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abstract

PURPOSE CALGB 40603 (NCT00861705), a 2 3 2 randomized phase II trial, demonstrated that adding
carboplatin or bevacizumab to weekly paclitaxel (wP) followed by doxorubicin and cyclophosphamide sig-
nificantly increased the pathologic complete response (pCR) rate in stage II-III triple-negative breast cancer. We
now report long-term outcomes (LTOs) and correlative science end points.

PATIENTS AND METHODS The Kaplan-Meier method was used to estimate LTOs in 443 patients who initiated study
treatment. Log-rank tests and Cox proportional hazards models evaluated the impact of clinical characteristics,
pathologic response, calculated residual cancer burden (RCB) in patients with residual disease (RD), treatment
assignment, and dose delivery during wP on LTOs, including event-free survival (EFS). Genomic predictors of
treatment response and outcomes were assessed on pretreatment tumor samples by mRNA sequencing.

RESULTS Among baseline characteristics, only the clinical stage was associated with LTOs. At a median follow-up of
7.9 years, LTOswere not significantly improvedwith either carboplatin or bevacizumab, overall or in patientswith basal-
like subtype cancers by genomic analysis. Patients with pCR (n 5 205, 46.3%) had significantly higher 5-year EFS
(85.5% v 56.6%, log-rank P, .0001) and overall survival (87.9% v 63.4%, P, .0001) rates compared with patients
with RD, even those with RCB class I. Among clinical and genomic features, evidence of immune activation, including
tumor-infiltrating lymphocytes and low B-cell receptor evenness, was associated with pCR and improved EFS.

CONCLUSION Despite higher pCR rates, neither carboplatin nor bevacizumab appeared to improve LTOs al-
though the study was not powered to assess these secondary end points. pCR was associated with superior LTOs
even when compared with minimal RD. Markers of immune activation in pretreatment tumor biopsies were
independently associated with higher pCR rates and improved survival.
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INTRODUCTION

In triple-negative breast cancer (TNBC), pathologic
response to neoadjuvant chemotherapy (NACT) is a
powerful prognostic indicator, but on average, only one
third of patients achieve pathologic complete response
(pCR) with standard anthracycline- and taxane-based
regimens.1 Cancer and Leukemia Group B (CALGB,
now part of the Alliance for Clinical Trials in Oncology)
40603, a randomized phase II 2 3 2 factorial trial,
investigated whether adding another chemotherapeutic
agent, carboplatin or the vascular endothelial growth

factor–targeted monoclonal antibody bevacizumab, to
standard NACT would improve pCR rates in clinical
stage II-III TNBC. The study met its primary objectives,
demonstrating that pCR breast (ypT0 or Tis) was sig-
nificantly increased with either carboplatin (60% v
46%) or bevacizumab (59% v 48%).2 This report fo-
cuses on the study’s secondary end points, specifically
the impact of these treatments on long-term outcomes
(LTOs), including event-free survival (EFS), and the
association between pCR and extent of residual disease
(RD) and LTOs.
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The study also had important correlative objectives, par-
ticularly to identify pretreatment clinical and genomic
biomarkers predictive of achievement of pCR and/or
prognostic of EFS and to evaluate the impact of study
treatment on pCR rates in patients with genomically defined
basal-like tumors, a coprimary end point of the study.

PATIENTS AND METHODS

Patients with clinical stage II-III TNBC (estrogen receptor
and progesterone receptor # 10% and human epidermal
growth factor receptor 2–negative) received paclitaxel
80 mg/m2 once a week for 12 weeks (wP) and were ran-
domly assigned to the control regimen (arm 1), with ad-
dition of bevacizumab 10 mg/kg once every 2 weeks for 9
doses (arm 2), carboplatin area under the curve 6 once
every 3 weeks for four doses (arm 3), or both (arm 4),
followed by dose-dense doxorubicin and cyclophospha-
mide (AC) and then surgery (Data Supplement 1, online
only). Patients signed an institutional review board–
approved Protocol (online only)–specific consent in ac-
cordance with federal and institutional guidelines. Patho-
logic response was assessed by institutional pathologists.
pCR is defined as the absence of residual invasive disease
in the breast and axilla (ypT0 or Tis N0), and patients with
RD were stratified by residual cancer burden (RCB), as
defined by Symmans et al.3 EFS is defined as time from
random assignment to local, regional, or distant recur-
rence, any second invasive cancer, or death from any
cause; patients not undergoing surgery were considered
to have had an EFS event when they were removed from
study treatment. Overall survival (OS) is defined as time
from random assignment to death from any cause, and
distant recurrence-free interval (DRFI) is defined as time
from random assignment to detection of metastatic
disease or death attributed to disease progression, with

