters for explanation of the notation) and where pi denotes

the set of regulators of i. At steady-state wi~ai wpi

� ��
r

i
. Then, for

a 1-cycle where pi = i, Eq. (30) for a species variance reduces to

Cii~
w

1{ a0

r

ð7Þ

where a9 is the derivative of the gene expression function, and the

above is evaluated at the deterministic steady state. In the case of

an auto-repression, a9,0, and the variance Cii is less than the

mean [40,60].

Similarly, Eq. (30) can be reduced for a 2-cycle, i, j = {1, 2}

Cii~wiz
1

ri

a0iCij ð8Þ

Cij~
1

rizrj

a0iCjjza0jCii

� �
: ð9Þ

Since Cii.0, here a necessary (but not sufficient) condition for sub-

Poisson noise is a01a02v0.

This analysis (as well as the derivation in Materials and Methods:

Network Noise Analysis Using Linear Noise Approximation) also illustrates

that it is easier to obtain smaller variance (and hence larger mutual

information), for cycles of shorter length. This is in agreement with

[61] where it was found that short cycles are over-represented in

a metabolic network, but large cycles occurred less frequently than

one would expect given several different possible null models.

Reliance on Large <q>
The ‘‘gap’’ between the two c curves suggests another statistic to

compare the circuits. Presumably, a wide gap implies that the

circuit relies on large stiffness <q> to regulate noise. Indeed, for

large <q> values, the objective function L decreases, though this

decrease is moderated by the value of c such that smaller c values

allow larger <q> values. Stiff solutions have the advantage of

allowing the reporter protein to effectively act as a low-pass filter,

slowly averaging and responding to fluctuations in the circuit

components. A reliance on small values of c implies that the circuit

has more difficulty regulating noise. We therefore expect the

circuits with an odd number of negative regulators to have smaller

gaps. Consistent with this prediction, while the average gap over

all circuit was 0.1660.05, the average gap for the negative

feedback circuits was 0.1360.04, and for the rest it was 0.1860.05

(see Fig. 6). The U Test using the gap measure gives U = 28 and p-

value of 0.01, indicating a moderately significant difference.

Evidence from a database of transcription factors in prokaryotes

supports the finding that circuits with negative feedback can

suppress noise [62]. In Escherichia coli, many transcription factors

do not undergo active degradation via proteolysis, but are instead

only passively degraded via dilution. The half-lives of such proteins

are on the order of the division time of the cell, allowing them to

respond only slowly to fluctuations in the mRNA concentrations.

As is the case of the stiff solutions with high <q> in our circuits,

these slowly responding transcription factors have an advantage in

noise control [63]. Therefore, we might expect that transcription

factors that do not undergo proteolysis will have no auto-

repression, or even positive auto-regulation. On the other hand,

transcription factors that do undergo proteolysis and cannot,

therefore, filter mRNA fluctuations as well would be more likely to

require negative auto-regulation.

To test this hypothesis, we analyzed 145 transcription factors of

the E. coli regulatory network. For each transcription factor we

correlated whether the factor is auto-repressive [62] with whether

it potentially undergoes proteolysis by noting if the peptide

sequence had any known cleavage sites [64]. While the presence of

cleavage sites in a protein sequence may mean the protein is more

likely to be degraded, it does not necessarily mean that the protein

is degraded. Since there is no database containing data about

degradation rates of known transcription factors, finding even

a moderate correlation between cleavage sites and auto-repression

would be interesting. We found that of the 13 transcription factors

that are likely to undergo proteolysis, 9 are negative auto-

repressors, and out of the 132 transcription factors that are not, 88

are not auto-repressors. A Fisher exact probability test revealed

a statistically significant positive association between putative

proteolysis and negative feedback (p-value 0.013). See Text S1 and

Tables S1 and S2 for details.

Robust, Adaptive Maxima
An important consideration in further assessing the quality of our

circuits is the extent to which these high information maxima are

robust to perturbations in the system. Qualitatively, we define

a maximum as robust if, in its vicinity, the cost function L does not

change significantly in response to perturbation of the parameters

R,K,a,a0, and s (see Materials and Methods: Model and Parameters for

parameter definitions). Related, we would also like to consider the

ability of our circuits to adapt, that is, to change their functional

behavior in response to the parameter changes (recall that in our

setup a functional behavior is defined by the ordering of gc
i ). Finally,

we would like to understand if a circuit can be robust yet adaptive

at the same time.

While detailed answers to these questions will be reported in

a forthcoming publication, here, as a preliminary investigation, we

analyzed the functional L of circuit 2 near one of its randomly

selected maxima. In addition to the original maximum, we found

four other distinct nearby peaks as displayed in Fig. 7. The circuit

alters its behavior as a result of changes along the 2 displayed

dimensions, the strengths of coupling to input 1 (sX) and to input 2

(sY), cf. Eq. (12), so that, at each maximum, the ordering of

responses is distinct, and thus the signal is encoded in a different

way (i.e., a different computation is performed). The 5 different

behaviors or computations are summarized in Table 1 and Fig. 8.

