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ABSTRACT Ebola virus (EBOV) protein VP35 inhibits production of interferon alpha/
beta (IFN) by blocking RIG-I-like receptor signaling pathways, thereby promoting vi-
rus replication and pathogenesis. A high-throughput screening assay, developed to
identify compounds that either inhibit or bypass VP35 IFN-antagonist function, iden-
tified five DNA intercalators as reproducible hits from a library of bioactive com-
pounds. Four, including doxorubicin and daunorubicin, are anthracycline antibiotics
that inhibit topoisomerase II and are used clinically as chemotherapeutic drugs.
These compounds were demonstrated to induce IFN responses in an ATM kinase-
dependent manner and to also trigger the DNA-sensing cGAS-STING pathway of IFN
induction. These compounds also suppress EBOV replication in vitro and induce IFN
in the presence of IFN-antagonist proteins from multiple negative-sense RNA viruses.
These findings provide new insights into signaling pathways activated by important
chemotherapy drugs and identify a novel therapeutic approach for IFN induction
that may be exploited to inhibit RNA virus replication.

IMPORTANCE Ebola virus and other emerging RNA viruses are significant but un-
predictable public health threats. Therapeutic approaches with broad-spectrum ac-
tivity could provide an attractive response to such infections. We describe a novel
assay that can identify small molecules that overcome Ebola virus-encoded innate
immune evasion mechanisms. This assay identified as hits cancer chemotherapeutic
drugs, including doxorubicin. Follow-up studies provide new insight into how doxo-
rubicin induces interferon (IFN) responses, revealing activation of both the DNA
damage response kinase ATM and the DNA sensor cGAS and its partner signaling
protein STING. The studies further demonstrate that the ATM and cGAS-STING path-
ways of IFN induction are a point of vulnerability not only for Ebola virus but for
other RNA viruses as well, because viral innate immune antagonists consistently fail
to block these signals. These studies thereby define a novel avenue for therapeutic
intervention against emerging RNA viruses.
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Emerging RNA viruses are an ongoing but unpredictable threat to public health. A
potential answer to this threat would be a broad-spectrum therapeutic approach

targeting host pathways in a manner that would inhibit the diverse virus families that
are likely to cause outbreaks in the human population. Ebola virus (EBOV), a member
of the family Filoviridae, represents one such threat. EBOV has repeatedly been asso-
ciated with outbreaks of highly lethal human disease (1). The need for antifiloviral
therapies is highlighted by the EBOV outbreak in West Africa that caused more than
28,000 infections and 11,000 deaths (2). One potential avenue for therapeutic inter-
vention would be to target the innate immune evasion functions of EBOV and other
emerging RNA viruses. Filoviruses inhibit type I interferon (IFN) responses at multiple
levels (3–13). One major mechanism of EBOV IFN suppression is carried out by the VP35
protein, which inhibits signaling by the RIG-I-like receptors (RLR), RIG-I and MDA5 (11,
14, 15). Suppression of RLR signaling not only prevents IFN production but can also
block the induction of a subset of antiviral genes that can be expressed as a direct result
of RLR signaling and independently of IFN production. Further, for EBOV, VP35 inhibi-
tion of RLR signaling suppresses dendritic cell (DC) maturation, likely contributing to
suppression of adaptive immune responses (15, 16). That the IFN-antagonist function of
VP35 represents a potential therapeutic approach for Ebola virus disease (EVD) is
suggested by the fact that recombinant EBOVs engineered to lack VP35 IFN-antagonist
function exhibit severe attenuation in cell culture and in vivo (12, 17, 18).

Numerous RNA viruses target RLR pathways and other aspects of the IFN response
(as reviewed in references 19 and 20). Identification of an IFN-inducing pathway that
bypasses blocks imposed by EBOV and other RNA viruses could serve as a means to
generally suppress RNA virus replication. Candidate pathways include cellular DNA-
sensing pathways that lead to IFN gene expression; viruses that lack a DNA genome
and do not produce DNA products of replication may not have evolved mechanisms
to suppress the DNA-induced responses. Among DNA-sensing mechanisms, the
kinase ATM, which is activated in response to DNA breaks, has been identified as
promoting IFN production, although relevant downstream signaling events that
lead to IFN production remain incompletely defined (21–26). Another particularly
well-characterized DNA sensing pathway is the cGAS-STING pathway, in which cyto-
plasmic DNA binds and activates the enzyme cGAS, triggering its generation of the
cyclic dinucleotide (CDN) cyclic GMP-AMP (cGAMP) (27, 28). CDN activates signaling
through STING to trigger IFN production (29–31). The cGAS-STING pathway has also
been implicated in triggering IFN production in response to DNA damage (22).

Anthracycline antibiotics are a class of compounds which includes commonly used
cancer chemotherapy drugs such as doxorubicin, which, although highly effective in
killing tumor cells, is limited in its usage due to its cardiotoxicity (32). These compounds
intercalate DNA, inhibit type II topoisomerase, and trigger the DNA damage response
(33, 34). One interesting but relatively understudied effect of these compounds on cells
is induction of IFN responses; induction of such responses has been proposed to
modulate immune responses that may influence the antitumor effects of doxorubicin
(35, 36).