patients removed from follow-up for any other reason
(including a second invasive cancer or death not at-
tributed to breast cancer) censored as of their last dis-
ease assessment. The study database was frozen on
April 2, 2020, and patients were censored as of their
most recent follow-up data. Data collection, analysis, and
quality review were conducted by the Alliance Statistics
and Data Management Center and the study chair, fol-
lowing Alliance policies.

With support from the Breast Cancer Research Foundation,
pretreatment tumor biopsies from all enrolled patients were
required and submitted for genomic and other analyses.
RNA sequencing (RNAseq) was performed as previously
described,4 excluding those whose samples failed to meet
RNA quality control metrics and those with estrogen re-
ceptor or progesterone receptor expression . 1% (to be
consistent with the current clinical definition of TNBC5).
RNA sequencing, clinical data, and patient outcomes are
available through NCBI database of Genotypes and Phe-
notypes (dbGaP).6 The impact of adding bevacizumab or
carboplatin on pCR and EFS was assessed in the subset of
patients with basal-like tumors defined by PAM50
classification.7,8 We also assessed the ability of previously
published TNBC molecular subtyping strategies to predict
pCR and EFS. To investigate the entire genome for gene
expression patterns correlated with response and survival,
we evaluated hundreds of previously published gene ex-
pression signatures (n 5 793) that have been extensively
used to distill the expression of thousands of genes into
biologically relevant patterns that comprehensively cover
the biology of breast cancer9 and have been shown to
outperform individual genes for providing prognostic
value.10 Once we identified associations between the
number of immune signatures and both pCR and EFS,
we analyzed a subset of samples (n 5 178) for tumor-

CONTEXT

Key Objective
This analysis assesses whether adding bevacizumab or carboplatin to anthracycline- and taxane-based neoadjuvant

chemotherapy (NACT) in triple-negative breast cancer (TNBC) improves long-term outcomes (LTOs) and evaluates
clinical and molecular features for predictors of response and survival.

Knowledge Generated
Achievement of pathologic complete response correlated with better event-free survival (EFS) and overall survival, with even

minimal residual invasive disease associated with worse outcomes. Although both bevacizumab and carboplatin sig-
nificantly increased pCRs, neither improved LTOs. From gene expression analyses, evidence of an active tumoral
immune response correlated with increased pCRs and improved EFS.

Relevance
Addition of bevacizumab or carboplatin to TNBC NACT increased pCRs, but did not appear to improve LTOs. However,

standard of care is now NACT including carboplatin with pembrolizumab; future studies should focus on optimizing
chemotherapy plus immune checkpoint inhibition. Identification of immune activation as a predictive and prognostic
biomarker may allow more tailored neoadjuvant approaches in nonmetastatic TNBC.
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infiltrating lymphocytes (TILs) according to international
standards11 and evaluated the correlation with pCR and EFS.
To further characterize the immune response and its
prognostic significance, we analyzed B-cell receptor and
T-cell receptor sequence repertoire abundance and diversity
measures (which are derived from bulk RNAseq and de-
scribed in Data Supplement 1). We used multivariable Cox
proportional hazards (PH) models with baseline clinical
features and several immune features, including TILs, to
compare the prognostic value of these features in predicting
EFS. Given the strong association between achievement of
pCR and EFS (described below), we looked for clinical and
genomic features predictive of EFS in patients who failed to
achieve pCR. We created a Cox PH model to identify in-
teractions between treatment variables (ie, with or without
carboplatin and with or without bevacizumab) and genomic
features to determine if this could improve our ability to
predict EFS.

Statistical Considerations

The analysis was performed via a modified intent-to-treat
(mITT) principle; patients who withdrew before starting
protocol treatment were excluded. The Kaplan-Meier
method was used to estimate LTOs. Log-rank tests and
Cox PH models were used to evaluate the association
between baseline characteristics, treatment assignment,
pathologic response, treatment delivery, genomic features,

and LTOs. A generalized linear model of binomial outcomes
using logit link function was used to evaluate genomic and
clinical features’ association with probability of pCR.
Consistent with the exploratory nature of many of the
correlative science analyses, reported P values are from
two-sided tests and have not been corrected for multiple
comparisons.

