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Elucidating the brain basis for psychological processes and behavior is a fundamental aim of cognitive neurosci-
ence. The lesion method, using voxel-based statistical analysis, is an important approach to this goal, identifying
neural structures that are necessary for the support of specific mental operations, and complementing the
strengths of functional imaging techniques.
Lesion coverage in a population is by nature spatially heterogeneous and biased, systematically affecting the abil-
ity of lesion–deficit correlationmethods to detect and localize functional associations.We have developed a sim-
ulator that allows investigators tomodel parameters in a lesion–deficit study and characterize the statistical bias
in lesion deficit detection coverage thatwill result from specific assumptions.Weused the simulator to assess the
signal detection properties and localization accuracy of standard lesion–deficit correlationmethods, under a sim-
ple truth model — that a critical region of interest (CR), when damaged, gives rise to a deficit. We considered
voxel-based lesion-symptommapping (VLSM) and proportionalMAP-3 (PM3). Using regression analysis, we ex-
amined if the pattern of outcome statistics canbe explainedby simulation parameters, factors that are inherent to
anatomic parcels, and lesion coverage of the population, which consisted of a representative sample of 351 sub-
jects drawn from the Iowa Patient Registry. We examined the effect of using nonparametric versus parametric
statistics to obtain thresholded maps and the effect of correcting for multiple comparisons using false discovery
rate or cluster-based correction.
Our results, which are derived from samples of realistic lesions, indicate that even a simple truthmodel yields lo-
calization errors that are systematic and pervasive, averaging 2 cm in the standard anatomic space, and tending to
be directed towards areas of greater anatomic coverage. This displacement positions the center ofmass of the de-
tected region in a different anatomical region 87% of the time. This basic result is not affected by the choice of PM3
vs VLSM as the fundamental approach, nor is localization error ameliorated by incorporation of lesion size as a
covariate in the VLSM approach, or by data distribution-driven approaches to controlling multiple spatial com-
parisons (false discovery rate or cluster-based correction approaches).
Our simulations offer a quantitative basis for interpreting lesion studies in cognitive neuroscience. We suggest
ways in which lesion simulation and analysis frameworks could be productively extended.

© 2014 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The lesion method in cognitive neuroscience is based on the estab-
lishment of a descriptive and/or statistical relationship between a
circumscribed region of brain damage and a behavioral and/or cognitive
impairment. It uses brain lesions, which result from human disease and
eattle, WA 98195, USA. Tel: +1
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are identified in digital images, as probes of hypothesized large-scale
systems supporting behavior and cognition (Damasio and Damasio,
1989). Productive application of the lesionmethod is a difficult endeav-
or, requiring recruitment and detailed anatomical and cognitive charac-
terization of many suitable subjects with damage in various brain
regions.

Contemporary theories of brain–behavior relationships demand
methods to characterize lesion–deficit associations with respect to ana-
tomical structures that are finer than, and often variable with respect to,
macroscopic landmarks. Thusmethods have been developed that utilize
the same standard space frameworks employed in functional brain
-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 1. Overview of the simulator. Input data are the lesion database, the parcellated reference brain, and a set of simulation parameters. We ran the simulation for M3 and PM3 statistics
separately for 100 critical region, varying systematically the sample size (N=25, 50, 75, 100, 125, 150), proportion of lesions in the critical parcel that were accompanied by deficit prob-
ability (P = .25, .5, .75, 1), and significance threshold (Thr = .001, .005, .01, .05), for 100 iterations (T = 100).
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imaging studies. Once lesion data frommultiple subjects with behavior-
al measures of impairment have beenmapped to a common anatomical
space, the standard approach is to construct a voxel-level statisticalmap
of the lesion–deficit association, with the purpose of identifying the
region(s) critical for the support of a particular function. Our studies
have utilized approaches wherein lesion status and deficit are binary
variables, notably the proportional MAP-3 (PM3) statistic (Kemmerer
et al., 2012; Philippi et al., 2014; Rudrauf et al., 2008; Tranel et al.,
2008). Bates et al. (2003) demonstrated a method they termed voxel-
based lesion symptom-mapping (VLSM). They performed a voxelwise
t-test contrasting the dependent behavioral variables between the
group of subjects whose lesion included that coordinate and the group
which did not have a lesion at that coordinate. This approach potentially
takes advantage of informative variance in deficit severity, and also is
applicable to measures of “ability” as opposed to measures of deficit in
ability.

Onewell-known issuewith lesion studies is that brain lesions do not
sample the brain randomly. They are the product of neurological dis-
ease, and their nature is determined by intrinsic neural system vulnera-
bilities, cerebrovascular anatomy, surgical techniques, and other factors.
All of these factors introduce systematic effects on lesion location, size,
shape, and extent, and therefore must affect the anatomical accuracy,
sensitivity, and spatial resolution of lesion methods. For example,
strokes are most prone to affect the middle cerebral artery territory.
The insula, situated in the core of this vascular territory, is rarely infarct-
ed without additional damage in adjacent regions. On the other hand,
border zones between the vascular territories are less frequently in-
farcted (Caviness et al., 2002). Some lesions, e.g. anterior temporal
resections, are relatively stereotyped. Although these issues are ac-
knowledged in a general way, few studies report these relationships
in such a fashion as to clarify the extent and density of brain coverage
or quantify regional biases (Mah et al., 2014).