Note in Fig. 7 that 4 of the maxima are separated by valleys no

deeper than 2.3 bits. In other words, by a change in sX and sY only,

the circuit can alter its behavior, while maintaining a high

transmission fidelity. In this sense, we consider these maxima to be

adaptive.

To explore sensitivity to parameter perturbations, we next

numerically calculated the Hessian at each of the 5 peaks. The

Hessian matrix is the square matrix of second partial derivatives of

the objective function of L. At a maximum of L, large negative

second derivatives correspond to directions of high curvature and

therefore directions in which small perturbations result in large

loss in L. In Fig. 9, we plot the Hessian eigenvalues along with the

corresponding eigenvectors. By treating L as locally quadratic near

each maximum, we use the Hessian (evaluated with respect to

log10 of the parameters) to analyze how sensitive the maximum is

to deviations in the parameters. For example, for an eigenvalue of
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21, moving 10-fold in the corresponding eigendirection would

result in a loss of 0.5 for the objective function. Alternatively, an

eigenvalue of 20.1 means that we can move 10-fold in that

direction, while decreasing the objective function only by 0.05.

This should be compared with the typical values near maxima of

L, I,2 bits. We find that, for most directions for all 5 peaks,

eigenvalues magnitudes are less than 0.1. In this sense, we consider

these maxima to be robust.

We can identify three different regimes for the eigenvalue

spectra: an extremely ‘‘soft’’ regime corresponding to the first two

modes, a second soft regime, where the modes 3 to 9 are basically

equivalent, and then a third regime (modes 10 through 15), where

the eigenvalues become more negative. We note that the spectra

for the peaks 1 and 5 overlap almost completely, as do the ones for

2, 3 and 4, and that the latter appear to be more robust (the

magnitudes of their eigenvalues are smaller). Interestingly, all five

spectra in Fig. 9 are similar, largely due to the fact that the q* are

themselves quite similar — that is, the maxima are closely

arranged not just in the 2-dimensions displayed in Fig. 7, but over

all 15 dimensions. This underscores the circuit’s adaptability.

In Fig. 9, we have also displayed the contributions from each

parameter to each eigenvector for all 5 peaks. It is clear that the

first mode corresponds entirely to the leak parameter, which for all

5 peaks is being driven to 0 as the optimization proceeds. The

second mode is also consistent for all 5 peaks, and it corresponds to

the parameters aY and KY (cf. Materials and Methods: Model and

Parameters), governing creation for the transcription factor Y.

Essentially the range of the gene activation function, aY, is driven

high while the Michaelis constant KY is decreased, so that Y is

Figure 7. (a) The objective function L and (b) the mutual information I as a function of the input parameters sX and sY corresponding to the small
molecules ‘‘strength’’ on transcription factors X and Y (cf. Materials and Methods: Model and Parameters) for circuit 2. The rest of the parameters are
held constant for this figure. The five labeled peaks correspond to 5 distinct behaviors or unique signal encodings (cf. Fig. 8 and Table 1).
doi:10.1371/journal.pone.0001077.g007

Table 1. Table of behaviors corresponding to the five peaks
shown in Fig. 7.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Chemical
State 222 22+ 2+2 2++ +22 +2+ ++2 +++

Peak 1 2 6 1 5 4 8 3 7

Peak 2 2 6 4 1 5 8 3 7

Peak 3 2 1 4 6 3 5 8 7

Peak 4 2 1 6 4 5 3 8 7

Peak 5 6 2 5 1 8 4 7 3

Behavior is defined as the ordering of gc, where gc is the deterministic steady-
state solution for given chemical input c and c M {(222), (22+), (2+2), (2++),
(+22), (+2+), (++2), (+++)}. Each row describes the behavior of the circuit at
one of the five maxima.
doi:10.1371/journal.pone.0001077.t001..
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Figure 8. The conditional p(G|C) is plotted for each of the 5 maxima
of the constrained information shown in Fig. 7. Colors denote each
individual conditional p(G|C = c) where C takes 8 possible and equally
likely, states. Since these are all high information solutions, the
individual conditionals are all separated well. Note that at, each
maximum, the colors are arranged differently, highlighting the fact that
the conditionals are different, and therefore the network behaves
differently at each of these high information solutions. The arrange-
ment of these individual conditionals is summarized in Table 1.
doi:10.1371/journal.pone.0001077.g008
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squeezed to low copy numbers, and G is an amplified version of its

predecessors. This is a reasonable strategy since maximizing the

information in the output signal requires that most of the energy

spent on building molecules is expended on the reporter protein.

DISCUSSION
We have presented an information-theoretic, function-indepen-

dent measure of circuit quality. We have demonstrated that

generic small networks can transduce more information than

a simple binary switch; moreover, such generic topologies can

achieve close to optimal transmission fidelity, even under low copy

number and fast response time (non-stiff) constraints. Further-

more, high information solutions can be robust to tenfold changes

in most parameters.