Role of the Funding Sources

Representatives of the funding sources (the National
Cancer Institute, Genentech, the Breast Cancer Research
Foundation, and the American Recovery and Recon-
struction Act of 2009) were not involved in data analysis or
the preparation of this article.

RESULTS

Impact of Clinical Factors on Outcomes

Of 443 patients in the mITT population, 426 underwent
surgery (CONSORT diagram, Fig 1). The median follow-up
is 7.9 years (95% CI, 7.6 to 8.1). The estimated 5-year EFS
is 70.3%, OS 75.0%, and DRFI 76.1% (Fig 2A and Data
Supplement). Among baseline characteristics, only the
clinical stage (III v II) was significantly associated with EFS
(hazard ratio [HR], 2.15; 95% CI, 1.53 to 3.01) and OS
(HR, 2.42; 95% CI, 1.68 to 3.50), whereas age, race, and
tumor grade were not (Table 1).

Arm 1: wP-ddAC
Assigned
Started Tx

Underwent surgery
PD without surgery

(n = 115)
(n = 108)

(n = 106)
(n = 0)

TNBC RNA set

Excluded from analysis
  Withdrew consent
  Insufficient material
  Analysis failure
  ER-positive/NA
  PgR-positive/NA
HER2+/NA

(n = 89)

(n = 1)
(n = 4)
(n = 7)

(n = 6/1)
(n = 4/1)
(n = 0/1)

Arm 2: wP-ddAC + Bev
Assigned
Started Tx

Underwent surgery
PD without surgery

(n = 113)
(n = 110)

(n = 104)
(n = 0)

TNBC RNA set

Excluded from analysis
  Withdrew consent
  Insufficient material
  Analysis failure
  ER-positive/NA
  PgR-positive/NA
  HER2+

(n = 79)

(n = 2)
(n = 6)
(n = 5)

(n = 11)
(n = 5/1)

(n = 1)

Arm 3: wPCarbo-ddAC
Assigned
Started Tx

Underwent surgery
PD without surgery

(n = 113)
(n = 113)

(n = 108)
(n = 1)

TNBC RNA set

Excluded from analysis
  Withdrew consent
  Insufficient material
  Analysis failure
  ER-positive/NA
  PgR-positive/NA
  HER2+

(n = 94)

(n = 5)
(n = 5)
(n = 1)

(n = 5/2)
(n = 3/3)

(n = 1)

Arm 4: wPCarbo-ddAC + Bev
Assigned
Started Tx

Underwent surgery
PD without surgery

(n = 113)
(n = 112)

(n = 108)
(n = 1)

TNBC RNA set

Excluded from analysis
  Withdrew consent
  Insufficient material
  Analysis failure
  ER-positive/NA
  PgR-positive/NA
  HER2+

(n = 93)

(n = 2)
(n = 5)
(n = 3)

(n = 5/1)
(n = 4/1)

(n = 1)

Patients enrolled
(N = 454)

Patients starting treatment
ITT set (n = 443)

Basal-like set

Non–basal-like
(n = 69)

(n = 20)
Basal-like set

Non–basal-like
(n = 63)

(n = 16)
Basal-like set 

Non–basal-like
(n = 73)

(n = 21)
Basal-like set

Non–basal-like
(n = 68)

(n = 25)

Patients in the TNBC RNA set                    (n = 355)

Patients in the Basal-like TNBC RNA Set  (n = 273)

FIG 1. CONSORT diagram (Alliance CALGB 40603 trial). Bev, bevacizumab; Carbo, carboplatin; ddAC, dose-dense doxorubicin and cyclophosphamide;
ER, estrogen receptor; HER2, human epidermal growth factor receptor 2; ITT, intent-to-treat; NA, not available; PD, progressive disease; PgR, pro-
gesterone receptor; TNBC, triple-negative breast cancer; Tx, treatment; wP, weekly paclitaxel.
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In patients who achieved a pCR (205 of 443, 46.3%), the 5-
year EFS is 85.5% versus 56.6% (HR, 0.29; 95% CI, 0.19
to 0.42; P , .0001; Fig 2B) and the 5-year OS is 87.9%
versus 63.4% (HR, 0.28; 98% CI, 0.18 to 0.43; P, .0001;