Here, we developed and optimized a high-throughput screening (HTS) assay in a
384-well format with the initial goal of identifying compounds that induce IFN in the
presence of EBOV VP35 protein. A screen of 2,080 bioactive compounds identified
DNA-intercalating chemotherapeutic agents such as doxorubicin and daunorubicin as
reproducible activators of the IFN-� promoter in the presence of VP35. These drugs are
DNA topoisomerase II poisons that intercalate DNA (37). We demonstrate that these
drugs can activate the IFN-� promoter via either the DNA damage response-associated
kinase ATM or the cGAS-STING pathway, that activation of the ATM pathway requires
the presence of DNA topoisomerase II, and that VP35 blocks neither pathway. The
compounds are further demonstrated to suppress EBOV replication and to activate an
IFN response in the presence of IFN antagonists from several different RNA viruses.
These observations identify new host pathways that are activated by anthracycline
chemotherapeutic drugs, define mechanisms by which these pathways are activated,
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and suggest that the DNA damage response and DNA-sensing pathways could be
exploited to treat infections by EBOV and other RNA viruses.

RESULTS
An HTS assay to identify small-molecule inhibitors of VP35. A 293T-based stable

cell line with a firefly luciferase reporter gene under the control of the IFN-� promoter
(293T-FF) was transduced with a lentivirus that expresses from a single mRNA both
VP35 and green fluorescent protein (GFP) (15). This yielded the cell line VP35-FF. In this
cell line, an internal ribosomal entry site separates the open reading frames for VP35
and GFP such that the two proteins are translated as distinct polypeptides. Alterna-
tively, the reporter cell line was transduced with an “empty-vector” lentivirus that
expresses GFP alone (control-FF). Clonal VP35-FF and control-FF cell lines were ob-
tained by sorting for GFP expression (see Fig. S1A in the supplemental material). Upon
infection with Sendai virus (SeV), a known activator of RLR signaling and of the IFN-�
promoter, a strong upregulation of luciferase expression was detected in the control-FF
cells, whereas the VP35-FF cells exhibited little response to infection, reflecting VP35
inhibition of RLR signaling and IFN-� promoter activation (Fig. S1B). Examination of
endogenous mRNA levels for IFN-� and interferon stimulated gene 54 (ISG54) yielded
parallel results (Fig. S1C and D), demonstrating that the reporter gene accurately
reflects the status of the endogenous IFN response.

For an HTS screen, it was desirable to identify a positive-control compound that
would induce an IFN response in the presence of VP35. However, no small-molecule
inhibitor of VP35 IFN-antagonist function has been described. We assessed the FDA-
approved chemotherapeutic drug doxorubicin, which has been reported to induce an
IFN response and to stimulate IFN regulatory factor 3 (IRF-3) phosphorylation by an
incompletely defined mechanism (38, 39). Doxorubicin activated the IFN-� promoter in
the presence or absence of VP35 (Fig. S1B). Doxorubicin also stimulated an endogenous
IFN response in either reporter cell line as indicated by upregulation of IFN-� and ISG54
mRNAs (Fig. S1C and D). As doxorubicin induced IFN in the presence or absence of VP35
and IFN induction occurred in the absence of an RLR activator such as SeV, IFN
induction by doxorubicin is likely through a signaling pathway that is not blocked by
VP35.

An HTS assay based on the VP35-FF cell line was developed to allow identification
of additional small molecules that induce an IFN response in the presence of VP35
(Fig. 1A). Briefly, VP35-FF cells were plated in 384-well plates, allowed to rest for 2 h, and
infected with SeV in the presence of either diluent (0.1% dimethyl sulfoxide [DMSO]) or
3 �M doxorubicin. Immediately afterward, compounds were added via pin tool transfer.
Twenty hours postaddition, luciferase activity was measured. A representative pilot
study compared VP35-FF cells that were infected with SeV and treated with DMSO
(SeV � DMSO) to the same cells infected with SeV and treated with 3 �M doxorubicin
(SeV � doxorubicin). Comparison of the two conditions yielded an 83-fold induction by
doxorubicin over the DMSO control and a Z factor of 0.7 (Fig. S1E). A Z factor value of
�0.5 indicates a high-quality screening assay (40). To establish that inhibition of VP35
can result in activation of IFN-� promoter by SeV in the VP35-FF cells, we utilized
previously described VP35 small interfering RNAs (siRNAs) si349 and si219 (41). VP35-FF
cells that were transfected with the siRNAs to VP35 mRNA had reduced VP35 expression
levels compared to a scrambled siRNA (Fig. S1F). Following SeV infection, little IFN-�
promoter activation was observed in the scrambled siRNA-treated cells, but IFN-�
responses were stimulated by SeV infection upon VP35 knockdown (Fig. S1F).
Doxorubicin-mediated activation of IFN-� promoter was not impaired by VP35 knock-
down.

Using the optimized conditions for the 384-well format, we screened a library of
2,080 bioactive compounds (Fig. 1B). The eight library plates were each screened in
duplicate, and the Z factor for each plate was �0.5 (Fig. 1C). The Z scores, which
indicate how many standard deviations a given value is from the mean, were calculated
for each compound, and those compounds with Z scores of �5 in both replicates were
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classified as hits. This resulted in 5 hits. Perhaps unsurprisingly, the hits included
doxorubicin. Strikingly, three other hits were daunorubicin, epirubicin, and aklavine
hydrochloride, all anthracycline antibiotics that are structurally very similar to doxoru-
bicin. Doxorubicin, daunorubicin, and epirubicin are used as chemotherapeutic drugs
for cancer (42, 43). The last hit was aminacrine (9-aminoacridine), a fluorescent dye used
clinically as a topical antiseptic and experimentally as a mutagen due to its interaction
with DNA (44) (Fig. 1D).