That such simple stochastic systems can act as good signal

transducers suggests a possible explanation for cross-talk, in which

multiple ligands trigger the same signaling pathway, and yet

reliably produce distinct genetic outputs. Indeed, we have

demonstrated that multiple discrete input states can be transduced

by the same molecule if the encoding is in molecule numbers even

if trivial solutions (high copy number and slow response time) are

constrained. To our knowledge, this is the first explanation of how

a simple stochastic system can overcome cross-talk that does not

invoke the traditional spatial or temporal sequestering argument

[30].

It may be possible to correlate properties of the observed

optimal information transmission solutions with experiments to

investigate to what extent this optimality is essential in biology. For

example, a common trend in our circuits was to decrease the

decay rate and to increase the average molecule number of the

reporter protein or proteins near to it. The slower decay rate

allowed temporal filtering, and the copy number distribution

allowed to expend the limited resources building reporter

molecules which need to encode the entire input signal, rather

than wasting them on proteins in the beginning of the circuit. One

well-known example of this is in the transcription-translation

cascade from DNA to protein. Typically, mRNAs degrade faster

than proteins, and their molecular numbers are smaller.

More subtle predictions can be made as well. For example,

motivated by the observation that slowly responding regulators

have no negative feedback, Rosenfeld et al. [65] have demon-

strated that an autorepressive circuit with a strong promoter causes

faster rise-times. They argue that auto-repression is used as an

alternative to increasing the degradation rate. Another explana-

tion for the correlation between fast-response and auto-repression

is that fast-responding circuits require negative feedback. That is,

proteins that undergo degradation are unable to time-average the

mRNA fluctuations, and so incorporate other strategies to control

noise, in particular, auto-repression. The finding of a significant

positive association between autorepression and proteolysis is

consistent with both roles for negative feedback. In the case of

noise control, proteolysis causes greater fluctuations, which are in

turn attentuated with the negative feedback mechanism. In the

case of response-time, natural fitness may drive the circuit to

Figure 9. Top-left: Spectra for the numerically calculated Hessian at each of the corresponding 5 peaks labeled in Fig. 7. Soft modes (R0) are
directions in which L has small curvature; hard modes (R2‘) are directions in which L has large curvature. Many eigendirections exhibit small
curvature (magnitude of eigenvalue less than 1022 for peaks 2–4 and 1021 for peaks 1 and 5), demonstrating that the maxima are robust to large
deviations in parameter space. Colored panels: Magnitude of contribution from each parameter to each eigenvector for each of the five Hessians.
Mode index is sorted as in top-left figure (from least curvature to greatest curvature). Row labeled leak corresponds to parameter a0. Paired rows
labeled X, Y, Z, and G correspond to the two parameters, K and a, describing the gene regulation function for each transcription factor (X, Y, Z) and
reporter protein (G). Rows labeled r correspond to the decay rates of each of the 3 transcription factors. Rows labeled s correspond to the input
parameters modulating the three transcription factors. For all five peaks, the two most soft modes correspond to a0 and a mixture of KY, aY,
respectively. sX and sZ contribute mostly to the hard modes.
doi:10.1371/journal.pone.0001077.g009
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evolve simultaneously two different mechanisms to reduce re-

sponse time, negative feedback and increased degradation.

In their analysis of the phototransduction cascade, Detwiler et

al. [55] emphasize that signal processing characteristics of

a signaling cascade can be tuned simply by altering the

concentrations of proteins, rather than by changing the genetic

sequence. That is, the parameters of the system can be optimized

on a time scale far shorter than evolution. So too, in our simple

circuits, all of the kinetic constants can be regarded as functions of

concentrations of proteins extrinsic to the circuit, meaning the

parameters may also be tuned on a time scale shorter than the

response time of the system. We highlight that circuits supporting

multiple distinct maxima should be able to flip between different

functional behaviors (that is, exhibit adaptation), and that

theoretically the effect can be as rapid as changes in protein

concentration. Importantly, based on our findings, such adapta-

tion can still occur without significant loss in transduction capacity

along the way.

The fact that the 5 peaks we analyzed collapsed onto two

categories of spectra underscores a somewhat paradoxical finding.

Namely, the maxima are robust in that they can withstand 10-fold

perturbations in most of kinetic parameters without a significant

loss in transmission fidelity, and yet they are adaptive in that the

circuit can flip between the different maxima (and different

behaviors), again without significant information loss. Intuitively,

one might expect a tradeoff between robustness and adaptability.

Our findings suggest that the circuits can avert this tradeoff by

clustering the maxima in a general region of high transmission

fidelity. Certainly a closer and more quantitative analysis of this

tradeoff is warranted. For example, it is now established well that

a single circuit can support multiple functions [45]. In this vein,

one interesting research direction would be to enumerate the

functions that a particular circuit can achieve and quantify how

easily the circuit can flip between these functions. Whereas our

circuits can all be regarded as ‘‘optimal’’ in the sense that they can

tune their parameters to transduce the optimal amount of input

information, it is evident that subtle distinctions in information

processing exist among them. Our setup is well-suited to

systematically explore these distinctions (e.g., varying the input

distribution, quantifying the mutual information between time-

varying input and output signals, and quantifying other statistics of

the mutual information landscape rather than optimality).