In this paper, we examinewhat factors affect detectability of lesion–
deficit associations using both discrete (PM3) and continuous (VLSM)
approaches to incorporation of deficit. Our approach is to conduct sys-
tematic simulations based on lesion data in the Iowa Patient Registry,
which provides a representative lesion sample with heterogeneous
brain coverage. These simulations allow us to analyze the effect of fac-
tors such as sample size, location of the critical area of interest, probabil-
ity of association of deficit with the lesion, and threshold of significance
on sensitivity, specificity and localization bias.

2. Methods

We developed a simulator in Python and Matlab that, given param-
eters describing the sample size, probability of deficit, and truth model,
computes the statistically significant region that is associated with a
deficit. Fig. 1 shows the overview of the lesion simulator (see the details
below). The primary statistical metrics used for the simulation are PM3
(Rudrauf et al., 2008), and voxel-based lesion-symptom mapping
(VLSM: Bates et al., 2003). PM3 is the proportion of subjects with a le-
sion at a given voxel and a deficit among those with a deficit, minus
the proportion of subjects with a lesion and no deficit among those
with nodeficit, or Eq. (1).We also report on performance ofM3, defined
as the number of subjects with a lesion at voxel and a deficit (NLD)
minus the number of subjects with a lesion at voxel but no deficit
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Fig. 2. Cortical parcellation showing critical regions of interest (ROIs) used in simulations. The parcellation is based on Desikan et al.(2006), and mapped onto the anatomy of a single ref-
erence brain by Hanna Damasio and Joel Bruss.
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(NL ~ D), (Eq. (2)). VLSM compares the continuous behavioral scores for
subjects who have a lesion and those who do not at each voxel. VLSM is
currently themostwidely used lesion-symptommapping statistic. PM3
statistics are preferable to M3 statistics, which are skewed with respect
to their significance due to basic normalization issues (Rudrauf et al.,
2008). Essentially, M3 values with the same level of significance can
be very different, and will vary across voxels, as it depends strongly on
lesion coverage and proportions of subject with and without deficit in
the sample. However, we includedM3 because it has been used as a de-
scriptive statistic in earlier studies, and the current work informs their
interpretation (Ralph Adolphs et al., 2002; Adolphs et al., 2000;
Damasio et al., 2004; Tranel et al., 2001; Tranel et al., 1997; Tranel
et al., 2003; Tranel et al., 2009; Young et al., 2010). Exact analytical ex-
pressions for the distributions of probability of the M3 and PM3 distri-
butions are described in Rudrauf et al. (2008).

PM3 ¼ NLD

ND
−NL�D

N�D
ð1Þ

M3 ¼ NLD–NL�D ð2Þ

We performed simulations using PM3 for 100 critical regions
(Fig. 2), varying systematically the sample size (25, 50, 75, 100, 125,
150), proportion of lesions in the critical parcel that were accompanied
by deficit (.3, .5, .75, 1), and the uncorrected threshold for statistical sig-
nificance (.001, .005, .01, .05), followed by statistical evaluations of the
simulation outputs.

VLSM was implemented in Matlab in our simulator as described in
Bates et al. (2003). Because of computational demands, we limited our
simulations of VLSM to a sample size of 150 and the case where all le-
sions causing suprathreshold damage to the critical parcel were associ-
ated with a deficit. We examined VLSM with a simulated behavioral
deficit proportional to the damage in the critical parcel, and with and
without covarying for lesion size. We controlled for lesion size by first
regressing out the total lesion size from the simulated behavioral deficit,
and using the residual in the final model. This hierarchical regression
implementation is conceptually identical to the ANCOVA framework
proposed by Bates et al. (2003).

To explore the effects of correction for multiple comparisons, we ex-
amined the effect of false discovery rate (FDR) correction and cluster-
based correction using the null distribution of the maximum cluster
size. Finally, we examined the effect of using nonparametric versus
parametric thresholding of uncorrected t statistics with VLSM.

The details of the simulator, output measures, and the evaluation
procedure of the stimulation outputs are as follows.

2.1. Simulator overview

2.1.1. Input data to the simulator
The simulator draws samples from a real lesion database. The input

data in this study consists of (a) a lesion database consisting of 351 le-
sion masks drawn from and representative of the patient registry of
the University of Iowa3s Division of Behavioral Neurology and Cognitive
Neuroscience, in NIfTI format; and (b) an anatomically parcellated ref-
erence brain, in NIfTI format. Lesions were regions of circumscribed tis-
sue destruction caused by cerebrovascular disease, herpes simplex
encephalitis, or surgical resection. The lesions were expertly traced
(by Dr. Hanna Damasio and students under her supervision) on a 3D
T1-weighted MRI image of a standard normal reference brain, respect-
ing anatomic landmarks, according to the MAP-3 procedure developed
in the Laboratory of Human Neuroanatomy and Neuroimaging
(Damasio and Damasio, 1989; Damasio and Frank, 1992; Damasio
et al., 2004; Frank et al., 1997) and converted to binary masks.

