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A novel mechanism for the prevention of transcription replication conflicts
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ABSTRACT
Transcription and replication complexes can coincide in space and time. Such coincidences may result in
collisions that trigger genomic instability. The phosphorylation of Mrc1 by different signaling kinases is
part of a general mechanism that serves to delay replication in response to different stresses that trigger a
massive transcriptional response in S phase. This mechanism prevents Transcription-Replication Conflicts
and maintains genomic integrity in response to unscheduled massive transcription during S phase.
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Transcription-Replication Conflicts (TRCs) are a major cause
of genomic instability.1 Cells have evolved a wide range of strat-
egies to prevent TRCs, whereby they limit potential head-on
collisions between the transcription and replication machiner-
ies, which are the events most likely to trigger recombination
events and genomic instability.2 Eukaryotic cells focus their
strategies for the protection of highly transcribed regions either
by the use of non-nucleosomal DNA-bound protein structures
that cause a polar block of DNA replication3 or by locating rep-
lication and transcription factories in temporarily and spatially
separated chromatin domains.4 However, how cells cope with
sudden and unscheduled outbursts of transcription during S
phase is an unclear question.

Cells are continuously exposed to changing environmental
conditions that challenge their survival. Specific signaling path-
ways are activated to cope with such cellular stresses by the
induction of a global cellular response to maximize cell sur-
vival. Stress-Activated Protein Kinases (SAPKs) are key for
this response to stress. Hog1, the yeast counterpart of the
mammalian p38, is a prototypical SAPK. Hog1 is activated
upon osmostress and leads to the regulation of many cellular
functions including the transcription of hundreds of stress-
responsive genes.5 Such massive activation of gene expression,
although crucial for the osmoadaptive response, represents an
obstacle to the replication machinery during duplication of the
genome. Remarkably, the stress-activated Hog1 phosphorylates
Mrc1, a protein of the replication complex, to temporarily
block DNA replication. The Hog1-mediated phosphorylation
sites in Mrc1 (Thr169, Ser215 and Ser229) are located in the
N-terminal domain and are different to the Mrc1 sites phos-
phorylated by Mec1 in response to DNA damage.6 Cells carry-
ing the Hog1-non-phosphorylatable allele of MRC1 (mrc13A)
bypassed the replication block and displayed a dramatic

increase in Transcription-Associated Recombination (TAR)
and genomic instability.7 Therefore, when cells activate tran-
scription upon osmostress, the concomitant transient block of
DNA replication is critical in order to guarantee cell survival.

In addition to its role in osmostress, Mrc1 also plays a key
role in maintaining genomic integrity in response to other
stresses that trigger the Environmental Stress Response (ESR)
transcriptional signature.8 The N-terminal phosphorylation of
Mrc1 at the Hog1 sites is essential for blocking S phase upon
heat, oxidative or low glucose stresses, which also involve the
massive transcriptional response featured by the ESR.
Correspondingly, mrc13A cells bypass the S phase block in
response to these stresses and display TAR and genomic insta-
bility. An unbiased kinome screen identified Mpk1, Psk1 and
Snf1 as the kinases that phosphorylate Mrc1 upon heat,
oxidative and low glucose stresses respectively. Thus, cells use
canonical stress-signaling pathways to phosphorylate a common
substrate, Mrc1, to protect genomic integrity during unsched-
uled massive transcription in S phase. Interestingly, the role of
Mrc1 is not restricted to environmental cues and it also responds
to internal stresses, such as slow growth or genomic instability,
that also trigger the ESR response. Overall, Mrc1 plays a key role
in protecting genomic integrity in scenarios that compromise
cell survival, either due to environmental insults or as a result of
abnormal cell fitness. This “Mrc1 transcription-replication safe-
guard mechanism (MTR)” protects genomic integrity when out-
bursts of transcription occur during S phase (Fig. 1).

Identification of the MTR highlights the necessity for cells to
possess a dedicated mechanism for the prevention of TRCs that
can eventually occur in the genome when there is an unsched-
uled massive induction of transcription. Such unscheduled
transcription differs from transcriptions that operate at particu-
lar sites in the genome, or at particular genes that are scheduled
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to be induced during the S phase of the cell cycle. Future work
will allow further exploration of whether the function of Mrc1
is relevant beyond stress and whether it plays a pivotal role in
preventing collisions and genomic instability when regular
transcription takes place during S phase.

Of note, Mrc1 has two independent functions that are neces-
sary for maintaining genomic integrity. First, Mrc1 is a protein
of the Replication Complex that is essential for achieving effi-
cient fork speed during DNA replication.9 Second, Mrc1 also
has a crucial function in activation of the DNA damage check-
point in response to replication stress.6 Protection of genomic
integrity by N-terminally phosphorylated Mrc1 is a third inde-
pendent function of Mrc1 since mrc13A cells replicate efficiently
under normal conditions and are proficient in activating the
DNA damage checkpoint pathway in response to DNA damage
and replication stress.7,8

If the MTR safeguard mechanism were to be conserved in
higher eukaryotes, it could be crucial not only for avoiding colli-
sions and genomic instability in cells exposed to environmental
changes (e.g., epithelial cells that suffer temperature changes;
renal cells that support high osmolarity, etc.) but it might also
play an important function in pre-cancerous cells, which display

genomic instability that is sensed as an internal stress.10 Further-
more, a high percentage of tumorigenic cells display mutations
in the DNA damage checkpoint, resulting in an important
obstacle to chemotherapy treatment. Thus, the discovery of a
novel regulatory pathway that blocks the cell cycle indepen-
dently of known checkpoint pathways opens a new landscape of
possible new compounds that might block cell cycle progression.
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Figure 1. The “MTR safeguard mechanism” protects genomic integrity in response
to stress-induced outbursts of transcription during S phase. Cells induce a con-
served transcriptional signature known as the ESR upon environmental stresses
such as osmo (NaCl), heat (37�C), oxidative (H2O2) or low glucose as well as to
mutations that reduce cell fitness. (A) Mrc1 is phosphorylated at the N-terminus by
multiple signaling kinases (e.g. Hog1, Mpk1, Psk1 or Snf1), which delays replication
to maintain genomic integrity upon stress. (B) The unphosphorylatable mutant of
Mrc1 (mrc13A) fails to delay replication and accumulates TAR and genomic instabil-
ity due to collisions between RNA and DNA polymerases. The role of Mrc1 in the
MTR is fully independent of the DNA damage checkpoint pathway.
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