Data Supplement 1) compared with those with RD, and
prognosis for baseline stage III versus II no longer differs
significantly (Fig 2C) although this finding is based on a
limited number of events. In patients with RD, the RCB
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FIG 2. Effect of the pretreatment clinical stage and response on EFS. (A) EFS in the mITT population. EFS stratified by (B) pCR versus RD, (C) pCR versus
RD and stage, and (D) RCB. EFS, event-free survival; HR, hazard ratio; mITT, modified intent-to-treat; pCR, pathologic complete response; RCB, residual
cancer burden; RD, residual disease.
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FIG 3. Effect of addition of bevacizumab and carboplatin to LTO in CALGB 40603. EFS stratified by (A and C) bevacizumab and (B and D)
carboplatin treatment within the (A and B) mITT and (C and D) basal-like patient populations. pCR rate within the basal-like and non–basal-like
subsets stratified by (E) bevacizumab and (F) carboplatin treatment. Bev, bevacizumab; Carbo, carboplatin; EFS, event-free survival; HR,
hazard ratio; LTO, long-term outcome; mITT, modified intent-to-treat; pCR, pathologic complete response; RD, residual disease.
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TABLE 1. Impact of Baseline Characteristics and Treatment on EFS and OS

Patient Subgroup

Univariate Cox PH Survival Analysis

EFS OS

Events/Total HR (95% CI) P Events/Total HR (95% CI) P

Age, years .2345a .1051a

, 40 24/100 0.69 (0.44 to 1.08) 18/100 0.60 (0.36 to 1.00)

40-59 88/269 Reference 74/269 Reference

$ 60 23/74 0.94 (0.60 to 1.49) 21/74 1.02 (0.63 to 1.65)

Race .6974a .7146a

White 100/320 Reference 85/320 Reference

Black or African American 28/89 0.97 (0.64 to 1.48) 23/89 0.95 (0.60 to 1.51)

Asian, Native Hawaiian or
Pacific Islander, American Indian
or Alaska Native, or more than one race

5/22 0.69 (0.28 to 1.70) 4/22 0.68 (0.25 to 1.85)

Clinical stage , .0001a , .0001a

II 73/300 Reference 57/300 Reference

III 62/143 2.15 (1.53 to 3.01) 56/143 2.42 (1.68 to 3.50)

Tumor grade .6730a .5464a

Low or intermediate 17/54 1.12 (0.67 to 1.87) 15/54 1.19 (0.69 to 2.06)

High 101/338 Reference 85/338 Reference

T stage .0001a .0002a

1 14/49 1.19 (0.67 to 2.12) 12/49 1.26 (0.68 to 2.34)

2 73/291 Reference 59/291 Reference

3 39/87 2.14 (1.45 to 3.16) 34/87 2.28 (1.49 to 3.48)

4 7/10 4.13 (1.90 to 8.98) 6/10 4.45 (1.92 to 10.31)

N stage .0014a .0006a

0 41/185 0.61 (0.41 to 0.90) 29/185 0.49 (0.31 to 0.76)

1 63/187 Reference 57/187 Reference

2 14/35 1.27 (0.71 to 2.26) 11/35 1.10 (0.58 to 2.10)

3 7/9 2.76 (1.26 to 6.03) 6/9 2.43 (1.04 to 5.64)

Bevacizumab .6355a .8622a

No 70/221 Reference 57/221 Reference

Yes 65/222 0.92 (0.66 to 1.29) 56/222 0.97 (0.67 to 1.40)

Carboplatin .7210a .5585a

No 69/218 Reference 54/218 Reference

Yes 66/225 0.94 (0.67 to 1.32) 59/225 1.12 (0.77 to 1.61)

Arm .6663a .8743a

1 (wP to ddAC) 33/108 Reference 26/108 Reference

2 (wP to ddAC 1 Bev) 36/110 1.11 (0.69 to 1.78) 28/110 1.08 (0.63 to 1.84)

3 (wPCarbo to ddAC) 37/113 1.13 (0.71 to 1.81) 31/113 1.24 (0.74 to 2.09)

4 (wPCarbo to ddAC 1 Bev) 29/112 0.86 (0.52 to 1.41) 28/112 1.08 (0.64 to 1.85)

