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Molecular Dynamics Simulations 
of the Permeation of Bisphenol 
A and Pore Formation in a Lipid 
Membrane
Liang Chen1,2, Junlang Chen1, Guoquan Zhou1, Yu Wang1, Can Xu3 & Xiaogang Wang1

Bisphenol A (BPA) is particularly considered as one of the most suspicious endocrine disruptors. 
Exposure to BPA may bring about possible human toxicities, such as cancerous tumors, birth defects 
and neoteny. One of the key issues to understand its toxicities is how BPA enters cells. In this paper, we 
perform molecular dynamics simulations to explore the interactions between BPA and a phospholipid 
membrane (dipalmitoylphosphatidylcholine, DPPC bilayer). The simulation results show that BPA 
can easily enter the membrane from the aqueous phase. With the increasing concentrations of BPA 
in the membrane, BPA tends to aggregate and form into cluster. Meanwhile, several DPPC lipids are 
pulled out from each leaflet and adsorbed on the cluster surface, leading to pore formation. Detailed 
observations indicate that the lipid extraction results mainly from the dispersion interactions between 
BPA cluster and lipid tails, as well as weak electrostatic attractions between lipid headgroups and the 
two hydroxyl groups on BPA. The lipid extraction and pore formation may cause cell membrane damage 
and are of great importance to uncover BPA’s cytotoxicity.

Bisphenol A (BPA), 2, 2-bis (4-hydroxyphenyl) propane, an important chemical material, is widely used to pro-
duce epoxy resins and polycarbonates1,2. It is also highlighted as one endocrine disrupting chemical3–5, which may 
cause the function abnormalities of human endocrine system6–8, including mimicking estrogen9,10, occupying the 
hormone receptors, and disrupting hormone synthesis, secretion11.

Prior to affect the endocrine system, BPA should pass through the cell membrane. Therefore, it is fundamen-
tally essential to understand the translocation of BPA across a cell membrane and its effects therein. However, 
the current studies mainly focus on the toxicity of BPA and how to detect12–15, and eliminate BPA from water 
solution16–19. Few attention is paid to the interactions between BPA and cell membrane20,21.

Here, we use molecular dynamics simulation to investigate the penetration of BPA and its cluster from water 
into the lipid bilayer and the aggregation of BPA in the bilayer center. The results show that BPA can readily enter 
the membrane and is trapped in the bilayer close to the lipid headgroups. Under the high concentration of BPA 
in the water, BPA will form into cluster before entering the membrane. When aggregated in the membrane, BPA 
cluster can extract lipids and adsorb them on its surface, resulting in pore formation. Such effect has not been 
reported previously, and it may offer new insights for the toxicities of BPA.

Computational Methods
Molecular dynamics (MD) simulations were performed on the hydrated DPPC bilayer with BPAs. The fully 
hydrated bilayer, composed of 128 DPPC lipids and 5800 water molecules, was developed by Tieleman and 
Berendsen22. The force field parameters for DPPC lipids were taken from Berger et al.23. The geometry of BPA 
was optimized by density functional theory (DFT) method at the B3LYP/6-31G (d, p) level24. The topology of 
BPA was created by PRODRG server25. However, the partial charges assigned by PRODRG were found to result 
in wrong water solubility and unrealistic partitioning between water and membrane. We therefore resorted to 
Mulliken partial charges obtained after DFT calculations, which were compatible with Berger lipid force field.
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All MD simulations were carried out under the isothermal-isobaric (NPT) ensemble using the Gromacs pack-
age 4.5.526,27 and GROMOS53a6 force field28. Periodic boundary conditions were employed in all directions. 
The vdW interactions were treated with smooth cutoff at a distance of 12 Å, whereas the particle-mesh Ewald 
method was adopted to calculate the long-range electrostatic interactions29,30. Water was represented by the SPC 
model31. The temperature was kept stable at 323 K using the V-rescale thermostat32 and the pressure was con-
trolled semi-isotropically by a Berendsen barostat33. Bond lengths within BPA/DPPC and water molecules were 
constrained by the LINCS and the SETTLE algorithms34,35, respectively.

The free energy of BPA across the bilayer was computed from the potential of mean force (PMF) using umbrella 
sampling36. First, we conducted steered MD simulation to pull the molecule from the aqueous phase to the middle of 
the membrane. Then, 30 configurations were generated along the z-axis direction (reaction coordinate). The z coordi-
nates of COM distance between BPA and membrane in each configuration differed by about 0.1 nm. Each window was 
equilibrated for 5 ns and a production run of 5 ns was continued for sampling. Eventually, the PMF profile was obtained 
by the Weighted Histogram Analysis Method (WHAM)37, implemented in the GROMACS package as ‘g_wham’38. The 
convergence and sufficiency and of each sampling were presented in the Supplementary Information Figures S1 and S3.