MATERIALS AND METHODS

Topologies
As in the experimental set-up of Guet et. al [15], we consider 3-

node circuits in which genes are regulated by exactly one gene

(including the possibility of auto-regulation). This also reduces the

assumptions we would otherwise need to make about the dynamics

associated with combinatorial regulation. The 3 genes (X, Y, and

Z) in each circuit are interconnected by exactly 3 edges. There are

only 3 such non-redundant topological structures, which, when we

include the possibility of either excitatory or inhibitory interac-

tions, results in 23 = 8 possible configurations per structure, for

a total of 24 topologies (see Figs. 1 and 2). The fourth (reporter)

gene G is always down-regulated by Z, as in [15]. Extensions to

other topology classes are easily implemented.

Model and Parameters
The dynamics of transcription and translation have been modeled

with a remarkable success for small circuits by avoiding the

translation step completely and coupling the genes to each other

directly by means of simple rational functions aj [41,66,67]. In

general, each of the species X = {X,Y,Z,G} in the circuit is subject

to a degradation and a creation processes

X ?
rx 1, ð10Þ

1 ?
ax

X : ð11Þ

While the dynamics of the circuits is intrinsically stochastic and is

always treated as such, it is useful to consider differential equations

that govern the evolution of the average chemical concentrations:

dwj

�
dt~{rjwjzaj wpj

� �
, ð12Þ

where {w1,…,wN} is the concentration vector of the N chemical

components, rj is the degradation rate of wj, and aj is a production

rate that depends on the concentration of a regulator (parent)

molecule of j, namely pj. We model the production as a constitutive

expression (the leak) plus a Hill activation or inhibition,

a(w)~a0za
w=sið Þn

Knz w=sið Þn , (activation) ð13Þ

or

a(w)~a0za
Kn

Knz w=sið Þn , (inhibition) ð14Þ

where a0 describes the leakiness of the promoter, a specifies its

dynamic range, K is the concentration of the regulator at half-

saturation (the Michaelis constant), n is the Hill coefficient, and si is

the modulating effect of the i’th input molecule on the regulator

protein (or ratio of the two dissociation constants in the absence

and presence of the input molecule). si can be modeled

equivalently by rescaling K. One can think of this as the chemical

signal binding to the protein, changing its conformation, and

influencing various affinities. This is similar to regulation of the

activity of the lac repressor by allolactose. For this dynamics, there

is no distinction between the protein and the mRNA of a gene

species, and we use the terms interchangeably. As in [15], we allow

each input to take two binary states (either the input molecule is

present or not). We have a total of 3 inputs and 23 input states, and

each input modulates the expression of one of the three

transcription factors. For a chemical state c where an input

molecule i is not present, we set si = 1. We set the units of

measurements such that volume V of a cell is 1, so that

concentration of 1 is equivalent to 1 molecule per cell.

In all, we have 15 parameters:

1. 3 decay rates rX,rY,rZ corresponding to decay rates for the 3

transcription factors. We set rG corresponding to a response

time of approximately a half hour.

2. 4 Michaelis constants KX,KY,KZ,KG and 4 range parameters

aX,aY,aZ,aG describing the regulation function for each

component of the circuit.

3. 3 input parameters sX,sY,sZ, modulating the effect of each

input on the 3 transcription factors

4. 1 leak parameter a0.

For simplicity we assume n = 2. This number is consistent with

the dimerization typical of bacterial transcription factors. Larger
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values of n would create sharper thresholds in the gene regulation

function, though we would not expect qualitatively different

results. We have also found similar results for topologies assuming

n = 1 (results not shown).

Notice that all of these parameters can be easily adjusted by the

cell by means of a variety of biological mechanisms, thus validating

our proposal to study the dependence of the signal transduction

optimized with respect to the parameter values. Below is a non-

exhaustive list of such regulatory mechanisms.

1. All protein/mRNA decay rates can be adjusted indepen-

dently of each other by microRNA expressions or by

regulated proteolysis, such as using ubiquitin tagging.

2. Michaelis constants depend on structural properties of

proteins and the DNA, as well as on the abundance of the

proteins near a DNA binding site compared to the overall

protein concentration. Thus they can be adjusted by

chromatin rearrangement, or by controlling the nuclear

pore transport.

3. Effects of chemical inputs on transcription factors depend on

the chemical-protein affinity and on the abundance of the

chemicals near the relevant proteins. The former can be

changed by modulating chemical-protein binding reaction

by means of expression of various enzymes, while the latter

can be achieved by controlling transport processes.

4. The leak depends on the concentration of the RNA

polymerase, ribosome, as well as the DNA accessibility. All

are easy to adjust in a living cell.

Determining Stable Fixed Points
All of our circuits incorporate some feedback mechanism (e.g., the

‘‘feedback dyad’’ [68]) and, therefore, may have multiple stable

steady state solutions. We find these by numerically solving the

macroscopic chemical kinetics system (12) describing the circuit

using MATLAB’s ode15s with the parameters as described in

Materials and Methods: Model and Parameters. We randomly sample

different initial conditions for the time-evolution to obtain a set of

(almost all) fixed points for each chemical state and each topology.