Abbreviations: Bev, bevacizumab; Carbo, carboplatin; ddAC, dose-dense doxorubicin-cyclophosphamide; EFS, event-free survival; HR, hazard ratio; OS,
overall survival; PH, proportional hazards; wP, weekly paclitaxel.

aType 3 likelihood ratio P value.
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class is prognostic for EFS (Fig 2D); however, even RCB-I is
associated with a worse prognosis than RCB-0 (ie, pCR;
HR, 2.49; 95% CI, 1.46 to 2.25; P, .0001). Similar results
are seen for OS and DRFI (Data Supplement 1). In an
exploratory analysis, baseline stage III versus II remains a
significant prognostic variable in patients with RCB-I or
RCB-II, although not in the smaller number of patients with
RCB-III (Data Supplement 1). Significant improvements in
EFS and OS with pCR over RD are seen across all arms of
the study although differences vary in magnitude (Data
Supplement 1).

There is no improvement in EFS in themITT population with
the addition of either bevacizumab (HR, 0.92; 95%CI, 0.66
to 1.29; P5 .64) or carboplatin (HR, 0.94; 95% CI, 0.67 to
1.32; P5 .72; Figs 3A and 3B). Similar results are seen for
OS and DRFI (Data Supplement 1). We identified no patient
subset for which the addition of either agent improves EFS
or OS (Data Supplement 1). Events by treatment arm are
listed in Data Supplement 1.

As noted in our previous publication,2 patients assigned to
carboplatin were more likely to miss multiple doses of
treatment during wP (35% v 15% not assigned to carbo-
platin). As very few patients discontinued treatment early,
this discrepancy may be attributed to higher rates of he-
matologic toxicities with carboplatin and protocol dosing
guidelines that required that treatment is skipped, rather
than delayed, for these toxicities. In an exploratory analysis,
we found a significant relationship between the number of
wP doses received (stratified by $ 11, 9-10, 7-8, and # 6)
and EFS (P 5 .0025) in the overall study population (Data
Supplement 1). Among all patients who received $ 11
doses of wP, the addition of carboplatin increased pCRs
from 41% to 61%, with a trend for improved 5-year EFS
(78.5% v 72%, HR, 0.68; 95% CI, 0.44 to 1.06; P5 .089),
which was not seen relative to bevacizumab assignment
(Data Supplement 1).

Impact of Genomic Features on pCR and Outcomes

Within the subset of patients with genomically defined
basal-like tumors, which comprised 77% of tumors tested
by RNA-seq7 (Data Supplement 1), the addition of either
bevacizumab or carboplatin to the control NACT regimen
significantly increased the pCR rate (Figs 3E and 3F), but,
as in the mITT population, failed to improve EFS (Figs 3C
and 3D). Adding bevacizumab had a larger positive impact
on the pCR rate in basal-like compared with non–basal-like
tumors, whereas the increment in pCR with the addition of
carboplatin was similar between the two cohorts (Figs 3E
and 3F).

Of the published TNBC molecular subtyping approaches
that we evaluated—TNBCtype,12 MD Anderson Cancer
Center and Baylor College of Medicine subtype,13 and
PAM50 1 Claudin Low subtypes7,14—only tumors cate-
gorized as the basal-like immune-activated subtype by the
MD Anderson Cancer Center and Baylor College of

Medicine classification demonstrated a significantly
higher pCR rate and none displayed significant prognostic
differences for EFS (Data Supplement 1). Comparison
between subtyping strategies demonstrated a moderate
strength of association (0.40-0.46, Cramer’s V test), but
disagreements between classifications and a high pro-
portion of unclassifiable specimens highlight a limitation of
these strategies (Data Supplement 1).

Of the . 850 clinical and genomic features that we ana-
lyzed for association with outcomes in these exploratory
studies (Data Supplement 2, online only), a large number of
features were associated with either pCR (n 5 177) or EFS
(n5 39), but only 27 were associated with both (Fig 4A and
Data Supplement 2). Features associated with pCR but not
EFS included all six signatures of interferon signaling,
whereas clinical features such as the baseline tumor stage
and nodal status were associated with EFS, but not pCR.
Most (24 of 27) of the features associated with both pCR
and EFS reflected the tumor’s immune microenvironment
(Fig 4B), including the presence of a variety of immune
effector cells, including T and B lymphocytes and natural
killer cells. Higher mRNA expression levels of immune
checkpoint genes, including programmed cell death
protein 1 (PDCD1) and programmed death-ligand 1
(CD274), were also associated with improvements in
both pCR and EFS.