2.1.2. Simulator truth model
The simulations incorporate an assumed association between a le-

sion and a deficit (the “truthmodel”) that permits evaluation of the abil-
ity of an analysis and sampling approach to recover this truth model. In
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Fig. 3. Simulation example for one trial (CR= LIFGpo, N=100, P=0.5). (A) Critical region— pars opercularis in the left hemisphere. The cumulative map of lesions for: (B) lesion maps
randomly selected for this trial (n = 100), (C) those identified as having more than 20% damage in the critical region (n = 15), of which (D) 50 % are then randomly selected to have a
deficit (n = 8). (E) The lesion deficit relationship estimated by PM3 statistics (P b 0.01).
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this report we adopt a simple truth model in which there is assumed to
exist a single “critical region (CR)”which, when damaged gives rise to a
deficit with a defined probability (P). The critical region is operational-
ized as one of the functional anatomic parcels depicted in Fig. 2. The
threshold for damage causing deficit is also a free parameter, but was
fixed at 20% of the voxels in the CR for the purpose of this study, as it in-
teracts with sample size and deficit probability to change the number of
subjects who have a lesion in a specific region. This damage threshold
was chosen to correspond to the rule used to interpret lesion data in
practice (Damasio and Damasio, 1989), i.e. in the Iowa Patient Registry,
regions with more than 20% destruction are recorded as lesioned
(Damasio and Damasio, 1989).
2.1.3. Parameters that control the simulator
Parameters that control the simulator are (a) a critical region (CR),

(b) a hypothesized sample size (N), (c) the probability of deficit given
damage to a critical region (P), (d) the number of sampling iterations
(T), and (e) a threshold for significance (Thr) (Fig. 1).
2.1.4. Basic simulator algorithm
For each statistical metric and for each combination of a set of pa-

rameters (CR, N, P, T, Thr) a random sample of N subjects is drawn
from the lesion database. These subjects are inspected to determine
whether they meet the criteria for having a lesion following a lesion-
damage function (i.e. a minimumof damage to 20% of voxels in the crit-
ical region). Of those subjects who have lesions in the CR, some fraction
(P) are assigned a deficit. Then, the statistics (either PM3 orM3) are cal-
culated and thresholded significance maps are output for each of the
given thresholds (Thr). This sampling process and creation of threshold
significance maps are repeated for T iterations. Certain important inter-
mediate parameters are calculated in the simulator loop, for each com-
bination of input parameters. These are (a) the number of subjects with
a lesion, (b) the number of subjects with a deficit, and (c) the number of
subjects with a lesion and a deficit. These intermediate parameters are
functions of the input data and the simulator parameters,more immedi-
ately determine the simulator output, and are typically known in real le-
sion studies.
2.1.5. Simulator output statistics
After all the thresholded significance maps are computed, the simu-

lator calculates a variety of output statistics. These include measures of
localization error, signal detection theory statistics (e.g., sensitivity,
specificity, accuracy), and percentage of trials that detect any significant
voxels. The output statistics that we selected for our analysis are (1) the
distance between the center ofmass of the critical region and the center
of mass of the identified significant region, or localization error,
(2) voxel-level true negative rate, or specificity, (3) the total number
of false negative voxels, or type II error — the number of nonsignificant
voxels within a CR, and (4) two measures of true positives: a) the
voxel-level true positive rate, or sensitivity, and b) the rate at which a
significant association was found in the CR.
2.1.6. Example simulator run
Fig. 3 illustrates theflow of the simulator. The CR inwhichwe postu-

late a lesion–deficit relationship is the left pars opercularis (Fig. 3A).We
draw a sample ofN=100 subjects from the total population ofN=351
(Fig. 3B). Of these subjects, 15 subjects have at least 20% of the CR in-
volved in the simulated lesion and thus meet truth model requirement
to model presence of a deficit. These 15 subjects are shown in Fig. 3C.
Because our deficit probability is .5 (P = 0.5), half of the subjects in
Fig. 3C are randomly selected to manifest a deficit (Fig. 3D). PM3 statis-
tics are then estimated to obtain the map shown in Fig. 3E.

2.2. Evaluations of the simulator outputs

After running the simulator, we conducted statistical analyses to re-
duce and interpret the simulator outcomes. This involved characterizing
the CRs and identifying how CR characteristics and simulator parame-
ters related to simulator outcomes. This is because anatomical variabil-
ity is an important implicit input variable. For example, some regions
aremore susceptible to damage, andwill bemore represented in the le-
sion database. To characterize this variability, we computed various
measures describing the nature of the anatomic parcels (CRs), and le-
sion coverage of the CR given the population. These descriptive statistics
included CR size, the average number of subjectswith damage in the CR,
and the proportion of damaged voxels in the CR (see Table 1 for the list
of the CR descriptive statistics). We identified these statistics using the
intuition that the qualitative nature of lesion coverage would be an im-
portant factor affecting our results. To eliminate collinearity among
these arbitrarily chosen statistics, we performed a principal component
analysis (PCA) of the statistics characterizing the CR.