Doxorubicin and daunorubicin stimulate production of IFN-�/�. We asked how
anthracyclines stimulate an IFN response and why this stimulation is not blocked by
VP35, choosing doxorubicin and daunorubicin for this analysis. First, the doses required
for IFN-� promoter activation and for cytotoxicity were determined in both VP35-FF
(Fig. 2A and B) and control-FF (Fig. 2C and D) cells in the absence or presence of SeV
infection. Both compounds were toxic to cells at higher concentrations (25 to 50 �M),
consistent with their use as cancer drugs. However, each activated the IFN-� promoter
at concentrations far below cytotoxic levels, with as little as 780 nM inducing luciferase
expression and with peak stimulation at 3 �M in either the VP35-FF cells (Fig. 2A and
B) or the control-FF cells (Fig. 2C and D). To confirm that neither doxorubicin nor
daunorubicin nonspecifically enhances luciferase activity, cells transfected with a re-
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porter plasmid from which firefly luciferase is constitutively expressed were treated
with different doses of each drug. No significant stimulation was observed, demon-
strating specificity toward the IFN-� promoter reporter gene (Fig. 2E and F). To
determine whether the IFN-� induction occurs in other cell types, we transiently
transfected A549 cells with an IFN-�–luciferase reporter gene and with empty vector or
VP35 expression plasmid and treated them with different doses of doxorubicin or
daunorubicin. Each drug induced reporter gene expression at noncytotoxic doses in the
absence or presence of VP35 (Fig. 3A and B). Each drug also induced expression of the
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endogenous IFN-� and ISG54 mRNAs regardless of whether VP35 was expressed
(Fig. 3C and D).

Doxorubicin and daunorubicin induce IFN by an ATM-dependent mechanism.
Doxorubicin has pleiotropic effects on cells. Among its activities, it is a topoisomerase
II poison that intercalates into DNA, resulting in double-strand DNA breaks (DSB) (24,
45). Ataxia-telangiectasia mutated (ATM), a member of the phosphoinositide 3-kinase-
like family of serine/threonine protein kinases, is activated in response to DNA DSB (25,
46–48). ATM has also been linked to stimulation of innate immune signaling pathways
(26, 49–52). This prompted us to examine the role of ATM in doxorubicin- and
daunorubicin-mediated activation of the IFN-� promoter. We treated control-FF or
VP35–FF cells with an ATM kinase inhibitor (Ku55933) (53) or with mirin, an inhibitor of
the Mre11-Rad50-Nbs1 (MRN)-ATM pathway, which is essential for sensing and signal-
ing in response to double-strand DNA breaks. Mirin prevents MRN-dependent activa-
tion of ATM without affecting ATM protein kinase activity and inhibits Mre11-associated
exonuclease activity (54). Each inhibitor significantly dampened, in the presence or
absence of VP35, the IFN-� promoter activity induced by doxorubicin or daunorubicin
compared to DMSO treatment (Fig. 4A). To further implicate the ATM pathway in the
response to doxorubicin, short hairpin RNA (shRNA) knockdown of ATM was performed.
Relative to a scrambled shRNA, targeting ATM decreased the doxorubicin-mediated IFN
induction in control-FF and VP35-FF cells relative to mock-treated controls (Fig. 4B). In
contrast, neither pharmacological inhibition nor shRNA knockdown significantly af-
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fected SeV-mediated induction of IFN-� promoter activity in control-FF cells (Fig. 4A
and B).

Activation of ATM results in its phosphorylation and the phosphorylation of down-
stream targets, including p53. To further establish that the ATM pathway is active upon
doxorubicin treatment, we examined the phosphorylation status of ATM and p53. The
phosphorylation of ATM serine 1981 and of p53 serine 15 was assessed after 6 h of
treatment with doxorubicin. SeV infection was included as a control. The drug but not
SeV resulted in phosphorylation of ATM and p53 in the presence or absence of VP35
(Fig. 4C). Both IRF-3 and NF-�B are transcription factors that contribute to induction of
the IFN-� promoter. Doxorubicin treatment also resulted in Ser396 phosphorylation of
IRF-3, consistent with its activation. In contrast to the inhibition seen with SeV infection,
VP35 did not prevent doxorubicin-induced IRF-3 phosphorylation (Fig. 4D). Further,
doxorubicin activated NF-�B-directed gene expression, as assessed by reporter gene
assay, and this was impaired by the ATM kinase inhibitor but not by VP35. This was in
contrast to the case when SeV or tumor necrosis factor alpha (TNF-�) was used as an
NF-�B activator, where ATM inhibition did not affect induction (Fig. 4E). Cumulatively,
these data suggest that doxorubicin and related compounds induce IFN responses, at
least in part, via an ATM-dependent pathway and that VP35 expression does not block
this pathway.