Analysis of B-cell receptor and T-cell receptor data dem-
onstrated that low immunoglobulin G (IgG) evenness was
associated with improvements in both pCR and EFS. IgG
evenness is a measure of the uniformity of B-cell clonal
abundance. Low IgG evenness may reflect oligoclonal B-cell
expansion and immunoglobulin class switching caused by
an antigen-driven immune response, in contrast to a non-
specific (polyclonal) immune response. In fact, there was a
negative correlation between IgG evenness and IgG abun-
dance (Data Supplement 1). Using IgG evenness cutoff
values derived from recurrence-free survival data for patients
with TNBC in The Cancer Genome Atlas (TCGA; Data
Supplement 1), we found that patients with low IgG evenness
have improved EFS (Fig 4B, right) and IgG evenness was an
independent prognostic feature in a model including age,
stage, and pCR status (Data Supplement 1). Among patients
who failed to achieve pCR, only the tumor stage and node
status were stronger prognostic features than low IgG
evenness (Fig 4C). In addition, among patients who did not
receive carboplatin (arms 1 and 2 of our study), only
achievement of pCR was more strongly associated with EFS
than low IgG evenness (Data Supplement 1).

As a continuous measure, TIL density, defined as the
percentage of stromal area occupied by lymphocytes on a
tumor biopsy,11 was strongly associated with both pCR and
EFS. There was a correlation, albeit with a significant
variation, between TIL density and mRNA signatures of
many immune effector cells and immune checkpoints, but
not with IgG evenness (Figs 4D and 4E). As there is no
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standard definition of low or high TILs, we sought to establish
an optimal cutoff by constructing a series of Kaplan-Meier
curves for each 10% increment in TILs between 10% and
50% and found that a level of . 20% led to optimal sep-
aration of EFS curves (Data Supplement 1). However, al-
though TILs and other genomic features were prognostic for
EFS in univariate analyses, once pCR status (yes or no) was
included in a multivariable analysis, TILs, either as a con-
tinuous variable or with a . 20% cutoff, were no longer
independently prognostic for EFS, whereas a genomic sig-
nature of CD81 T cells, evaluated in the same model, within
the same subset of patients, remained an independent
prognostic variable that significantly improved the prognostic
value of the model (Fig 4F and Data Supplement 2).

A Cox PH model on the basis of treatment (ie, plus car-
boplatin or plus bevacizumab), genomic variables, and the
interaction between treatment and the genomic feature can
identify potential features associated with treatment-
specific sensitivity and resistance. We identified 11 fea-
tures that had significant interaction with carboplatin
treatment (Data Supplement 1), the most significant of
which was RB1 mRNA expression, with low RB1 expres-
sion being associated with greater improvements in pCR
and EFSwith the addition of carboplatin (Data Supplement 1).
There were 12 features that had significant interaction
with bevacizumab (Data Supplement 1), including a signature
of lung metastasizing breast cancer cells (Pcorr_Breas-
t2Lung_LM2),15 for which higher expression correlated with
worse survival in patients not receiving bevacizumab (Data
Supplement 1), and menopausal status, with postmeno-
pausal women demonstrating worse survival with bev-
acizumab (Data Supplement 1).

DISCUSSION

As expected,1,16 patients with TNBC in CALGB 40603 who
achieved pCR with NACT had far superior LTOs compared
with those with RD, in whom the baseline stage and extent
of RD were prognostic. In this trial, patients with any RD,
even RCB-I, had significantly worse outcomes than those
with pCR, supporting consideration of adjuvant therapy
even in the setting of minimal RD.