Additionally, since in vivo the system will be flipping between

different input states, the steady-state solution of one input state is

the potential initial condition for the time-evolution of the other

inputs. To include these potential initial conditions, we first

randomly choose 10 initial conditions for each ci, and then we take

the resulting stable solutions and use them as the initial conditions

for each cj?i.

When a time-evolution of the system results in oscillations or

chaotic behaviors, we neglect these solutions since, under our

assumptions, they will result in multiple genetic outputs corre-

sponding to the same chemical input and hence in a low mutual

information. That is, the optimization ends prematurely and we

thus disqualify any parameter region which includes these types of

behaviors.

Linear Noise Approximation (LNA)
For excellent reviews and discussions of the Linear Noise

technique (also known as the semiclassical, fluctuation-dissipation,

or linear response approximation), we refer the reader to [50,69–

71]. Here we briefly review one particular formulation that

simplifies the analysis.

Given a system with volume V and N different particles, we

denote the particle concentrations as w = {w1,…,wN}, and the copy

numbers as n = Vw. The state of the system is defined by n, and it

changes when an elementary reaction j, j = 1,…, R takes place.

When reaction j occurs, the copy number ni changes by Sij, which

is the N6R stochiometric matrix. Then the evolution of the joint

probability distribution P(n,t) is given by the following master

equation

dP n,tð Þ
dt

~V
XR

j~1

P
N

i~1
E{Sij {1

� �
fj w,Vð ÞP n,tð Þ ð15Þ

where E{Sij is the step operator, which acts by removing Sij

molecules from ni, and fj is a rate for j.

While this equation is usually mathematically intractable,

a Monte Carlo algorithm exists to solve it numerically (the Gillespie

algorithm) [72,73]. To generate a particular stochastic trajectory,

this method draws random pairs (t, e) from the joint probability

density function P(t,e|n), where t is the time to the next elementary

reaction, and e is its index. Multiple trajectories allow to estimate

the necessary moments of P(n,t). However, this approach is

computationally intensive, and quickly becomes infeasible if one

wants to explore multiple system parameterizations, or if fj span

multiple scales. In the latter case, one can often use separation of

time scales to achieve adiabatic coarse-graining of dynamics [74].

Alternatively, one can expand the master equation in orders of

V21/2. Introducing j, such that ni = Vwi+V1/2ji and treating j as

continuous, the first two terms in the expansion yield the

macroscopic rate and the linear Fokker-Plank equations, re-

spectively:

V1=2 :
XN

i~1

Lwi

Lt

LP j,tð Þ
Lji

~
XN

i~1

XR

j~1

Sijfj(w)
LP j,tð Þ

Ljj

, ð16Þ

V1=2 :
LP j,tð Þ

Ljj

~{
X
i,k

Ai,k
L jkPð Þ

Lji

z
1

2

X
i,k

B½ �i,k
L2P j,tð Þ
LjiLjk

, ð17Þ

where Ajk~
XR

j~1

Sij

Lfj

Lwk

and Bik~
XR

j~1

SijSkjfj wð Þ. Note that

Eq. (16) is equivalent to and validates Eq. (12).

The steady-state solution of Eq. (17) is a multivariate Gaussian

P jð Þ~ 2pð ÞNdetJ
h i{1=2

exp {
jTJj

2

� �
, ð18Þ

where the covariance matrix J is given by the matrix Lyapunov

equation

AJzJATzB~0: ð19Þ

This system is solved using the standard matrix Lyapunov

equation solvers (MATLAB’s lyap). In order to assess the validity

of the linear noise approximation for our system we compared the

steady state solutions to multiple Gillespie runs. We found that,

even at very low copy numbers (,10), LNA performed well as

measured by the Jensen-Shannon divergence (see Text S1 and Fig.

S13 for details). Based on these results, we approximate the steady-

state distribution as a sum of multivariate Gaussians with means at

the stable fixed points of Eqs. (12, 16) and with covariances as in

Eq. (19).

We note that both the LNA and the Gillespie algorithm are

derived assuming that the reactions j are truly elementary, and
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therefore have exponential wait times. In our system, a single

particle creation, a, encapsulates all processes, starting from the

protein-DNA binding and ending with the translation, making the

use of the methods questionable (although justification for using

‘‘elementary complex’’ reactions is provided in [70,75–79]).

However, the complex nature of the reactions has a comparatively

small influence on the low frequency components of the stochastic

response [80], which is our focus here. For this reason we believe

that approximating terms in Eq. (12) as elementary and using

LNA is a less important approximation than merging transcription

and translation into a single step. Generalization to LNA with

elementary reactions is straight-forward, provided the reaction

system is known (which is more complicated).