On the basis of this dimensionality reduction, we used the compo-
nents describing the CR in combinationwith the simulator inputs (sam-
ple size, deficit probability, and significance threshold) as independent
variables in regression analyses to predict each dependent variable, or
outcome statistics, selected for these analyses.

3. Results

3.1. Overall simulation results

Table 2 shows themean and standard deviation of the output statis-
tics for PM3 and M3 across all parameterizations and iterations. On av-
erage, 85% of trials yielded a significant association in some voxels. The
mean localization error over all conditions for PM3 is approximately
2 cm (SD=0.61 cm). The voxelwise sensitivity across all parameteriza-
tions and iterations for PM3 is 0.52 (SD=0.28), suggesting that PM3 re-
sults in many false negatives. In absolute terms, the volume of tissue
that are false negatives is 2.85 cm3 (SD = 2.52 cm3). The voxelwise
true negative rate is high (all cortical voxels outside of the CR), as a con-
sequence of howwemodel the deficit, but the number of false positives
vary as a systematic effect of coverage. Because the true negative rate is
so high relative to false positives, specificity is high (.95, SD = .04). Re-
sults for M3 are qualitatively similar, with the exception that M3 has a
higher rate of false negative voxels.
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Table 1
ROI description statistics.

Name Description

ttlvox Total number of voxels (size of ROI in voxels)
dist_cm_cg Distance (in voxel) between the center of mass

of the ROI and the center of the gravitya of the
ROI

sum_pdmg_n351 Sum of (the number of lesioned voxels within
ROI divided by a total number of voxels (ROI
size) for each subject)

prob_dmg_5p Proportion of the people (out of 351) with
damages in a given ROI where the damage
threshold is N5%

prob_dmg_10p Proportion of the people (out of 351) with
damages in a given ROI where the damage
threshold is N10%

prob_dmg_20p Proportion of the people (out of 351) with
damages in a given ROI where the damage
threshold is N20%

prob_dmg_40p Proportion of the people (out of 351) with
damages in a given ROI where the damage
threshold is N40%

prob_dmg_60p Proportion of the people (out of 351) with
damages in a given ROI where the damage
thresholds is N60%

prob_dmg_80p Proportion of the people (out of 351) with
damages in a given ROI where the damage
thresholds is N80%

avg_num_lesVox Average (number of lesioned voxels within ROI
for each subject)

num_subj_anydmg Total number subject with ANY damage to the
ROI

avg_num_lesVox_anydmg Average (umber of voxels within the ROI for
each subject who had any damaged to that ROI)

num_sum_20pdmg Total number of subject with lesion N20% for the
ROI

avg_num_lesVox_20pdmg Average (number of voxels within the ROI for
each subject who had damage N20% to that ROI)

pro_lesionedROI Average of [(number of damaged voxels in the
ROI) divided by (total number of damaged
voxels in the brain) for each subject]

pro_lesionedROI_subj_anydmg Average of [(number of damaged voxels in the
ROI) divided by (total number of damaged
voxels in the brain) for each subject who had
any damage]

pPro_lesionedROI_subj_20pdmg Average of [(number of damaged voxels in the
ROI) divided by (total number of damaged
voxels in the brain) for each subject who had
damage N20% to that ROI]

avg_num_lesVox Average of (number of lesioned voxels within
ROI for each subject)

a The center of gravity is computed based on lesion coverage for the population
(n = 351).

Table 3
Principal component analysis loadings on ROI characteristics.

Component

ROI characteristic 1 2 3

ttlvox .048 .912 −.084
dist_cm_cg −.252 .565 .404
sum_pdmg_n351 .917 −.229 .217
prob_dmg_5p .819 −.306 −.024
prob_dmg_10p .848 −.351 −.038
prob_dmg_20p .869 −.403 −.060
prob_dmg_40p .827 −.490 −.111
prob_dmg_60p .772 −.520 −.149
prob_dmg_80p .669 −.518 −.220
avg_num_lesVox .742 .631 .044
num_subj_anydmg .512 .419 .614
avg_num_lesVox_anydmg .742 .631 .044
num_sum_20pdmg .923 −.113 .288
avg_num_lesVox_20pdmg .796 .549 .001
pro_lesionedROI .555 .776 −.049
pro_lesionedROI_subj_anydmg .545 .704 .403
pro_lesionedROI_subj_20pdmg .079 .779 −.451
avg_num_lesVox .742 .631 .044

392 K. Inoue et al. / NeuroImage: Clinical 6 (2014) 388–397
3.2. Characterization of critical regions

Of the 17 variables selected in Table 1 to characterize the critical re-
gions, three components were sufficient to explain 86.6% of the vari-
ance. Examining the patterns of orthogonal loadings (see Table 3), we
suggest descriptions for these factors as follows: Component 1 (C1),
which explains 48.4% of the variance in our descriptive variables, is a
measure of high coverage of the CR by the lesion sample. Component
Table 2
Summary outcome statistics.