Despite the significant increase in pCR with both agents,
there was no evidence that adding either bevacizumab or

carboplatin improved EFS or other LTOs, although, like
many neoadjuvant trials, CALGB 40603 was not powered to
evaluate EFS. We did not collect data on whether study
patients, particularly those who failed to achieve pCR, re-
ceived additional chemotherapy or other systemic treat-
ments after surgery, and thus, we cannot rule out the
possibility that such treatments could have affected EFS
and other LTOs and diminished the apparent benefit of
achieving pCR although our study was completed before
results of the CREATE-X trial were presented and made
administration of postneoadjuvant therapy with capecita-
bine common.17 The absence of benefit from bevacizumab
is not surprising, noting that in three other randomized
trials—GeparQuinto, ARTemis, and NSABP B-40—the
addition of bevacizumab to NACT did not improve disease-
free survival (DFS) or OS in TNBC,18-23 despite significantly
increasing pCR rates in the first two studies, nor has adding
bevacizumab to adjuvant chemotherapy been shown to
improve outcomes in TNBC.24,25 In both GeparQuinto and
ARTemis, pCRs achieved with bevacizumab had higher
rates of DFS events than those attained with NACT alone,
leading the ARTemis investigators to hypothesize that al-
though bevacizumab might enhance response to chemo-
therapy in an angiogenesis-driven breast tumor, it might not
have the same effect on micrometastatic disease.21

Two other randomized trials—GeparSixto and BrighT-
Ness—have demonstrated significant increases in pCR
rates in TNBC with the addition of carboplatin to taxane-
and anthracycline-containing NACT26,27; pCR rates of a
similar magnitude have been reported in other multicenter
studies (Data Supplement 1).28-30 In GeparSixto, the ad-
dition of weekly carboplatin to their control NACT regimen
significantly improved DFS, along with a trend toward
improvement in OS.28,29 LTOs from BrighTNess are of
particular interest since this study used a control regimen
identical to arm 1 of CALGB 40603. An intriguing but
exploratory post hoc analysis of the two trials found that a
higher proportion of patients in the carboplatin arm of
BrighTNess (88%) received all 12 planned doses of the
taxane than CALGB 40603 (65%). Patients assigned to
carboplatin on BrighTNess had a larger absolute increase
in pCR rate than on CALGB 40603 (27% v 13%)27 and in
results presented at the 2021 ESMO Congress, had sig-
nificantly better 4-year EFS and a trend toward improved

FIG 4. (Continued). associated with just EFS are given in blue, and features associated with only pCR are given in light blue. A few selected significant features are
labeled. (B) EFS Kaplan-Meier plots for patients with TNBC stratified by (left-to-right) TIL quantification (20% cutoff), NK_cells_MCP_PMID.31942075_P-
MID.31942077 signature tertiles, TCGA.BRCA.1198_IMMUNE1_JCI.2020_PMID.32573490 signature tertiles, and IgG evenness groups. (C) Features signifi-
cantly associated with EFS in patients with residual disease (n5 191); negative log2 HR indicates lower risk of event. (D) Correlation of TILs with immune effector
and checkpoint signatures: (left-to-right, top-first) CD41memory T cells, CD81 T cells, NK cells, PD-1 expression, IgG cluster, and IgG evenness. (E) Spearman
correlation matrix for continuous TIL quantification and top 20 most correlated signatures, ordered by correlation with TILs. (F) Comparison of multivariable Cox
proportional hazardsmodels for EFS within the set of TNBC with TIL quantification (n5 178). Features that are significant in the multivariate Coxmodel are in blue
bold text, HR and 95% CI, AIC. AIC, Akaike information criteria; EFS, event-free survival; HR, hazard ratio; IgG, immunoglobulin G; MCP, Microenvironment Cell
Populations-counter; NK, natural killer; ns, not significant; pCR, pathologic complete response; PD-1, programmed cell death protein 1; PD-L1, programmed
death-ligand 1; TCGA, The Cancer Genome Atlas; TIL, tumor-infiltrating lymphocyte; TIL, tumor-infiltrating lymphocyte; TNBC, triple-negative breast cancer.
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OS31 although other factors might have contributed to these
apparent discrepancies. Although EA1131 failed to dem-
onstrate noninferiority of adjuvant platinum therapy com-
pared with capecitabine in patients with TNBC with RD
after (non–platinum-containing) NACT,32 no randomized
trial has reported on the addition of carboplatin to adjuvant
chemotherapy for TNBC; however, one is ongoing (NRG-
BR003).