Optimization
We employ a simplex optimization (using MATLAB’s fminsearch)

to maximize L = I(G,C)2l<N>2c<q> over the log10 of the 15

parameters where l and c are chosen to accommodate biologically

relevant molecule numbers and stiffness. For example, for an

average of approximately 100 molecules for each transcription

factor and a stiffness of order 1000, we choose l = 0.01 and

c = 0.001. To explore the parameter space for each topology, we

uniformly randomly select biologically relevant starting points

(protein half-life near 10 minutes, promoter leakiness near 0.01

proteins/sec, promoter range near 10 proteins/sec, regulator at

half-saturation near 100 proteins/sec, and input molecule

modulation of regulator near 2). To make the search for maxima

more efficient we only maximize random points that start already

above a certain threshold (L$0).

Maximum Mutual Information for a Fixed Copy

Number
Suppose a molecular species G with concentration g, #dgP(g)g =

<NG> is used as a reporter species for a cascade of biochemical

computations, so that the species is not allowed to participate in

any feedback loops. Then its stochasticity is limited from below by

a Poisson noise. That is, if gc is the deterministic value of g

produced by some biochemical reaction kinetics, and gc&1, then

g~gczn, ð20Þ

SnT~0,SnnT~gc: ð21Þ

Furthermore, gc itself is distributed probabilistically according to

P(gc),

ð
dgcP gcð Þgc~SNGcT, due to stochasticity of inputs to and

of the internal dynamics of the biochemical system. We are

interested in the maximum number of bits that can be transmitted

reliably by this reporter species (that is, its channel capacity) at

fixed <NG>.

Intuitively, the noise in this system is *
ffiffiffiffiffiffiffiffiffiffiffiffi
SNGT

p
~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SNGcT

p
, so

the number of distinguishable states of the reporter is also

*
ffiffiffiffiffiffiffiffiffiffiffiffi
SNGT

p
, and one should be able to transmit about 1/2

log2<NG> bits reliably. This argument has been used extensively

(e.g., [55]). However, it fails (a) to establish the correct constant of

proportionality in front of the number of distinguishable states and

(b) to take into the account the gc dependence of the noise variance

(which leads to a higher resolution at smaller gc). Both of these

effects are likely to contribute only O(1) bits to the channel

capacity, but, for <NG>,100 considered in this work, this might

be an important correction. We are unaware of a prior derivation

of the channel capacity for this system up to o(1), and we present it

here.

We write:

I G,Gcð Þ~H Gð Þ{H GjGcð Þ~H Gcð Þ{H GjGcð ÞzO
1

SNGT

� �
ð22Þ

~{

ð
dgcP gcð Þ log2 P gcð Þ{

ð
dgcP gcð Þ log2 2pegczO

1

SNGT

� �
:ð23Þ

Eq. (22) is valid if var(G|Gc),<NG> = var(Gc),<NG>2, and

Eq. (23) holds for a Poisson noise in the reporter.

To find the channel capacity of the reporter species, we

maximize I(G,Gc) with respect to P(gc) subject to

ð
dgcP gcð Þ~1,

ð
dgcP gcð Þgc~SNGc T~SNGT: ð24Þ

This results in

P gcð Þ& 1

2pgcSNGTð Þ1=2
e{gc=2SNGT, ð25Þ

where < is due to the approximation involved in replacing H(G) by

H(Gc). Plugging P(Gc) into the equation for I, we get the channel

capacity

I0 G,Gcð Þ~
ð

dgcP gcð Þ 1

2
log22pSNGTgcz log2 e

gc

2SNGT

	

{
1

2
log2 2pegc



zO SNGT{1

� � ð26Þ

~
1

2
log2SNGTzO SNGT{1

� �
: ð27Þ

Thus, for the optimal distribution of inputs, as in Eq. (25), the

naive estimate of I0 = 1/2 log2<NG> for a biochemical reporter is

correct up to terms non-vanishing with <NG>21. For the distribution

of inputs analyzed in this work (up to 8 discrete input states), the

maximum possible I(G,Gc) is clearly less than this channel capacity.

One can obtain the maximum information for such input

distributions by numerical optimization of I with respect to the

values of the gc input states, assuming a Poisson distribution of g

around gc. This maximum mutual information for 8 input states, as

well as the channel capacity, Eq. (27), is shown in, for example, Fig. 3.

Network Noise Analysis Using Linear Noise

Approximation
Consider a regulatory network of N transcription factors indexed by i

M {1,2,…,N}. The average concentrations in the system evolve as

_ww1~f1 w1, . . . ,wNð Þ
_ww2~f2 w1, . . . ,wNð Þ

� � �
_wwN~fN w1, . . . ,wNð Þ
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where wi is the concentration of the i’th transcription factor. Let

n = Vw be the vector of molecule copy numbers with volume V.

Using the linear noise approximation [16], we can calculate the

covariance matrix C = <(n2<n>)(n2<n>)T> =JV by solving

Eq. (19):

Bii~{2
X
j[pi

Lfi

Lwj

Cij ð28Þ

~{2
Lfi

Lwi

Ciiz
X

j=i,j[pi

Lfi

Lwj

Cij

 !
, ð29Þ

Cii~
{1

2 Lfi

Lwi

Bz2
X

j=i,j[pi

Lfi

Lwj

Cij

 !
: ð30Þ

This suggests that the topology or structure of the network can also

play a role in controlling noise. Specifically, the variance of the i’th

transcription factor Cii can be reduced by decreasing the product
Lfi

Lwj

Cijv0, where jMpi.

