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Background: In colorectal cancer, inappropriate use of adjuvant chemotherapies may lead to significant 
increases in healthcare costs and harms to patients. Genome-based interventions are being increasingly used 
in the stratification of patients according to their risk profiles. However, earlier cost-effectiveness analyses of 
precision molecular diagnostics have indicated a paucity of data on comparative health economic outcomes. 
Our aim was to compare the cost-effectiveness of marketed genomic tests used in the prognosis of stage II 
colorectal cancer patients.
Methods: A Markov model was developed to compare the cost-effectiveness of treatment guided by any 
one of the following genomic tests: 12-gene assay or the 18-gene expression assay or the 482-gene signature 
or the Immunoscore assay in a hypothetical cohort of patients (n=1,000) with stage II colorectal cancer. 
Our study investigated outcomes in three health states: no recurrence, recurrence and death. This study 
was conducted from a societal perspective, and a 3% discount was applied to the costs and health outcomes. 
Sensitivity analyses were performed to assess the uncertainty of model parameters on the results.
Results: The cost of the Immunoscore assay strategy in stage II colorectal cancer patients was estimated to 
be US $23,564 with a gain of 3.903 quality-adjusted life years (QALYs) as compared with the 12-gene assay 
strategy at US $24,545 and 3.903 QALYs; the 18-gene assay strategy at US $28,374 and 3.623 QALYs; and 
the 482-gene signature treatment strategy at US $33,315 with 3.704 QALYs. Sensitivity analyses indicated 
that incremental cost-effectiveness ratio (ICER) values were sensitive to costs of genomic tests and adjuvant 
chemotherapies; and utilities related to patients in the no-recurrence health state.
Conclusions: Overall, the Immunoscore assay seems to be a dominant strategy at a threshold willingness-
to-pay of $50,000 per QALY, but in the US other tests have been used for longer. Thus, the 12-gene assay 
may generate cost savings compared to the 18-gene expression assay. The findings of our study may provide 
useful information to policymakers regarding selection of the most appropriate genomic test, and resource 
allocation decisions. 
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Introduction

In colorectal cancer, there are no universally accepted 
guidelines for stage II patients to determine the future 
course of adjuvant chemotherapy after tumor resection (1-4).  
This uncertainty around the prognostic and predictive 
abilities of clinical biomarkers has underscored the need 
for assessment tools that can more precisely identify stage 
II patients who are at higher risk of recurrence and might 
derive benefit from adjuvant chemotherapy. 

More recently, with advances in genomic medicine, 
precision molecular diagnostic tests have offered 
possibilities to predict disease relapse and guide adjuvant 
therapy decisions (5-10). Currently, there are four tests 
being marketed for clinical use in the United States (US): 
a 12-gene assay; an 18-gene expression assay, a 482-gene 
signature, and the Immunoscore assay. The 12-gene assay 
provides an individual recurrence score for patients with 
stage II colon cancer (5,11). The 18-gene expression 
assay provides a relapse risk assessment using clinical and 
pathologic factors such as T4-stage and microsatellite 
instability status (8,12). The 482-gene signature is a 
genomic assay used for the identification of stage II colon 
cancer patients who may have a risk of recurrence after 
initial surgery within five years (7). The Immunoscore assay 
is an in vitro diagnostic test that quantifies the densities 
of CD3+ and cytotoxic CD8+ T-cells at tumor sites using 
digital pathology. It provides a score for each patient to 
predict the risk of relapse for stage II colorectal cancer after 
resection (9,10).

Currently, there is a concern about rising medical costs 
in the US, as the utilization of health care services continues 
to increase along with the introduction of new health 
care technologies in clinical practice (13-15). Specifically, 
genome-based interventions, which have the potential to 
reduce adverse drug effects and patient readmissions by 
targeting at-risk individuals, have been entering the market 
rapidly, leading to the current availability of more than 150 
personalized therapies on the market approved by the US 
Food and Drug Administration (16). However, high costs 
and inadequate evidence of the clinical utility of genomic 
tests may limit their coverage by health insurers and, 
consequently, their diffusion into clinical practice (17-19).  
A few cost-effectiveness studies have been performed 
separately for the 12-gene assay (20,21). However, there 
do not appear to be any studies that have compared the 
12-gene assay, the 18-gene expression assay, the 482-gene 
signature, and the Immunoscore assay with respect to cost-

effectiveness of treatment. Such comparative analyses may 
capture the upstream and downstream consequences of 
using novel precision molecular diagnostics and reflect the 
underlying clinical and economic evidence for improved 
outcomes, and uncertainties around the evidence (17,18,22). 
Therefore, it becomes even more essential to estimate total 
costs, potential cost savings, and health benefits associated 
with the use of new genomic tests to thereby guide resource 
allocation decisions. This study aims to evaluate the cost-
effectiveness and quality of life associated with treatment 
decisions involving four different marketed genomic tests 
for stage II colorectal cancer patients by developing a 
decision analytic model. We present the following article in 
accordance with the CHEERS reporting checklist (available 
at https://atm.amegroups.com/article/view/10.21037/atm-
2022-77/rc).

Methods

This economic modeling study was reviewed by the 
University of the Sciences Institutional Review Board 
(Protocol #1206794-1) and approved as a non-human 
subjects research. A hypothetical cohort of individuals aged 
older than 50 years who have been diagnosed with stage II 
colorectal cancer, who have undergone tumor resection, 
and who were waiting for treatment decisions based on 
marketed genomic tests were included in this study.

