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Introduction: Psychosocial stress (STS) negatively influences memory. This might be

associated to oxidative stress-induced progressive destruction of numerous brain structures

and functions. L-carnitine (L-CAR) is a widely used antioxidant compound that is endogen-

ously made in mammalian species. The current study investigated the effect of L-CAR on

STS-induced memory impairment in the rat hippocampus.

Methods: The STS was induced using intruder model, where two rats were randomly switched

from each one cage to another, once/day for 6 weeks. Concurrently, L-CAR (300mg/kg/day) was

intraperitoneally administered for 6 weeks. After that, radial arm water maze (RAWM) was used

to assess spatial learning memory in rats. Hippocampal biomarkers of oxidative stress, including

thiobarbituric acid reactive substance (TBARs), oxidized glutathione (GSSG), reduced glu-

tathione (GSH), glutathione peroxidase (GPx), catalase, and superoxide dismutase (SOD), and

Brain-derived neurotrophic factor (BDNF) were examined.

Results: The results showed impairment of short-term memory (P < 0.05) during STS,

whereas L-CAR treatment protected against this effect. Furthermore, while no change was

observed in GSH, GSSG, GPx, catalase, and SOD, L-carnitine normalized STS-induced

reduction in the hippocampal BDNF levels and increase in TBARS levels.

Discussion: Chronic psychosocial stress-induced memory impairment was prevented via

L-CAR administration, which could have been achieved via normalizing changes in lipid

peroxidation (TBARs) and BDNF levels in the hippocampus.

Keywords: L-carnitine, psychosocial stress, maze, hippocampus, memory, BDNF, oxidative

stress

Introduction
Psychosocial stress (STS) is common in modern societies.1 Long-lasting effects of

stress induces changes in the hippocampal brain structure and function, which is an

essential component of memory systems.2–4 Chronic stress was also shown to

negatively modulate learning and memory processes and influences important

signaling pathways of learning and memory functions in the hippocampus.4–11

Oxidative stress induces lipid peroxidation reaction as a consequence of excess

free radicals produced in the body leading to marked damage to cells and organs.12

As shown by several previous studies, brain is mostly sensitive to free radical

insults.13–16 In fact, a number of stressors were revealed to impact lipid peroxida-

tion activity in the brain including immobilization stress,17 high-fat diet,18 and

sustained prolonged stress exposure.19

Brain-derived neurotrophic factor (BDNF), on the other hand, is a member of the

neurotrophin family which is widely expressed in the central nervous system, especially
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in the hippocampus and cerebral cortex.20 BDNF is one of the

vital contributors in the progress, survival, preservation of

neurons and memory formation.20 Hippocampal BDNF levels

are reduced by various stressors including chronic psychoso-

cial stress.21–23 This reduction can lead to loss of pyramidal

neurons in the hippocampus, synaptic deficiencies, and some-

times cell death that might be related to apoptotic signaling. In

that respect, deficiency of serum BDNF associated with psy-

chiatric disorders patients was accompanied by hippocampal

atrophy.24,25

L-Carnitine (3-hydroxy-4-N-trimethylammoniobutanoate)

is derived from L-lysine that is mainly acquired from diet.26 It

is mainly synthesized in the mammalians’ liver, kidney, and

muscles.27 It works as a long-chain fatty acid mediator that

facilitates β-oxidation cycle.28 Additionally, the antioxidant

action of L-CAR is through superoxide radicals and hydrogen

peroxide scavenging, which protects cells from lipid

peroxidation.29 L-CAR is efficient in protection against oxida-

tive stress alterations that are related to many health condition

including Alzheimer’s disease,7,30 chronic sleep deprivation,31

cerebrovascular disease,32 and aging.33 In the present study,

we examined the potential neuroprotective influence of

L-CAR on memory tasks and antioxidative mechanisms in

rats, which are exposed to chronic psychosocial stress.

Materials and Methods
Animals and Treatments
Adult male Wistar rats (180–220 g) were obtained from the

animal care facility at Jordan University of Science and

Technology (JUST). Animals were housed under hygienic

conditions in a climate-controlled room (24 ± 2°C), in plastic

cages (5/cage), with free access to water and rat chow. They

were put on 12-hr light/dark cycle. The study was approved

by the Institutional Animal Care and Use Committee

(IACUC) of Jordan University of Science and Technology

(Approval number 16/3/3/170). The animal welfare guide

used was the ARENA/OLAW IACUC Guidebook, 2nd

Edition 2002 of the Office of Laboratory Animals Welfare

at National Health Institute, USA. The experimental manip-

ulation started after one week of acclimatization. Rats were

distributed into four groups (12–15 rats in each group): con-

trol, psychosocial stress (STS), L-CAR treatment alone

(L-CAR) and psychosocial stress with L-CAR treatment

(STS+L-CAR). The L-CAR and STS+L-CAR groups were

administrated L-CAR (300mg/kg/day, intraperitoneally,

Sigma Chemical CO., Saint Louis, MO) which was given

one injection every day for 6 weeks as previously described.31

The STS and control groups were administrated normal saline

(0.9% w/v NaCl, Sigma Chemical CO., Saint Louis, MO)