Doxorubicin targets topoisomerase II� (Top2A) and generates stabilized DNA-
topoisomerase II covalent complexes (33). Decreasing levels of Top2A render cells
resistant to killing by doxorubicin (34, 55). To examine whether decreased Top2A levels
influence activation of the IFN-� promoter, small interfering RNA was used to decrease
Top2A expression. Downregulation of Top2A expression reduced IFN-� promoter
activation by doxorubicin in both the presence and the absence of VP35 but did not
have any effect on SeV-mediated activation of IFN (Fig. 4F). Cumulatively, these data are
consistent with a model whereby doxorubicin inhibition of Top2A activates ATM, which
leads to IFN induction.

The cGAS-STING axis can also contribute to doxorubicin-mediated activation of
interferon responses. DNA damage or infection may lead to generation of cytosolic
DNA (cDNA) that can trigger IFN induction (56, 57). The endoplasmic-reticulum-resident
protein stimulator of interferon genes (STING) is required for the initiation of signaling
leading to IFN production upon detection of cytosolic DNA and also serves as a direct
receptor for the detection of DNA (29, 58). cGAS (cyclic GMP-AMP synthase) is an
enzyme that recognizes DNA in the cytoplasm and generates a unique cGAMP isomer,
with one 2=-5= phosphodiester bond and one 3=-5= phosphodiester bond, that binds
and activates STING (59). Interestingly, the cGAS-STING pathway has been implicated in
induction of IFN by cellular DNA damage (22). cGAS and STING were not detectable by
Western blotting in the 293T cell-based control-FF or VP35-FF cell lines (Fig. S2A), which
is consistent with a previous report that 293T cells lack cGAS and STING (60). Therefore,
to address the potential role of these proteins to signal in response to doxorubicin,
293T-based reporter cell lines were stably transduced with lentiviruses that express
wild-type human STING (STING-FF cells) (29, 61–63).

To validate the STING cell lines, empty vector or VP35 was transfected along with
expression plasmids for wild-type cGAS (cGAS-wt), a cGAS nucleotidyltransferase
G212A/S213A mutant (cGAS-NTase), or a cGAS DNA binding mutant C396A/C397A
(cGAS-DBM). cGAS-NTM has mutations in the active site of cGAS and abolishes pro-
duction of cGAMPs by cGAS (64, 65). cGAS-DBM was generated by mutating two
cysteine residues of the zinc-binding site so as to abolish DNA-induced NTase activity
(65, 66). The following day, the cells were mock treated, infected with SeV, or treated

FIG 4 Legend (Continued)
and are representative of three independent experiments. **, P value � 0.01. (F) IFN-� reporter gene assays were performed
as described above in control cells or VP35 cells but in the presence of scrambled siRNA (scrm.) or Top2A-specific siRNA
(Top2a). ***, P value � 0.001 (one-way analysis of variance followed by Tukey’s test). The inset shows Western blotting assays
to detect Top2A and �-tubulin. M, mock treated; D, doxorubicin treated; S, SeV infected.
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with doxorubicin, and 20 h later, luciferase activity was measured (Fig. 5A). Each cell line
responded comparably to SeV infection, regardless of the form of cGAS expressed. In
the cells lacking cGAS but possessing STING, a modest upregulation of the IFN-�
promoter was seen in response to doxorubicin. IFN-� activation by doxorubicin was
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substantially enhanced by expression of cGAS-wt when STING was present. In neither
the cGAS-NTM nor the cGAS-DBM cells did doxorubicin result in the enhanced IFN-�
promoter activation (Fig. 5A). This suggests that the enhanced IFN-� response to
doxorubicin requires cGAS with an intact DNA-sensing capacity and STING and that
STING is responding to cGAS-generated CDN. This provides evidence that doxorubicin
can activate the cGAS-STING DNA-sensing pathway to induce IFN-� expression. In these
experiments, VP35 expression inhibited the SeV-mediated but not the doxorubicin-
mediated activation of the IFN-� promoter, indicating that VP35 is unable to block
doxorubicin-induced signaling through cGAS and STING.

To determine whether ATM signaling contributes to the cGAS-STING response, a
293T-based stable reporter cell line expressing cGAS-wt and STING was generated
(cGAS-wt�STING-FF cells). The control or the STING�cGAS-wt reporter cell line was
then transduced with either an empty-vector lentivirus or a VP35-expressing lentivirus.
Three days after transduction, the cells were mock treated or treated for 2 h with ATM
kinase inhibitor (Fig. 5B). Alternatively, the cells were transfected with expression
plasmids that produce either a scrambled shRNA or an ATM-specific shRNA (Fig. 5C).
Two days later, these cells were then mock treated, infected with SeV, treated with
doxorubicin, or transfected with cyclic di-GMP (c-di-GMP), a CDN that can activate
signaling through STING. Twenty hours later, luciferase activity was determined. The
c-di-GMP treatment stimulated the IFN-� promoter in cGAS-wt�STING-FF cells relative
to control cells lacking STING and cGAS (Fig. 5B and C), demonstrating that STING
signaling is intact. Expression of STING and cGAS once again significantly enhanced
doxorubicin-mediated IFN-� promoter activation (Fig. 5B and C). The presence of ATM
kinase inhibitor or ATM shRNA dampened but did not abolish this response (Fig. 5B and
C). This suggests that the ATM pathway contributes to the response in the presence of
STING and cGAS. As seen previously, VP35 inhibited the SeV-induced response. How-
ever, VP35 did not inhibit the doxorubicin-induced response, the cyclic-di-GMP-induced
response, or the residual IFN response detected in the presence of ATM inhibitor or
ATM shRNA (Fig. 5B and C). This reinforces the view that ATM- and cGAS/STING-
dependent IFN responses are insensitive to inhibition by VP35.