PM3 M3

Mean SD Mean SD

Localization error (mm) 20.88 6.05 18.86 5.56
Voxel-level TPR (sensitivity) 0.52 0.28 0.40 0.30
Voxel-level SPC (specificity) 0.95 0.04 0.98 0.03
FN (false negatives, cm3) 2.85 2.52 3.48 2.86
Percent of trials with sig. association 85% 74%
2 (C2),which explains 31.5%of the variance, describes local heterogene-
ity of coverage within the CR and its systematic relationship to large CR
size. The region with the largest value of C2 is the precentral gyrus and
the region with the lowest is the pars orbitalis. Component 3 (C3),
which explains 6.7% of the variance, seems to reflect a measure of the
degree to which the CR is the main locus of damage versus peripheral
to themain locus of damage. As a caveat, it is clear that our initial choice
of descriptive metrics biases the specific component structure, and PCA
was used only as a data reduction technique to simplify analysis.

3.3. Factors that affect outcome statistics

Table 4 summarizes the results from the regression analyses, includ-
ing the standardized beta weights from each analysis. The deficit prob-
ability and the threshold were the two major predictor variables for
localization error for PM3. As the deficit probability increases, the local-
ization error decreases. Conversely, with more stringent thresholds
(smaller values of Thr), the localization error decreases. Moving from
the lowest deficit probability or the least stringent threshold to the
highest deficit probability or most stringent threshold decreases locali-
zation error by an average of 4.9 cm across all conditions.

For sensitivity, the major predictive variables for PM3 were the
threshold and deficit probability. If the deficit probability increases,
then the number of false negative voxels decreases and the number of
false positive voxels increases. This causes the sensitivity to increase
and the specificity to decrease. As the threshold becomes less stringent
the sensitivity increases and specificity decreases.

For the measurement of false negative voxels, the size/skew of CR
(C2) was the major predictor for PM3. Larger CRs with more heteroge-
neity will lead to failure to associate the CR with the deficit.

The major predictor variable of the percentage of trials with signifi-
cant voxels was CR coverage (C1) for PM3. When the CR coverage (C1)
increases, so does the proportion of trials yielding significant voxels.
Sample size was the second most important factor in determining the
percentage of trials with significant voxels. Although on average the
probability of detecting a lesion–deficit relationshipwith our simulation
parameters was .85, it climbed to .95 with a sample size of 150. We can
see from Fig. 4 that there is a nonlinear relationship between coverage
and probability of detecting a significant association that is dependent
upon thenumber of subjects in the samplewith a lesion.No relationship
can be detected unless there are subjects with a lesion and a deficit in a
CR. The total N required to meet this condition varies with the deficit
probability and sample size. However, as we make the threshold more
stringent, this number increases to 2–3. This is because to detect a sig-
nificant association, there must be more subjects with a lesion and a



Table 4
Standardized regression coefficients.

Std. beta

Dependent variable R2 Sample size (N) Deficit prob (P) Threshold (Thr) CR coverage (C1) CR size/skew (C2) CR main/ peripheral (C3)

PM3
localization error 0.333 −0.242 −0.274 0.394 −0.214 0.000 0.011

(P = .966) (P = .195)
TPR (sensitivity) 0.62 0.289 0.376 0.529 0.285 −0.193 −0.023
SPC (specificity) 0.666 −0.169 −0.184 −0.752 −0.129 0.072 −0.132
FN (false negatives) 0.67 −0.169 −0.218 −0.325 −0.123 0.688 −0.008

(P = .201)
% of trials w/ any significant voxels 0.573 0.378 0.172 0.029 0.616 −0.045 0.138
M3
localization error 0.378 −0.203 −0.452 0.286 −0.008 −0.076 0.11

(P = .330) (P = .002)
TPR (sensitivity) 0.783 0.348 0.707 0.329 0.32 −0.166 0.014

(P = .005)
SPC (specificity) 0.613 −0.238 −0.502 −0.483 −0.328 0.093 −0.14
FN (false negatives) 0.743 −0.196 −0.397 −0.193 −0.134 0.72 −0.041
% of trials w/ any significant voxels 0.625 0.552 0.206 0.213 0.466 −0.033 0.118

All are significant at P b .001, except noted otherwise not significant at P b .05.
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deficit at a voxel than subjects who have a lesion and no deficit. Because
subjects need to have at least 20% of damage to CR to have a lesion and a
deficit, subjects can have incidental damage to the CR without an ac-
companying deficit. Given the patterns of coverage, the probability of
having the same number of subjects with damage and no deficit as
those with damage and a deficit becomes very small in these simula-
tions when 2–3 subjects have a lesion and a deficit (see Discussion).

M3 statistics show a pattern similar to PM3 with some exceptions.
Localization error for M3 (Table 4) loads on C2 and C3 (components de-
scribing the skew of coverage) and localization error for PM3 loads only
on C1 (coverage). For M3, the effect of increasing deficit probability is
greater than that for PM3 on sensitivity and specificity because PM3 ad-
justs for the number of subjects with and without a deficit. Sample size
is consequently less important a predictor for PM3 than for M3 in both
specificity and sensitivity.