Results and Discussion
The permeation of BPA in the membrane. Because of the extremely low water solubility, we only put 
one BPA in the aqueous phase and one in the bilayer center (see Fig. 1A) to look for the preferable location of 
the molecules. Figure 1 showed the initial and final structures and the time evolution of the z-coordinates of 
their COMs. During the first 25 ns, the outer BPA just moved randomly in the water. However, at t~25.32 ns, the 
outer BPA rapidly entered the bilayer and then stayed at the interface between water and the lipid headgroups. 
The detailed dynamic process of the outer BPA entering the lipid bilayer was presented in Fig. 1D–G. First, BPA 
was adsorbed on the surface of bilayer because of the electrostatic interactions between the two hydroxyl groups 
of BPA and the lipid headgroups (see Fig. 1D, t =  23.76 ns). Due to the hydrophobic interactions between BPA 
and lipid tails, the main body of BPA rotated and then was pulled into the lipid tails (see Fig. 1E–G), while the 
hydroxyl groups were still near the headgroups. Such location and orientation had no essential changes but slight 
fluctuations for the rest of the simulation. Meanwhile, the inner BPA went straight and quickly to another inter-
face and remained there with the similar location and orientation till the end of simulation. The two symmetric 
locations were in line with NMR determination39. We have rerun the system with more accurate partial charges, 
obtained by DFT calculation at wb97xd/6 − 31 + g(d, p) level. As shown in Figure S4 in the Supplementary 
Information, the results are in good agreements with those in Figure 1.

The translocation of BPA can be more quantitatively illustrated by the PMF of BPA at different transmembrane 
positions, as shown in Fig. 2B. The PMF of BPA in the aqueous phase far away from the interface was defined as 
zero. We observed that BPA penetrating into the bilayer should overcome an energy barrier, though it was not 
high (~0.6 kcal/mol). However, the free energy difference between BPA at the center and at the interface reached 

Figure 1. A trajectory of the two BPA molecules in the membrane. (A) The initial configuration. (B) The final 
snapshot. (C) The z-coordinates of the COM of BPA vs. simulation time, where the center of the bilayer is fixed at 
z =  0 nm, and the two dashed lines represent the interfaces between water and lipid headgroups. (D–G) Snapshots 
specify the dynamic process of BPA entering the bilayer, where water is not shown for clarity.
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5.1 kcal/mol (Δ Gpen), resulting in its fast moving towards the lipid headgroups. The minimum of the PMF was 
− 4.5 kcal/mol at the symmetric positions ±  1.1 nm from the bilayer center. Mass density profile (see Fig. 2A) 
showed clearly that the preferable locations of BPA were symmetric and close to the lipid headgroups (the densest 
region of the membrane). These two locations were in good agreement with the two minima of the PMF, implying 
that they were energetically favorable.

Figure 3 showed the detailed interactions among DPPC, BPA and water. The orientation of BPA in the mem-
brane was that its hydroxyl groups pointed to the hydrophilic interface and the rest of the molecule was immersed 
in the lipid tails (see Fig. 3C), due to the following two facts: 1) the electrostatic interactions between the two 
hydroxyl groups on BPA and the lipid headgroups; 2) the hydrophobic interactions between the two benzene 
rings and methyl groups on BPA and the lipid tails. Radial distribution functions (RDF) were calculated to elu-
cidate the former. The first peak between polar hydrogen atoms on BPA and oxygen atoms on phosphate groups 
(Fig. 3A, black line, at ~0.18 nm) corresponded to a hydrogen bond, while the first peak between oxygen atoms 
on BPA and phosphorus atoms on phosphate groups (Fig. 3A, red line) was at ~0.39 nm, close to their collision 
radii. These peaks indicated that the hydroxyl groups on BPA strongly interacted with the polar lipid headgroups.

Water molecules could easily penetrate into the interspaces between lipid headgroups, and act as bridges 
between lipid headgroups as well as between BPA and headgroups. Figure 3B showed the RDF of water molecules 
around BPA. The first (at ~0.18 nm) and second peak (at ~0.35 nm) represented the hydrogen bonds, meaning 
that water in the membrane preferred to surround BPA. After this, the RDF rose gradually with the increasing 
distance, since more and more water molecules were included out of the membrane.