In humans, loss-of-function mutations in ATM result in ataxia telangiectasia (AT)
(67–69). Comparison of fibroblasts from healthy subjects with ATM patient-derived
fibroblasts demonstrated a constitutive elevation of IFN-� and ISG54 mRNAs in the
absence of ATM, even when VP35 was introduced via a lentiviral vector (Fig. S2B). This
is consistent with previous reports that sustained ATM deficiency upregulates an IFN
response in AT cells via the STING pathway due to accumulation of damaged DNA in
the cytoplasm (22). Interestingly, despite the fact that our transient knockdown of ATM
decreased IFN responses to doxorubicin in the 293T cell system, treatment of AT
fibroblasts with doxorubicin still yielded a strong IFN-� response compared to healthy
control fibroblasts (Fig. S2C and D). The c-di-GMP treatment was used as a control for
STING-mediated induction of IFN in these cells, which indeed resulted in modest
activation of the IFN response. Notably, VP35 had no inhibitory effect on c-di-GMP- or
doxorubicin-mediated response in these cells. This demonstrates that doxorubicin can
induce an IFN response in the absence of ATM and that doxorubicin therefore can
induce IFN-� by at least two distinct pathways, neither of which is impaired by VP35.

To confirm IFN induction in cells that express endogenous cGAS and STING and that
have a responsive ATM signaling machinery, primary human monocyte-derived den-
dritic cells (MDDCs) were examined (Fig. S2E and F) (70). MDDCs were transduced with
control or VP35 lentiviruses and 72 h later infected with SeV or treated with either
doxorubicin or c-di-GMP. RNA was then isolated to determine IFN-� (Fig. S2E) and ISG54
(Fig. S2F) mRNA levels. Again, doxorubicin upregulated the IFN response in either the
presence or the absence of VP35.

Because cGAS detects DNA (29) and because DNA damage can result in accumula-
tion of single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) species in the
cytoplasm (22), we asked whether doxorubicin treatment leads to colocalization of DNA
and cGAS. We performed colocalization studies with ssDNA and cGAS. Indeed, ssDNA
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levels increased upon doxorubicin treatment, and this ssDNA colocalized with cGAS in
both the nucleus and the cytoplasm (Fig. S3A and B). This suggests that doxorubicin-
mediated DNA damage results in production of ssDNA that may directly activate cGAS.

To further evaluate whether a DNA signal is responsible for the doxorubicin-
stimulated IFN response, we overexpressed Trex1, a 3= exonuclease that degrades the
single- and double-stranded DNA in the cytoplasm and that can prevent activation of
STING (57, 71, 72). Overexpression of Trex1 abrogated activation of IFN by doxorubicin
and by exogenously delivered immunostimulatory DNA (ISD) mediated in the presence
of cGAS-STING (Fig. S3C). As a control, we also overexpressed a Trex1 dominant mutant,
D18N, that lacks the ability to degrade dsDNA and is associated with autoimmune
disorders (71, 73, 74). Expression of the D18N mutant enhanced IFN response to
doxorubicin above that seen in the absence of the mutant, suggesting that doxorubicin
treatment results in cytoplasmic DNA that can trigger activation of the cGAS-STING
pathway (Fig. S3C). Interestingly, in the control cells which lack cGAS and STING
expression, a basal level of IFN activation was detectable following doxorubicin treat-
ment but not following treatment with ISD, and this induction was not affected by
Trex1 expression. This further supports the view that doxorubicin activates interferon
through both STING-dependent and -independent pathways. It also suggests that the
STING-independent pathway does not require the generation of cytoplasmic DNA.

Doxorubicin inhibits Ebola virus infection in vitro. Because doxorubicin can
induce an IFN response in the presence of VP35, the antiviral activity of doxorubicin
toward EBOV was assessed following drug pretreatment and infection of A549 cells
(multiplicity of infection [MOI] of 2). Cell cytotoxicity was assessed in parallel on
uninfected cells by measuring ATP content. A 10 �M concentration of doxorubicin
caused little or no cell death (Fig. 6A) but did significantly reduce replication of an EBOV
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expressing GFP (EBOV-GFP) by 20-fold, to 5 � 104 PFU/ml from 1 � 106 PFU/ml at 48 h
(Fig. 6B). Consistent with its activation of IFN responses in the presence of VP35,
EBOV-GFP infection had no impact on doxorubicin-induced IFN-� or ISG54 mRNAs in
infected cells (Fig. 6C and D). Overall, these results suggest that doxorubicin is capable
of stimulating an IFN response that has an anti-EBOV effect in vitro.