The covariance Cij is a more complicated function of the other

covariances:

Bij~{
X
k[pi

Lfi

Lwk

Cjkz
X
k[pj

Lfj

Lwk

Cik

0
@

1
A ð31Þ

~{
Lfi

Lwi

Cijz
Lfj

Lwj

Cijz
X

k=i,k[pi

Lfi

Lwk

Cjkz
X

k=j,k[pj

Lfj

Lwk

Cik

0
@

1
A:ð32Þ

Cij~
{1

Lfi

Lwi
z

Lfj

Lwj

Bijz
X

k=i,k[pi

Lfi

Lwk

Cjkz
X

k=j,k[pj

Lfj

Lwk

Cik

0
@

1
A: ð33Þ

If jMpi, then, from Eq. (33), we see that Cij is a function of the

covariances between i and the regulators of its regulators (Cik,

where kMpj, and jMpi). We can write these covariances in turn as

functions of covariances between i and the regulators of regulators

of regulators of i, and so on. This implies a recursion, which will

end when we either reach a regulator that has no other regulators

or, in the case of a cycle, we reach i again.

In the latter case, the recursion will end back with Cii, and the

last term in Eq. (33) will have the form

Cii P
j[cycle

Lfj

Lwpj

: ð34Þ

Since Cii$0, this implies that one way to reduce Cij (and hence Cii

itself) is to have the product in Eq. (34) that is negative. Crucially,

the only way to achieve this is if the cycle contains an odd number

of negative regulators.

Some Simple Examples of Sub-Poisson Noise
The transcription factors in the network may participate in various

feedback loops. In some cases, this allows the usual Poisson noise

lower bound to be overcome, resulting in a sub-Poisson noise

(Ciivwi). Below we give some simple examples for 1-,2-,and 3-

cycles.

The set-up of [15], which we use in this work, simplifies the

analysis since we only consider one promoter transcription factors,

so that fi~{riwizai wpi

� �
, where pi includes just one gene. In

steady state, wi~ai=ri. Finally, all of our reactions are enzymatic,

so the diffusion matrix B will only have diagonal nonzero elements.

Then, since Bii~riwizai, we use the expression for wi to find

Bii~2riwi.

Auto-repression For the auto-repressive case there are no

covariance terms and Lfi=Lwi~{riza0i, so we can rewrite

Cii~
wi

1{
a0

i

ri

: ð35Þ

Auto-repression implies a0iv0. Thus Ciivwi, resulting in a sub-

Poisson noise.

A similar derivation using the linear noise approximation is given

for regulated degradation in [81] and regulated synthesis in [82].

A 2-cycle In this case, pi = i21, and pi21 = i. Assuming no

auto-regulation, let
Lfi

Lwi{1

~a0i and
Lfi{1

Lwi

~a0i{1. Now we write,

Cii~wiz
1

ri

a0iCi,i{1, ð36Þ

Ci,i{1~
1

rizri{1
a0iCi{1,i{1za0i{1Ci,i

� �
: ð37Þ

To reduce Cii we can reduce the magnitude of Ci,i21. One way

to achieve this is to have opposite signs for a0i and a0i{1. Moreover,

the sub-Poisson noise is possible if a0iCi,i{1v0, which is possible

only if a0ia
0
i{1v0. Thus the presence of a negative and positive

regulator in a 2-cycle is a necessary, but not sufficient condition for

achieving sub-Poisson noise. For sufficiency, we also need

a0iCi{1,i{1

�� ��v a0i{1Cii

�� ��.
A 3-cycle In this case, pi = i21, pi21 = i22, and pi22 = i. The

variance equation stays the same

Cii~�wwiz
1

ri

a0iCi,i{1: ð38Þ

However, now we have

Ci,i{1~
1

rizri{1

a0iCi{1,i{1za0i{1Ci,i{2

� �
: ð39Þ

and

Ci,i{2~
1

rizri{2
a0iCi{1,i{2za0i{2Ci,i

� �
: ð40Þ

Combining the above into a single expression for Cii, we have

Cii~�wwiz
1

ri rizri{1ð Þ

a0i a0iCi{1,i{1za0i{1

1

rizri{2
a0iCi{1,i{2za0i{2Ci,i

� �	 
� 
:

ð41Þ

The last term gives us a product of the derivatives, a0ia
0
i{1a0i{2. If

this product is negative (that is, if we have an odd number of

repressors in the cycle) then we can reduce the overall magnitude

of the variance Cii. Note here that we have two extra terms in the

variance. One, a0i
� �2

Ci{1,i{1, is always positive, while the other
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can be of either sign. Thus the overall negative regulation is not

a guarantee of a sub-Poisson noise in this case.