intraperitoneally daily for 6 weeks. Concomitantly, the STS

+L-CAR and STS groups were exposed to chronic psycho-

social stress. Psychosocial stress and L-CAR administration

started on the 8th day of the experiment and continued for 6

weeks, during behavioral test day until animals’ killing day.2

For every animal, we carried out the RAWMprocedure on the

next day following the 6 weeks of STS and/or L-CAR

treatments.

Induction of Chronic Psychosocial Stress
The intruder stress model was previously detailed.4,6,8,34

Briefly, animals were kept with the same cage mates in

home cages for a minimum of week allowing establish-

ment of social hierarchy. Afterwards, two rats from each

cage were transferred once a day from one cage to another

for 6 weeks. We have previously shown from our same

laboratory that animals, which were subjected to this stress

chronically, have developed hypertension,35 and had ele-

vated plasma levels of corticosterone.36

The Radial Arm Water Maze (RAWM)
The RAWM procedure was previously described in

detail.37–43 Briefly, the RAWM is a circular black tank,

which was filled with water with six radiating swim paths

that extend out from an open central area. An escape

platform was located at the end of one arm (the goal

arm). During the learning or acquisition phase, training

of each animal consisted of 12 successive trials. Five

minutes resting time was given to every animal after the

first six acquisition trials. After 30 mins of the end of the

12 trials, the short-term memory test was carried out,

followed by the long-term memory tests done after 5 hrs

and 24 hrs of the end of the 12-trial learning phase.

Hippocampus Dissection and Biochemical

Assays
Decapitation applied to the animals and the brain was

straightaway dissected out. Afterwards, we placed the

brain over a normal saline-impeded filter paper over

a cold glass dish that was already filled with crushed ice.

The hippocampus was quickly isolated and put in an

Eppendorf tube that was labeled formerly. Then, the

Eppendorf tubes were transferred to a container filled with

liquid nitrogen, at −70°C freezer until time of tissue proces-

sing. At analysis time, we placed 200μL of homogenization
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buffer over the hippocampus tissues, which were next

homogenized using plastic pestles. The homogenization

buffer was prepared by reconstituting two tablets of pro-

tease inhibitor (Sigma Chemical CO., Saint Louis, MO),

and one tablet of phosphate-buffered saline (Sigma

Chemical CO., Saint Louis, MO) in 200 mL of distilled

water. To remove insoluble materials, the homogenized

hippocampus tissues were centrifuged (10 min at 15,000

×g, at 4°C). The obtained supernatant was stored for addi-

tional analysis. We estimated the total protein concentration

in the obtained supernatant via a commercially available kit

(Bio-Rad, Hercules, CA, USA).

To measure total glutathione, 5% 5-sulfosalicylic acid

(SSA; Sigma Chemical CO., Saint Louis, MO) was used to

deproteinize hippocampal tissue homogenates. Then, the

homogenate was centrifuged at 10,000 xg for 10 mins at 4°C

in order to remove the precipitated protein. Next, samples were

examined glutathione photometrically according to kit’s

instructions (Glutathione assay kit, Sigma-Aldrich, MI,

USA). The GSSG was calculated by adding 10 μL of 1M

2-vinylpyridine (Sigma-Aldrich,MI, USA) per 1 mL of super-

natant from the sample. Afterward, the kit’s procedures, as

described above, were carried out to measure total glutathione.

The GSH levels were calculated by subtracting GSSG value

from total glutathione. The activity of Glutathione peroxidase

(GPx) was measured by means of cellular activity assay kit

(CGP1, Sigma-Aldrich, MI, USA). Catalase and superoxide

dismutase (SOD) activitieswere evaluated using commercially

available kits in accordance with the instructions of the kit’s

manufacturer (SOD: Sigma-Aldrich Corp; Catalase: Cayman

Chem, Ann Arbor, MI, USA). To measure the levels of

Thiobarbituric acid reactive substance (TBARs) in the homo-

genized hippocampus tissues, TBARS assay kit (Cayman

Chem. Com. Ann Arbor, MI, USA) was used. BDNF was

evaluated through usingR&Dassay kit (DuoSet ELISA devel-

opment system. MN, USA). Plates were read at the kit’s

specific wavelengths by Epoch BioTek microplate reader

(Highland Park, Winooski, USA).