Doxorubicin bypasses the IFN antagonists of multiple negative-sense RNA
viruses. To determine whether doxorubicin can generally induce an IFN response by
mechanisms that bypass the inhibitory effects of negative-sense RNA virus-encoded IFN
antagonists, reporter assays were performed in the presence of EBOV VP35, Marburg
virus VP35, influenza A virus NS1, Nipah virus (NiV) V and W, or respiratory syncytial
virus (RSV) NS1 or NS2 proteins. Each protein was detectably expressed following
transfection (Fig. S4). Doxorubicin stimulated IFN-� and ISG54 promoter activity in the
presence of each of these IFN antagonists, whereas activation by RIG-I-activating SeV
was inhibited by each of them (Fig. 7A and B). The presence of cGAS and STING
dramatically enhanced the IFN-� promoter activation by doxorubicin in the presence of
all antagonists relative to the control cells lacking cGAS and STING (Fig. 7E and F). Also,
consistent with an inability of these viral proteins to block cGAS-STING signaling,
c-di-GMP induced an IFN-� response in the cGAS-STING cells that was not inhibited by
any of the IFN antagonists (Fig. 7F). Finally, as was previously seen with EBOV VP35, the
presence of an ATM inhibitor reduced but did not eliminate the doxorubicin-induced
IFN response in cGAS-STING cells, and this residual activity was not suppressed by the
transfected viral proteins (Fig. 7C to F). These data suggest that activators of the ATM
and cGAS-STING pathways might be exploited as a general strategy to induce an
antiviral state in cells infected by negative-sense RNA viruses.

DISCUSSION

DNA damage responses can trigger innate immune responses (22, 38, 52). Doxoru-
bicin is a widely used anticancer drug that induces DNA damage (42). Its ability to
intercalate with DNA, inhibit type II topoisomerase, generate free oxygen radicals, and
trigger the DNA damage response contributes to its cytotoxic and cytostatic effects
(33). In addition, doxorubicin modulates immune and cytokine responses that may
influence its anticancer effects. For example, activation of IFN-�-induced Jak-STAT
signaling and ISG induction contributes to its antitumor effects (23). However, the
molecular basis by which doxorubicin triggers immune modulation has not been
clearly elucidated.

Because VP35 IFN inhibition is critical for EBOV virulence, we established a novel HTS
assay that would allow the identification of compounds that activate the IFN-� pro-
moter in the presence or absence of VP35. A screen performed with the assay identified
doxorubicin, daunorubicin, and other anthracyclines as reproducible inducers of IFN in
the presence of VP35 and SeV infection. Because the compounds were subsequently
found to induce an IFN response in the absence of SeV infection and in the absence or
presence of VP35, it was concluded that they do not directly inhibit VP35 and that the
IFN induction pathway that is activated bypasses the inhibitory effects of VP35. VP35
has been well characterized as an inhibitor of the RIG-I signaling pathway that responds
to 5=-triphosphate RNAs, short dsRNAs, and other RNA species to induce IFN expression.
Data also suggest that VP35 can inhibit signaling via a second RIG-I-like receptor, MDA5.
Mechanisms of RLR pathway inhibition by VP35 include sequestration of RIG-I-
activating dsRNAs by the C-terminal dsRNA binding domain of VP35, known as the
interferon inhibitory domain (IID), and interaction of the IID with host protein PACT, a
facilitator of RIG-I activation (11, 75–77). Additional mechanisms include interaction
with the kinases TBK1 and I�B kinase � (IKK�), resulting in inhibition of IRF-3 phosphor-
ylation, and facilitation of IRF-7 SUMOylation to repress IFN gene transcription (78, 79).
Induction of IFN responses by anthracyclines in the presence or absence of VP35
suggests that a non-RLR signaling pathway was activated.

Although doxorubicin and other compounds that cause DNA damage had previ-
ously been implicated as IFN inducers, proposed mechanisms differ between studies
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(21, 38, 67). One study implicated signaling through ATM, a serine/threonine kinase that
phosphorylates numerous substrates and mediates signaling downstream of the DNA
break to facilitate DNA repair. The results of our screen are consistent with the known
capacity of doxorubicin, daunorubicin, and other such drugs to trigger a DNA damage
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response and to activate ATM, as they triggered the phosphorylation of ATM and its
downstream target p53 on serine 15 (21). Further, activation of the IFN response by
doxorubicin and daunorubicin was impaired by either of two inhibitors of the DNA
damage response signaling pathway, ATM inhibitor Ku55933, which directly inhibits
ATM, or mirin, which inhibits the Mre11-Rad50-Nbs1 (MRN)-ATM pathway. Doxorubicin
induces dsDNA breaks by targeting topoisomerase 2 (Top2), leading to stabilized
cleavable dsDNA breaks to which the enzyme is covalently bound. Downregulation of
Top2A has previously been demonstrated to reduce doxorubicin-mediated cytotoxicity
(34). Consistent with inhibition of Top2A as a trigger for the ATM-dependent IFN
response, knockdown of Top2A in our cell lines that lack detectable cGAS and STING
decreased the IFN response triggered by doxorubicin.