As shown in Fig. 1, the inputs to the simulator result in the ultimate
selection of a number of subjects with lesion, NL (who have greater than
20% damage to the CR) and assignment of some of those to have a lesion
and a deficit (NLD) or a lesion and no deficit (NL~D). It can be seen from
Eqs. (1) and (2) that these three parameters are sufficient to describe
theM3 and PM3 statistics. The number of subjectswith a lesionNL is de-
termined by the lesion coverage in the lesion database. As we increase
Fig. 4. Percentage of trials with significant results by sample size for deficit probability P=1.0 a
location. Trend line graphs the mean of all CRs.
the sample size N, NL increases proportionally, because our sample is
drawn from the same distribution. Therefore, if NL is proportional to
N, the M3 and PM3 maps will be similar for any selections of deficit
probability and N where P × N1=P × N2, given the simple truth model
tested in our simulations.

3.4. Characteristics of identified regions

For PM3, across all conditions, when a significant association was
identified, the center of mass was located in the cerebral cortex (one
of the parcels in Fig. 2) 94.6% of the time. However, the center of mass
was located in the CR (as specified by the truth model) only 13.2% of
the time. Under the simulation conditions that would seemmost favor-
able (150 subjects, deficit probability = 1, and threshold = .001) this
probability rose to 21.4%. The center of mass is attracted away from
the region specified by the truth model towards neighboring regions
with higher coverage, as illustrated in Fig. 5. This is the practical impact
of the increase in false positive voxels that results with more lenient
thresholds and increasing statistical power. These false positive voxels
tend to implicate regions that are not the critical region but that tend
to also be damaged in subjects with damage affecting the critical region.
Furthermore, regions with higher statistical power (i.e. to detect a
nd threshold Thr= .001. Each asterisk in a column represents a CR in a different anatomic

image of Fig.�4
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Fig. 5. Simulation example for one trial (CR = LMTGp, N = 100, P = 0.5), illustrating localization error in the direction of higher lesion coverage. (A) Critical region — posterior middle
temporal gyrus in the left hemisphere. The cumulativemap of lesions for: (B) lesionmaps randomly selected for this trial (n=100), (C) those identified as havingmore than 20% damage
in the critical region (n = 6), of which (D) 50% are then randomly selected to have a deficit (n = 3). (E) The lesion deficit relationship estimated by PM3 statistics (P b 0.01).
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Fig. 6. Lesion coverage and regions attracting center of mass, driving localization error.
Top. Lesion coverage map (N = 351): number of subjects with damage at a given voxel.
Bottom. Localization bias map (simulation parameters: N = 100, deficit probability =
0.5, statistical threshold= .01). Arrow shows vector of localization error for the case illus-
trated in Fig. 5. Left lateral aspect of the brain.
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relationship in the first place, whether it corresponds to the truthmodel
or not) generally correspond to regions with higher lesion coverage in
the sampling population (Fig. 6). As a result, the map of localization
bias and the map of lesion coverage resemble each other.

More specifically, the accuracy and reliability of results depends on
the proximity to regions with high spatial gradient in lesion coverage.
The gradient acts as an attractor for the localization bias (as illustrated
in Fig. 5). Thus, regions of lower statistical power that are far away
from regions of strong spatial gradient in lesion coverage can demon-
strate better localization accuracy than regions of higher statistical
power near such high gradients.

3.5. Comparison of PM3 with VLSM

Because of computational requirements, we ran VLSM (with and
without the lesion size as a covariate) for all parcels, with N = 150
and P = 1.0, a favorable set of conditions. We computed the P values
for the voxelwise t statistics in two ways: first using standard paramet-
ric distributional assumptions, and second using nonparametric permu-
tation testing with 1000 permutations. Table 5 shows the results
comparing PM3 and M3 to VLSM for N = 150 and P = 1.0 On average,
VLSM using parametric statistics has higher localization error and
lower sensitivity than PM3 and M3. However, VLSMwith nonparamet-
ric statistics has comparable localization error, sensitivity, and specific-
ity to M3 and PM3.

3.6. Correction for multiple comparisons

We examined the effect of correcting for multiple comparisons
using FDR correction for all parcels with N = 150 and P = 1.0.
Table 6 shows these results. Correcting for multiple comparisons
had only a modest effect upon localization error. We further com-
pared FDR correction for multiple comparisons to nonparametric
cluster correction for two parcels, one with high coverage (LIFGpo)
and one with lower coverage (LMTGp) (Table 7). Cluster correction
for multiple comparisons did not significantly improve localization
error, as long as a nonparametric approach was used to threshold
the t statistic maps.

4. Discussion

In this articlewe quantify and evaluate the impact of lesion sampling
characteristics, anatomical heterogeneity of lesion coverage, and their
interaction on the detectability and accuracy of localization of lesion
deficit relationships. We do so using simulations, which are a powerful
tool for evaluating the ability of specific statistical approaches to recover
a lesion–deficit relationship defined by a truth model. The conclusions
from such simulations pertain to the underlying truth model and simu-
lator parameters. Even using a simple truthmodel, our simulations offer
a quantitative basis for interpreting lesion studies in cognitive
neuroscience.