Statistical Analysis
Statistics were completed by means of GraphPad Prism soft-

ware version 6.0 (GraphPad Software, La Jolla, CA). Two-

way analysis of variance (ANOVA) has been used to compare

the number of errors in the RAWM procedure followed by

Bonferroni post-test. The two independent variables were time

(repeated measures factors) and treatment (between-subjects

factor). For biochemical assays results, one-way ANOVAwas

used followed by Bonferroni post-test. P < 0.05 was consid-

ered Significant. All values were presented as mean ± SEM.

Results
The Effect of L-Carnitine and/or

Psychosocial Stress on Learning and

Memory
In the acquisition phase, all experimental groups did high

number of errors. As learning trials continued, the number

of errors was gradually reduced, with no significant differ-

ence among all experimental groups (Figure 1).

In the 30-min short-term memory test, significantly

higher number of errors were committed by the STS

group (P<0.05, Figure 2A) compared to the number of

errors were made in all other groups (control, L-CAR,

and STS+L-CAR). No significant difference was observed

among experimental groups in the 5 and 24 hrs long-term

memory tests (Figure 2B and C).

The Effects of Psychosocial Stress and/or

L-CAR on Oxidative Stress Biomarkers in

the Hippocampus
Neither GSH nor GSSG levels were altered in any of the

experimental groups (Figure 3A and B). For anti-oxidative

defense enzymes, chronic STS has not changed the levels

of GPx, SOD, and catalase (Figure 4) compared to the

control group. Moreover, STS+L-CAR groups showed

similar activities of GPx, catalase or SOD compared to

the L-CAR, and control groups. Remarkably, the psycho-

social stress significantly increased the levels of TBARs

compared with other groups (P < 0.05). L-CAR adminis-

tration prevented this increase in TBARS levels as shown

in Figure 5A (L-CAR/STS and L-CAR group).

Effect of STS and/or L-CAR on BDNF

Levels in the Hippocampus
In the STS group, the levels of BDNF were significantly

reduced compared to control, L-CAR and STS+L-CAR

groups. Moreover, STS+L-CAR groups showed similar

BDNF levels to those in the L-CAR, and control groups

(Figure 5B).

Discussion
The present study aimed at investigating the possible pre-

ventive effects of chronic L-CAR treatment on memory

impairment induced by STS. Using intruder model of STS
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and RAWM to test memory, the current data showed that

STS induces impairment of short-term memory. These

results confirm the findings of previous studies that STS

leads to brain neuronal damage and short memory

impairment.2,4–6 In fact, animals from all groups had pro-

gressively learned with continued training. Administration

of L-CAR prevented impairment of short-term memory

during STS. Such preventive effect for L-CAR against

impairment of memory that is revealed in the present

study is in accordance with results from previous research

that tested the beneficial effects of L-CAR on impairing

memory in other health conditions such as Alzheimer’s

disease animal models,7,30 chronic sleep deprivation,31

cerebrovascular disease,32 and aging.33

The current study showed that treatment with the neuronal

antioxidant, L-CAR, protected from chronic STS-induced

impairment of short-term memory through preventing change

in the lipid peroxidation biomarker (TBARS) and BDNF. The

L-CAR is a natural component of all mammalian cells, and its

L-isoform is biologically active.26 The present results dis-

played no alteration in the levels of catalase, GPX, SOD,

GSH, GSSG, and GSH/GSSG ratio. Previously, it was

shown that chronic social isolation in rats had not altered

activities of SOD or catalase, whereas it reduced activity of

GPx in the hippocampus.44 Notably, evaluations of these

biomarkers in the current study were not conducted in isolated

mitochondria, which could be a reason for discrepancy of

results of various studies. Yet, alternative mechanisms to anti-

oxidant enzymatic pathways could be the ability of L-CAR to

prevent for changes in lipid peroxidation and BDNF.