Because the cGAS-STING DNA-sensing pathway has been implicated in responding
to DNA damage (22), we also investigated whether cGAS and STING can be activated
by doxorubicin. When cGAS and STING were present, doxorubicin also triggered an IFN
response by this pathway. cGAS recognizes cytosolic DNA derived from either patho-
gens or damaged host cells and induces an IFN response through the adaptor protein
STING. cGAS binds DNA and catalyzes the synthesis of cGAMP. cGAMP, an endogenous
second messenger, binds and activates signaling through STING (27, 28). According to
published studies and our Western blotting data, 293T cells lack detectable cGAS or
STING expression. We therefore stably introduced STING or both cGAS and STING into
the reporter cell lines. The presence of cGAS and STING resulted in enhanced IFN
responses to doxorubicin. The enhancement required the presence of STING and a form
of cGAS able to recognize DNA and generate CDN, indicating that doxorubicin activates
the DNA-sensing pathway to trigger IFN responses. In the cGAS- and STING-expressing
cells, the ATM pathway still contributes to the response to doxorubicin as evidenced by
the reduced IFN response in the presence of ATM inhibitor. Whether ATM and cGAS-
STING act as separate pathways in which each induces the IFN-� response or whether
they act within the same pathway remains to be determined.

Cytoplasmic DNA triggers activation of the cGAS-STING pathway, so we evaluated if
doxorubicin can induce production of cytoplasmic DNA. In our experiments, we
detected increased abundance of ssDNA upon doxorubicin treatment that also colo-
calized with cGAS, implicating cGAS in IFN induction by doxorubicin. To further support
the idea that accumulation of DNA is responsible for IFN induction by doxorubicin in
the presence of cGAS-STING, we performed studies with Trex1. Trex1 is a 3=-5= exonu-
clease responsible for degrading cytoplasmic DNA. Mutations in Trex1 cause the
IFN-associated autoimmune disease Aicardi-Goutières syndrome (AGS) (80). Because
IFN induction was abolished in the cGAS-STING cells when Trex1 was overexpressed,
doxorubicin likely results in the accumulation of cytoplasmic ssDNA that activates
cGAS-STING signaling to induce IFN production. Furthermore, we also noticed that in
the absence of cGAS-STING, Trex1 overexpression has little or no effect on IFN activa-
tion, suggesting that doxorubicin-mediated IFN activation by the ATM pathway is not
entirely dependent on cytoplasmic DNA production. dsDNA could also contribute to
the observed IFN induction by doxorubicin via cGAS-STING, as we did not include or
exclude its presence. Overall, our results indicate roles for both cGAS-STING and ATM
in IFN induction by doxorubicin, a response that is not blocked by VP35 (Fig. 8). These
data suggest that the ATM and cGAS-STING DNA-sensing pathways have potential as
therapeutic approaches for EBOV because they bypass the inhibitory effects of VP35.

It has been demonstrated that activation of RLR pathways prior to EBOV infection
can substantially suppress EBOV replication in cell culture (81). Further, recombinant
EBOVs with mutant VP35s defective for dsRNA binding and RLR inhibition are highly
attenuated in cell types that can mount an IFN response and in in vivo models of
infection (12, 17, 82). Therefore, activation of IFN-inducing pathways that bypass VP35
inhibitory functions would also be expected to elicit an IFN response that can impair
virus replication. Consistent with this, doxorubicin decreases EBOV growth in A549 cells
at noncytotoxic concentrations. Induction of antiviral ISGs likely explains this suppres-
sion of EBOV growth. As shown in Fig. S2A in the supplemental material, cGAS and

Luthra et al. ®

March/April 2017 Volume 8 Issue 2 e00368-17 mbio.asm.org 14

http://mbio.asm.org


STING were not detected by Western blotting in A549 cells. Therefore, it is unclear to
what extent cGAS-STING may contribute to the antiviral effects of doxorubicin in these
cells. It is possible that cells with more robust cGAS-STING levels would demonstrate a
more profound inhibition. In vivo, macrophages and dendritic cells are the primary
target for EBOV infection (83, 84). These cell types also express cGAS and STING (85, 86),
and our dendritic cell data (Fig. S2E and F) demonstrate the responsiveness of these
cells to doxorubicin. Therefore, it seems likely that the in vivo cellular targets of EBOV
will be responsive to this therapeutic approach.