The permeation of BPA cluster in the membrane. We then increased the concentration of BPA in the 
water to 0.43 mol%, in which mol% was defined as the number of BPA divided by the sum of BPA and water molecules. 
As shown in Fig. 4A, BPA formed into cluster quickly at t =  12 ns, and then moved randomly in the water. At about 
t =  150 ns, BPA cluster began to slowly enter the membrane. Figure 4B showed that the difference between the COMs of 
BPA cluster and lipid bilayer was close to zero after entering the membrane, since the COM of BPA cluster was near the 
bilayer center (see Fig. 4A, snapshot at t =  300 ns). The BPA cluster was kept almost intact except that 3 BPA molecules 
went away from the cluster. Mass density profile (Fig. 4C) also showed that different from single BPA in the membrane, 
BPA cluster preferred to stay in the middle of the bilayer. That is to say, BPA presents low lipid solubility.

To confirm the low solubility of BPA in the lipid membrane, we randomly embedded BPA molecules in the 
bilayer center with different concentrations, namely 3.8 mol%, 7.2 mol%, 10.5 mol%, 13.5 mol%, 16.3 mol% and 
23.3 mol%, Correspondingly, the number (abbreviated to ‘n’) of BPA was n =  5, 10, 15, 20, 25 and 45. Here, mol% 
was defined as the number of BPA divided by the sum of BPA and DPPC molecules. The results were given in 
Fig. 5. At extremely low concentration, BPA could disperse in the membrane (see Fig. 5A) and BPA was close 
to the lipid headgroups. Then, BPA began to aggregate into small clusters, when the concentration was about 

Figure 2. (A) Mass density profiles of BPA (black), DPPC (red) and water (green). (B) Potential of mean force 
(PMF) of BPA across the membrane. The labeled Δ Gwat and Δ Gpen denote water/lipid barrier and the bilayer 
center penetration barrier.
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7.2~13.5 mol% (see Fig. 5B–D). And BPA formed into big clusters, when the concentration was more than 
16.3 mol% (Fig. 5E,F). In general, BPA has weak lipid solubility according to our simulation results.

Interestingly, it was found that pore formed at the entrance (see Fig. 6A) where BPA cluster entered the mem-
brane. And water molecules flew in and filled the hole. Detailed observation showed that these holes were located 
on both sides of BPA cluster, and several lipids broke away from the bilayer and were adsorbed on the surface of 
the cluster. The pore formation was also found in the systems, in which the concentration of BPA in the mem-
brane was more than 16.3 mol%. It has been reported that the dispersion interactions between sp2 carbon atoms 
and lipid tails are stronger than the self-attraction among the lipids in the bilayer40. Clearly, this strong attraction 
between BPA cluster and lipids originates from such dispersion interactions between the benzene rings on BPA 
and lipid tails. Figure 6C showed the number of water molecules in the bilayer as a function of simulation time. 
These water molecules were mainly distributed on both sides of the BPA clusters (see Fig. 6B), where the holes 
existed.

Figure 3. The detailed interactions among DPPC, BPA and water. (A) RDF between BPA and lipid 
headgroups. (B) RDF between BPA and water. (C) A configuration showing the orientation of BPA, its two 
nearest and a water molecule bridged between BPA and lipid headgroups.

Figure 4. Trajectory of BPA cluster entering the membrane. (A) Snapshots taken at 0 ns, 12 ns, 150 ns and 
300 ns, respectively. (B) Time evolution of the COM of BPA cluster. (C) Mass density profile of the system in the 
last 50 ns.
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Conclusions
The translocation and aggregation of BPA in a DPPC bilayer have been investigated by molecular dynamics simu-
lations. Under low concentration, BPA can readily penetrate into the membrane and prefer to stay at the interface 
between water and lipids, with its hydroxyl groups towards the lipid headgroups and its carbon rings in the lipid 
tails. This location and orientation enable electrostatic interactions between the hydroxyl groups of BPA and the 
polar headgroups of DPPC as well as water, which can be confirmed by hydrogen bonds found in the RDFs. With 
high concentration, BPA clusters first and then enters the membrane, leaving a hole at the entrance. The aggre-
gation of BPA in the membrane can also cause pore formation, since several lipids are extracted from each leaflet 
and adsorbed on the cluster surface. The dispersion interactions between lipid tails and the benzene rings on BPA 
as well as electrostatic attractions among their polar groups contribute to the lipid extraction. The results provide 
detailed atomic mechanism of the interactions between BPA and a model cell membrane. And BPA may possess 
potential cytotoxicity when clustered in the membrane.

Figure 5. Low lipid solubility of BPA in the membrane, in which the number of BPA molecules was set 
according to the six fixed concentrations, namely (A) 3.8 mol%, (B) 7.2 mol%, (C) 10.5%, (D) 13.5%, (E) 16.3% 
and (F) 23.3 mol%.

Figure 6. Pore formation in the DPPC bilayer. (A) Top view of the bilayer, where black circle specifies the 
water pore. (B) The structure of BPA cluster and water molecules surrounded it. (C) The number of water 
molecules in the membrane.
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