The STS group exhibited high level of TBARs that are

byproducts of lipid peroxidation supporting data from

other studies that showed elevated brain levels of TBARs

in animals exposed to stress.45 L-CAR decreased these

elevations, which goes in line with previous results that

showed L-CAR reduces TBARs levels in other animal

model with elevated oxidative stress status such as in the

brain of rats exposed to restraint stress,46 and to the che-

mical toxin, arsenic,47 and in the muscle tissues of rat

exposed to intermittent hypoxia.48 Moreover, L-carnitine

supplementation was shown to reduce elevated TBARs in

the serum of humans with exercise-induced muscle

damage,49 and in isolated blood platelets.50

The levels of BDNF, which is a neurotrophin is crucially

involved in memory processes,20 were shown to be reduced

in the hippocampus during chronic STS exposure and by

exposure to single prolonged stress.22,23 Moreover, the

BDNF signaling pathway in hippocampus was shown to

mediate memory deficits of rats subjected to chronic unpre-

dictable mild stress.51 Thus, BDNF impacts learning and

memory in a robust way. However, in the current study, the

STS-impaired only short-term memory. The current study
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Figure 1 Comparison of rats’ performance during the learning phase. The number of errors made by animals dropped with continued learning trials with no significant

difference among all groups. Each point is the mean ± SEM of 12–15 rats.
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Figure 2 L-CAR prevents short-term memory impairment induced by the STS model. (A) Short-term memory test (30 mins) post learning phase. The STS group

committed significantly higher number of errors in short-term memory test compared to other groups. On the other hand, the number of errors in the STS + L-CAR group

was similar to that in the control and L-CAR groups. Long-term memory tests at (B) 5 hrs and (C) 24 hrs. All experimental groups showed no significant difference from

control. Each point is the mean ± SEM of 12–15 rats. *P < 0.05 indicates significant difference from control.

Dovepress Rababa’h et al

Drug Design, Development and Therapy 2019:13 submit your manuscript | www.dovepress.com

DovePress
4345

http://www.dovepress.com
http://www.dovepress.com


Control STS L-CAR STS + L-CAR
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
G

SH
(n

m
ol

/m
g

pr
ot

ei
n)

Control STS L-CAR STS + L-CAR
0.0

0.5

1.0

1.5

2.0

2.5

G
S

S
G

(n
m

ol
/m

g
pr

ot
ie

n)

Control STS L-CAR STS + L-CAR
0

1

2

3

R
A

TI
O

A  Levels of GSH in the hippocampus

B  Levels of GSSG in the hippocampus

C  Ratio of GSH/GSSG in the hippocampus

Figure 3 Hippocampal GSH and GSSG levels: No change was observed in the levels of (A) GSH,and (B) GSSG, and (C) ratio of GSH/GSSG among all experimental groups.

Mean values ± SEM of 15 rats per group are presented.
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Figure 4 Effect of L-CAR and/or STS on the activity of anti-oxidative stress capacity enzymes in the hippocampus tissue. (A) GPx activity, (B) catalase activity, and (C) SOD

activity were similar among all experimental groups in the hippocampal tissue. Mean values ± SEM of 15 rats per group are presented.
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reported reduced levels of hippocampal BDNF during STS.

This effect was prevented by administration of L-CAR.

L-CAR was formerly shown to protect memory during

chronic sleep deprivation through normalizing neuroprotec-

tive antioxidant mechanisms although BDNF was not

included in that model.31 Additionally, BDNF levels

decreased in PTSD patients who suffered memory and cog-

nition impairment.52

The psychosocial stress model used in the current study

has been previously validated in our laboratory setting, where

animals subjected to chronic psychosocial stress, had elevated

blood pressure and plasma levels of corticosterone.35,36

Further model validation via measuring hippocampal and

plasma cytokine that are known to be higher in the STS

model used would be informative for the validity of

L-carnitine as potential therapeutics for chronic STS.

Moreover, immunohistochemical analysis of markers such as

microglial activation marker, oxidative marker (8-oxo-dG),

astrocyte activation marker, and blood–brain barrier integrity

marker would aid in understanding the mechanism of L-CAR
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Figure 5 (A) Effect of L-CAR and/or STS on the hippocampal levels of TBARS in STS rats. The STS group revealed significant increase in the hippocampal TBARs levels

compared to other groups. On the other hand, the levels of TBARs in the STS + L-CAR group were similar to those in the control and L-CAR groups. (B) Levels of brain-
derived neurotrophic factor (BDNF) in the hippocampus. BDNF levels were significantly decreased in the hippocampus of the STS group as compared to the control group.

Moreover, the levels of BDNF in the STS + L-CAR group were similar to that in the control and L-CAR groups. Mean ± SEM, n = 15 for each group, *p < 0.05 indicates

significant difference compared with all other groups.
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action. Doing such analysis of further biomarkers is a strongly

recommended future study.

Conclusion
The current results showed that L-CAR protects memory

impairment induced by chronic psychosocial stress prob-

ably via preventing increase in lipid peroxidation (TBARs)

and decrease in BDNF levels associated with psychosocial

stress condition.
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