Our results indicate that, given samples of realistic lesions, even a
simple truth model yields localization errors that are systematic and
pervasive, averaging 2 cm in the standard anatomic space, and tending
to be directed to areas of greater anatomic coverage. This displacement
positions the center of mass of the detected region in a different ana-
tomical region 87% of the time, given a parcellation dividing the cerebral
cortex in regions of a size comparable to Brodmann areas. This basic re-
sult is not affected by the choice of PM3 vs VLSM as the fundamental ap-
proach, nor is localization error ameliorated by incorporation of lesion
size as a covariate in the VLSM approach, or by data distribution-
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Table 5
Non-FDR corrected summary outcome statistics (N = 150 and P = 1).

PM3 M3 VLSM
(parametric)

VLSM
(nonparametric)

VLSM (parametric,
lesion size as
covariate)

Mean SD Mean SD Mean SD Mean SD Mean SD

Localization error (mm) 16.51 6.61 14.15 5.75 19.14 6.89 16.52 6.25 26.21 13.72
Voxel-level TPR (sensitivity) 0.82 0.25 0.82 0.23 0.60 0.26 0.83 0.26 0.64 0.26
Voxel-level SPC (specificity) 0.92 0.06 0.94 0.05 0.99 0.01 0.99 0.01 0.98 0.01
FN (false negatives, cm2) 1.15 1.87 1.15 1.80 2.03 1.78 1.05 1.83 1.86 1.78
Percent of trials with sig. association 100% 100% 100% 100% 100%
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driven approaches to controlling multiple spatial comparisons (false
discovery rate or cluster-based correction approaches).

Our results also suggest that VLSM performs significantly better in
terms of sensitivity, and slightly but significantly better in terms of lo-
calization error, when nonparametric significance testing is performed
instead of parametric t-testing. Performance with the nonparametric
significance testing is essentially equivalent to PM3, for the models
used here. Rorden et al. (2007) show that the Liebermeister approach
for voxel-based lesion mapping is more sensitive than the chi-square
test when the clinical measure is binomial, and that a test described
by Brunner and Munzel is more appropriate than the t test for
nonbinomial data, because neuropsychological data often violate the as-
sumptions of the t-test (see alsoMedina et al. (2010) for description of a
correction for small N).

An advantage of the VLSM framework is that its models are extensi-
ble to covariates like lesion size. However, covarying lesion size did not
reduce localization error. Due to computational constraintswewere not
able to explore nonparametric thresholding for this case.

We performed multiple comparison correction primarily using the
FDR approach. FDR correction did not substantially affect the sensitivity,
specificity, or localization error resulting from these simulations. The
failure of FDR correction to improve localization error is due in part to
our decision to model only one critical zone, with no (false positive) as-
sociations outside the critical zone. Our purpose in doing so was to iso-
late asmuch as possible the effect of localization bias. Thus it is probably
most significant to note that alternative approaches tomultiple compar-
ison correction (nonparametric thresholding, cluster based correction)
did not result in less localization bias than FDR (or indeed no
correction).

Our results convergewith a recent paper byMah et al. (2014), which
found amean of 15.7mmmislocalization across the brain. In contrast to
our simulation approach, which was designed to explore the effects of
different parameters on localization error, Mah et al. used all data avail-
able in a large database to quantify localization error. Their approach
was to calculate a vector showing the displacement of the identified
center of gravity from each voxel lesioned in more than four subjects.
Thus, the magnitude of mislocalization they identified represents the
best case scenario using standard lesion mapping approaches. Making
their model more similar to ours (that a critical region was damaged if
20% of its voxels were affected, and further assigning a deficit probabil-
ity of 90%) increased the mean displacement slightly. As we have
shown, if the number of subjects with a lesion and a deficit is smaller,
Table 6
FDR corrected summary outcome statistics (N = 150 and P = 1).

PM3 M3

Mean SD Mean

Localization error (mm) 15.61 9.92 12.37
Voxel-level TPR (sensitivity) 0.65 0.35 0.75
Voxel-level SPC (specificity) 0.99 0.01 0.99
FN (false negatives, cm2) 2.13 2.68 1.58
Percent of trials with sig. association 94% 92%
the mean displacement is likely to be larger and the probability of find-
ing a significant association where one exists is reduced.

These studies were designed to shed light on lesion distribution as a
factor affecting accuracy and sensitivity of voxel-based lesion–deficit
mapping approaches. To do so, we used a simple truth model, in
which there existed only one critical region, and in which there existed
no deficits not caused by damage in the critical region. Even under these
artificial conditions, the simulator was useful in demonstrating and
quantifying localization error. With these simulations, a significant as-
sociation in a CR between a lesion and a deficit could be detected
when there were 2–3 brain-damaged subjects with a lesion at that CR
and a deficit.We caution that in practice, lesion–deficit relations are cer-
tainly more complex. For example, cognition and behavior are critically
supported by systemsof distributed cortical regions, and damage to var-
ious components of the systemmay generate similar deficits. There are
also factors such as degeneracy of neural systems (Friston and Price,
2011; Noppeney et al., 2004) and collateral damage to underlying
whitematter tracts (Mehta et al., 2012; Rudrauf et al., 2008) to consider.
These factors will conspire to require a larger number of subjects with
damage in the CR to detect a lesion–deficit relationship. Simulations
using a more complex truth model that assumes distributed and indi-
vidually critical regions supporting the target function/behavior repre-
sent an important future direction for this work.