Ultimately, noise regulation can be improved with cycles with

odd number of negative regulators. However, as cycles get larger

and the network becomes more complex, the achievability of sub-

Poisson noise becomes more limited. This may be related to the

observation that, whereas small cycles are over-represented in

a metabolic network, large cycles occur less frequently than one

would expect given several different possible null models [61].

SUPPORTING INFORMATION

Text S1 Supplementary Text

Found at: doi:10.1371/journal.pone.0001077.s001 (0.06 MB

DOC)

Figure S1 Mutual Information I versus the mean reporter copy

number <NG> for circuits 1 and 2. Insets: Extrapolated <I> versus

the inverse data fraction m as described in the Main Article.

Found at: doi:10.1371/journal.pone.0001077.s002 (0.47 MB TIF)

Figure S2 Mutual Information I versus the mean reporter copy

number <NG> for circuits 3 and 4. Insets: Extrapolated <I> versus

the inverse data fraction m as described in the Main Article.

Found at: doi:10.1371/journal.pone.0001077.s003 (0.47 MB TIF)

Figure S3 Mutual Information I versus the mean reporter copy

number <NG> for circuits 5 and 6. Insets: Extrapolated <I> versus

the inverse data fraction m as described in the Main Article.

Found at: doi:10.1371/journal.pone.0001077.s004 (0.48 MB TIF)

Figure S4 Mutual Information I versus the mean reporter copy

number <NG> for circuits 7 and 8. Insets: Extrapolated <I> versus

the inverse data fraction m as described in the Main Article.

Found at: doi:10.1371/journal.pone.0001077.s005 (0.45 MB TIF)

Figure S5 Mutual Information I versus the mean reporter copy

number <NG> for circuits 9 and 10. Insets: Extrapolated <I>
versus the inverse data fraction m as described in the Main Article.

Found at: doi:10.1371/journal.pone.0001077.s006 (0.46 MB TIF)

Figure S6 Mutual Information I versus the mean reporter copy

number <NG> for circuits 11 and 12. Insets: Extrapolated <I>
versus the inverse data fraction m as described in the Main Article.

Found at: doi:10.1371/journal.pone.0001077.s007 (0.45 MB TIF)

Figure S7 Mutual Information I versus the mean reporter copy

number <NG> for circuits 13 and 14. Insets: Extrapolated <I>
versus the inverse data fraction m as described in the Main Article.

Found at: doi:10.1371/journal.pone.0001077.s008 (0.44 MB TIF)

Figure S8 Mutual Information I versus the mean reporter copy

number <NG> for circuits 15 and 16. Insets: Extrapolated <I>
versus the inverse data fraction m as described in the Main Article.

Found at: doi:10.1371/journal.pone.0001077.s009 (0.43 MB TIF)

Figure S9 Mutual Information I versus the mean reporter copy

number <NG> for circuits 17 and 18. Insets: Extrapolated <I>
versus the inverse data fraction m as described in the Main Article.

Found at: doi:10.1371/journal.pone.0001077.s010 (0.47 MB TIF)

Figure S10 Mutual Information I versus the mean reporter copy

number <NG> for circuits 19 and 20. Insets: Extrapolated <I>
versus the inverse data fraction m as described in the Main Article.

Found at: doi:10.1371/journal.pone.0001077.s002 (0.45 MB TIF)

Figure S11 Mutual Information I versus the mean reporter copy

number <NG> for circuits 21 and 22. Insets: Extrapolated <I>
versus the inverse data fraction m as described in the Main Article.

Found at: doi:10.1371/journal.pone.0001077.s002 (0.46 MB TIF)

Figure S12 Mutual Information I versus the mean reporter copy

number <NG> for circuits 23 and 24. Insets: Extrapolated <I>
versus the inverse data fraction m as described in the Main Article.

Found at: doi:10.1371/journal.pone.0001077.s002 (0.49 MB TIF)

Figure S13 Jensen-Shannon divergence JSP between distribu-

tions obtained by the linear noise approximation and the Gillespie

algorithm for multiple circuits and multiple parameterizations

plotted as a function of mean copy number. At JSP = 0, the

distributions are identical. There appears to be a sharp threshold

at 10 molecules, below which the linear noise approximation does

poorly, but above which, the linear noise approximation does well.

Found at: doi:10.1371/journal.pone.0001077.s002 (0.51 MB TIF)

Table S1 Comparison of presence or absence of proteolysis to

presence or absence of negative auto-regulation. Fisher exact

probability test reveals signficant (p = 0.013) positive association.

This confirms our prediction that transcription factors which

undergo proteolysis, and therefore have faster response times, are

less able to regulate noise using the temporal filtering, and they

require the presence of negative auto-regulation to help control the

noise.

Found at: doi:10.1371/journal.pone.0001077.s015 (0.03 MB

XLS)

Table S2 145 transcription factors in E. coli gene regulatory

network as obtained from RegulonDB [4]. Number of cleavage

sites is based on MEROPS [5] database and autoregulation

(repression = 21, excitation = +1, none = 0) is based on data from

[4].

Found at: doi:10.1371/journal.pone.0001077.s016 (0.05 MB

XLS)
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