KEYNOTE-522 assessed the benefit of the addition of the
programmed cell death protein 1–targeted monoclonal
antibody pembrolizumab to a NACT regimen consisting
of wP and carboplatin followed by AC or epirubicin-
cyclophosphamide (EC) in TNBC, demonstrating improved
pCR rates and 3-year EFS with the addition of the immune
checkpoint inhibitor (ICI).33,34 This finding resulted in US Food
and Drug Administration approval for the addition of pem-
brolizumab to NACT in TNBC. The chemotherapy backbone
in KEYNOTE-522 included carboplatin, making a platinum-
containingNACT regimen appropriate for patients with stage II
and III TNBC being treated in this way. However, it should be
noted that the design of KEYNOTE-522 does not allow as-
sessment of the individual contribution of carboplatin to the
EFS benefit observed with the addition of pembrolizumab.

From a correlative science perspective, the limited overlap
between features associated with pCR and EFS suggests the
need to be cautious in developing biomarkers for survival
from studies for which pCR is the primary clinical end point
and that are not powered to assess LTOs , even though pCR
is the most powerful individual prognostic feature for EFS.
Our results are consistent with previous observations that
both increased TILs and immune-related gene expression
signatures are associated with a higher likelihood of
achieving pCR with NACT and improved survival in
TNBC.35-37 Evaluating both on the same specimens dem-
onstrates how inclusion of some of these genomic immune
signatures, such as a CD81 T-cell signature, may improve a
multivariable prognostic model, whereas the abundance of
TILs did not. In addition, we demonstrate that a more fo-
cused antigen-driven immune response, presumably in
response to antigens expressed by the cancer, as reflected
by lower IgG evenness, is associated with both better re-
sponse to NACT and improved EFS and may help to identify
patients with a good prognosis even in the absence of pCR.
Low IgG evenness has also been associated with improved
prognosis in cutaneous melanoma.38 Given the exploratory
nature of these findings, we look forward to the presentation
of correlative results from theBrighTNess trial, now that it has
reported EFS and OS results, to see if we can validate these
potential biomarkers. The finding that evidence of immune
activation is associated with both pCR to NACT and

improved survival heightens interest in the studying regi-
mens that incorporate both effective NACT and ICIs. Re-
cently reported trials have demonstrated that the addition of
an ICI to NACT for TNBC not only increases pCR but can also
improve EFS.30,39 Analyses of these studies failed to show
that expression of a single marker of tumor-induced immune
suppression, namely, programmed death-ligand 1, identi-
fied patients more likely to benefit from addition of immu-
notherapy, thus leaving open the possibility that a more
detailed evaluation of immune activation as described herein
may be necessary to identify biomarkers for ICI benefit in the
neoadjuvant setting.

Our study has several important limitations. The sample size
was calculated on the basis of analysis of our primary end
point, pCR, which limits our ability to evaluate the impact of
treatment assignment on EFS and other LTOs. Although the
magnitude of the increment in pCR that would be expected
to significantly improve EFS is not well defined, when pre-
senting results of their meta-analysis of the impact of pCR on
LTOs, Spring et al16 commented that to determine if the 13%
absolute increase in pCRs observed with carboplatin in
CALGB 40603 significantly affects EFS would require 1,381
events, a 10-fold increase over the 135 events reported
herein. We did not require central pathologic review, relying
on institutional pathologists to assess pCR and record the
findings necessary to calculate RCB. In addition, we did not
perform germline BRCA mutation testing; thus, we are
unable to determine whether BRCA mutation status affects
the impact of treatment assignment on pCR or EFS.

In conclusion, although adding either carboplatin or bev-
acizumab significantly increased pCR in our trial, neither
appeared to improve LTO; however, CALGB 40603 was
underpowered for these end points. It should be noted that
although its impact on LTO remains unclear, adding car-
boplatin is consistently associated with a pCR advantage.
Moreover, carboplatin is included in the NACT regimen
given with pembrolizumab. For these reasons, inclusion of
carboplatin in NACT is reasonable for patients with stage II
and III TNBC, particularly if being given with an ICI. We
found that TNBC patients with any amount of RD after
NACT, even RCB-I, had inferior LTOs compared with pa-
tients with pCR. Immune activation as measured by TILs
and gene expression signatures was associated with both
higher pCR rates and improved EFS although only immune
activation measured by multigene expression signatures
was independently associated with EFS in multivariable
analysis. These observations, from a study in which patients
did not receive immune-targeted therapy, may provide an
opportunity to test de-escalated or tailored chemotherapy in
patients with markers of immune activation.
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