In its current form, lesion deficit analysis is limited first by the num-
ber of subjects with a lesion and a deficit (given the coverage of the CR,
number of subjects and deficit probability) and thereafter by the ten-
dency of the center ofmass to be skewed along the gradient of coverage,
towards regions of higher coverage. The localization bias caused by dis-
placement along the gradient of coverage is a factor even when the
number of subjects with a deficit is large, and is a function of the spatial
distribution of lesion coverage. This suggests that one might consider a
form of biased sampling or weighting that considers lesion size: The
smaller a lesion associated with a deficit, the less it contributes to local-
ization error. Our framework thus offers a number of ways forward, in-
corporating other truthmodels, statistical frameworks, and variations of
the lesion method that may begin to address these weaknesses.

Besides the PM3 and VLSM methods we implemented in this simu-
lation, other statistical approaches have been described to identify
whether an association between a lesioned area and a behavior may
be statistically significant. Karnath et al. (2004) developed an approach
namedVoxel-based Analysis of Lesions (VAL). In VAL, a voxelwise logis-
tic multiple regression is conducted where the dependent variable in
VLSM (parametric) VLSM (lesion size as
covariate)

SD Mean SD Mean SD

5.31 18.76 6.77 24.82 12.93
0.28 0.60 0.26 0.63 0.26
0.00 0.99 0.01 0.99 0.01
2.15 2.06 1.79 1.89 1.79

100% 100%



Table 7
FDR and cluster-corrected summary outcome statistics for VLSM with no covariate (LIFGpo and LMTGp only, N = 150 and P = 1).

FDR parametric VLSM Nonparametric VLSM Cluster-corrected
nonparametric VLSM

Mean SD Mean SD Mean SD

LIFGpo Localization error (mm) 14.31 2.67 12.62 3.11 12.55 3.10
Voxel-level TPR (sensitivity) 0.29 0.16 1.00 0.00 1.00 0.00
Voxel-level SPC (specificity) 0.99 0.00 .99 0.00 0.99 0.00
FN (false negatives, cm2) 1.00 0.23 0.00 0.22 0.00 0.22
Percent of trials with sig. association 100.00 100.00 100.00

LMTGp Localization error (mm) 16.40 3.45 14.83 4.52 14.63 4.04
Voxel-level TPR (sensitivity) 0.86 0.12 0.80 0.17 0.80 0.17
Voxel-level SPC (specificity) 0.99 0.00 0.99 0.00 0.99 0.00
FN (false negatives, cm2) 1.19 1.06 1.70 1.48 1.74 1.50
Percent of trials with sig. association 100.00 100.00 100.00
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the regression is a dichotomized behavioral score. A potential advantage
of this approach is the formal modeling of lesion-related parameters. In
Karnath et al. the independent variables are whether or not the voxel is
part of the lesion (dichotomous) and the size of the lesion (continuous).
An exploration of this method was beyond the scope of the simulations
reported here.

A different approach to lesion behaviormapping that attempts to ac-
commodate a somewhat more complex truth model is Anatomo-
Clinical Overlapping Mapping (AnaCOM) (Kinkingnéhun et al., 2007),
which contrasts the behavior of patients who have damage to a specific
voxel to a group of healthy controls. An advantage of AnaCOM is that pa-
tients with the same behavioral deficit but no overlap in damaged
voxels will not serve as controls for each other. In cases where more
than one regionmay be responsible for a deficit, the approach therefore
improves statistical power, though AnaCOM still relies on the spatial
overlap of brain-damaged regions across multiple subjects to detect/lo-
calize anatomical–functional correspondence. Rorden et al. (2009) find
that the increased statistical power of this method may come at the ex-
pense of decreased specificity.

Natural extensions of the simulator can accommodatemore realistic
truth models and address the competency of the lesion method to gen-
erate knowledge in the systems3 framework. For example, an area can
be rendered dysfunctional due to a lesion that disconnects it fromothers
and not because it is lesioned directly.We can thus extend the simulator
to systems of critical regions. We can also formally model an impact of
disconnection of these critical regions on function (Rudrauf et al., 2008).

In summary, our contribution is to implement a simulation frame-
work for testing the expected association between lesion and deficit.
Our characterization of the effects of experimental parameters on the
ability to detect a significant lesion–deficit association allows us to
make certain pragmatic recommendations for interpretation of studies
using of the PM3 statistics, or VLSM t-statistics. Simulations offer a
way forward for examining the usefulness and validity of alternative ap-
proaches, and, given specific truthmodels and samples, ameans to eval-
uate the feasibility of lesion studies prospectively.
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