Previous studies have demonstrated several mechanisms by which VP35 can impair
activation of RLR signaling by RNA and RNA virus-triggered IFN production (8–11, 14).
Inhibition correlates with VP35 dsRNA binding activity and VP35 interaction with host
protein PACT, which facilitates activation of RIG-I by dsRNA or by virus infection (11, 75,
77). Studies in primary human dendritic cells (DCs) support these activities of VP35 in
biologically relevant cell types and suggest inhibition of both RIG-I and the related
RIG-I-like pattern recognition sensor MDA5 (87). In DCs, VP35 not only blocks IFN
production but also decreases cytokine and chemokine production, inhibits upregula-
tion of costimulatory markers, and impairs activation of T cells in response to virus
infection (15). Therefore, activation of IFN responses via non-RLR pattern recognition
receptors in EBOV-infected DCs might also promote activation of adaptive immune
responses to EBOV. However, VP35 is also reported to impair activation of IRF-3 and
IRF-7 by the kinases TBK1 and IKK� and to affect transcriptional activity of IRF-7 via
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FIG 8 Proposed model for activation of IFN by doxorubicin bypassing IFN antagonism by Ebola virus VP35 protein. Ebola virus VP35
antagonizes IFN responses triggered by RIG-I-like receptors (RLR), which include RIG-I and melanoma differentiation-associated protein
5 (MDA5). RLR detect cytoplasmic double-stranded RNAs (dsRNAs) or RNAs with 5= triphosphate (5= pppdsRNA), products of RNA virus
replication. The activation of RLR is further facilitated by protein kinase R activator (PACT). Upon activation, RLR signal through the
mitochondrial antiviral signaling protein (MAVS) to activate kinases I�B kinase � (IKK�) and TBK1. These kinases phosphorylate IFN
regulatory factor 3 (IRF-3) or IRF-7, which then accumulates in the nucleus and promotes expression of type I IFNs. Doxorubicin
treatment results in IFN induction by two independent pathways: the DNA damage repair response pathway involving ATM and DNA
sensor machinery cGAS-STING. The DNA damage leads to activation of ATM that triggers activation of an IRF-3 and/or NF-�B response,
thus leading to IFN activation. Furthermore, damaged DNA can also be detected by a cytoplasmic DNA sensor, cGAS, which through
the STING–TBK1–IRF-3 axis leads to activation of IFN responses. Interestingly, these DNA-mediated IFN activation pathways are not
subverted by the presence of Ebola virus VP35 protein. Thus, these data suggest novel avenues for developing antiviral therapeutics.
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effects on SUMOylation machinery (79). Therefore, why does it not still prevent induc-
tion of IFN responses by the ATM and cGAS-STING pathways? We hypothesize that
inhibition at these downstream steps is relatively weak and can be overcome by
relatively strong IFN-inducing signals. Consistent with this, in DCs, the relatively weak
IFN response of cells to lipopolysaccharide (LPS) was impaired by wild-type or mu-
tant VP35 (15). However, only wild-type VP35 could effectively impair the robust IFN
response induced by SeV infection. This would also explain why mutations that
abrogate VP35 dsRNA binding activity and inhibition of RLR activation but which do not
impair VP35 inhibition of signaling by TBK1 and IKK� are sufficient to lead to severe
attenuation of EBOV in cells and in vivo.

Given our data in the VP35-expressing cells, we hypothesized that the ATM and
cGAS-STING pathways may provide a means to generally trigger antiviral responses in
cells infected with negative-sense RNA viruses. Such viruses are well documented to
encode inhibitors of RLR signaling and many also encode inhibitors of IFN-�/�-induced
Jak-STAT signaling. However, such viruses may not have evolved mechanisms to
counter DNA-triggered innate immune signaling pathways. The activation of such
pathways may have multiple beneficial effects, such as inducing IFN and also triggering
an intrinsic, IFN-independent antiviral response, for example, by activation of IRF-3,
which can trigger antiviral gene expression independently of IFN production (38, 88,
89). Consistent with our hypothesis, doxorubicin induced an IFN response in the
presence of IFN-antagonist proteins from Marburg virus, influenza A virus, Nipah virus,
and respiratory syncytial virus. Thus, the data in this study suggest the ATM and
cGAS-STING pathways as novel avenues to develop new broad-spectrum antivirals.

MATERIALS AND METHODS
Cell lines. 293T and A549 cells were obtained from the American Type Culture Collection (ATCC)

(http://www.atcc.org) and maintained in Dulbecco’s modified Eagle’s medium (DMEM) (Gibco) supple-
mented with 10% fetal bovine serum (FBS; HyClone) and penicillin-streptomycin (Gibco). Human healthy
fibroblasts (GM05294; Coriell Institute for Medical Research) and AT patient fibroblasts (GM02052; Coriell
Institute for Medical Research) were maintained in DMEM containing 10% (vol/vol) fetal calf serum (FCS;
HyClone). Human monocyte-derived dendritic cells (MDDCs) were generated from CD14� cells purified
from concentrated leukocytes of healthy human donors (New York Blood Center), as described previously
(15). For additional information on cell lines, please see the supplemental material.

HTS. High-throughput screening (HTS) was performed at the Mount Sinai Integrated Screening Core.
To evaluate the robustness of the assay, we calculated the Z factor (27) and signal-to-background (S/B)
ratio.

Luciferase reporter gene assays. HEK293T cells were transfected by using Lipofectamine 2000
(Invitrogen) with the indicated expression plasmids along with the reporter plasmids. At 20 h posttrans-
fection, the cell lysates were assayed with the dual luciferase reporter assay (Promega), and firefly
luciferase activity was normalized to Renilla luciferase activity.

Monitoring cellular interferon responses. To monitor activation of IFN responses, cells were either
treated with doxorubicin (1 �M or 3 �M) or TNF-� (20 ng) or transfected with c-di-GMP (20 �g/ml) using
LyoVec (InvivoGen) for the indicated times. SeV (Cantell strain) stocks were prepared by growth in
10-day-old embryonated chicken eggs for 2 days at 37°C, and infections were performed as described in
Results.

RNA extraction and qRT-PCR for cellular mRNAs. The total RNA was isolated from the cells using
Trizol according to the manufacturer’s instructions. cDNAs were synthesized using the SuperScript III
First-Strand synthesis system (Invitrogen). The resulting cDNAs were used as the templates for subse-
quent quantitative PCRs using gene-specific primers (IFN-�, ISG54, IFN-�, or �-actin).

EBOV-GFP infection assays. All experiments using infectious EBOV were performed in biosafety
level 4 (BSL-4) facilities of the Galveston National Laboratory. The viral titers were determined by plaque
assay. The cell viability in infection experiments was determined using the Viral ToxGlo assay (Promega),
and ATP content was determined by reading luminescence using a BioTek Synergy HT plate reader.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/mBio

.00368-17.
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