Interventions

The following four strategies were applied in the study 
population:

Strategy 1: the 12-gene assay followed by either adjuvant 
chemotherapy if patients were classified into the high-risk 
category or no chemotherapy if patients were classified into 
the low-risk category.

Strategy 2: the 18-gene expression assay followed by 
either adjuvant chemotherapy if patients were classified into 
the high-risk category or no chemotherapy if patients were 
classified into the low-risk category.

Strategy 3: the 482-gene signature followed by either 
adjuvant chemotherapy if patients were classified into the 
high-risk category or no chemotherapy if patients were 
classified into the low-risk category.

Strategy 4: the Immunoscore assay followed by either 
adjuvant chemotherapy if patients were classified into the 
high-risk category or no chemotherapy if patients were 
classified into the low-risk category. 

https://atm.amegroups.com/article/view/10.21037/atm-2022-77/rc
https://atm.amegroups.com/article/view/10.21037/atm-2022-77/rc
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Overview of the model

We developed a 5-year Markov model to estimate the costs 
and quality-adjusted life years (QALYs) associated with the 
implementation of four different marketed genomic tests 
(i.e., 12-gene assay, 18-gene expression assay, 482-gene 
signature, and Immunoscore assay) for stage II colorectal 
cancer treatment strategies. This study used the TreeAge 
software (TreeAge Software, Williamstown, MA, USA) 
to design a decision-analytic framework and compute 
incremental cost-effectiveness ratios (ICERs). Our study 
was conducted from a societal perspective. To consider 
the impact of time on the valuation of model parameters, 
the future costs and QALYs were discounted at 3% for the 
base-case analysis, as recommended by the Second Panel on 
Cost-effectiveness in Health and Medicine (22).

In the Markov model, we considered a simulation of 1,000 
hypothetical patients with stage II colorectal cancer and 
compared four genomic test-guided treatment strategies. In 
each strategy, the patients were offered either the 12-gene 
assay or the 18-gene expression assay, or the 482-gene 
signature or the Immunoscore assay and then distributed 
into two risk categories, either high risk or low risk. This 
stratification of patients into the two risk categories of 
high and low was based on the recurrence score of the 
marketed genomic tests (5-10). Furthermore, the patients 
in the high-risk categories of the four genomic tests were 
assumed to be administered adjuvant chemotherapy, 
while the patients in the low-risk categories of the four 
genomic tests were assumed to be treated without adjuvant 
chemotherapy. The assumption regarding administration of 
adjuvant chemotherapy was based on the current standard 

of clinical practice, which considers the age of a colorectal 
cancer patient and impact of adverse effects associated with 
chemotherapy on the quality of life (23,24). 

In this study, the outcomes of patients were investigated 
in three mutually exclusive health states: no recurrence, 
recurrence, and death. We assumed one year to be one cycle 
and performed the cohort simulation with a time horizon of 
five years. In every Markov cycle, we assumed that patients 
could only move towards a stage of recurrence and death 
from a no recurrence stage. They could not go back to a “no 
recurrence stage” from a recurrence stage but could remain 
in the same health state until they were deceased. We 
also assumed that patients may experience local or distant 
recurrence at an advanced stage of the disease. 

Model parameters

We conducted a comprehensive review of the literature 
using specific search terms and different electronic databases 
(MEDLINE/PubMed, EMBASE, Web of Science, National 
Health Service Economic Evaluation Database (NHSEED), 
EconLit, CINAHL, and PROSPERO) from January 2006 
to May 2019. The data relevant to the risk stratification of 
stage II colorectal cancer patients using genomic tests and 
the transition probabilities between health states of patients 
were obtained from the literature (Tables 1,2). In the model, 
adjuvant chemotherapy was assumed to be prescribed for 
high-risk patients and, therefore, a relative risk reduction 
of 0.18 was set for these patients to represent the benefit of 
chemotherapy (20). The transition probability of death was 
considered as zero.  

For strategy 1, we considered a total of 247 patients 

Table 1 Clinical validity and risk classification of genomic tests 

Genomic tests
Base case parameters

Sensitivity analysis range Distribution References
Hazard ratio Proportion of patients assessed

12-gene assay 2.05 High-risk 0.14 1.64–2.46 Normal (6)

Low-risk 0.86

18-gene 
expression assay

2.16 High-risk 0.37 1.59–2.66 Normal (8)

Low-risk 0.63

482-gene 
signature

2.13 High-risk 0.45 1.62–2.70 Normal (7)

Low-risk 0.55

Immunoscore 
assay

0.33 High-risk 0.27 0.24–0.41 Normal (9)

Low-risk 0.73
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Table 2 Transition probabilities 

Health states & year Base case parameters References

No recurrence to recurrence

Year 1 0.02 (25)

Year 2 0.0714

Year 3 0.0275

Year 4 0.0282

Year 5 0.0267

No recurrence to death

Year 1 0.0094 (25)

Year 2 0.0104

Year 3 0.0114

Year 4 0.0124

Year 5 0.0134

Recurrence to metastasis

Year 1 0.1662 (26)

Year 2 0.1618

Year 3 0.157

Year 4 0.1521

Year 5 0.1473

Recurrence to no metastasis

Year 1 0.0166 (26)

Year 2 0.0162

Year 3 0.0157

Year 4 0.0152

Year 5 0.0147

No metastasis to death

Year 1 0.0391 (26)

Year 2 0.0444

Year 3 0.0479

Year 4 0.051

Year 5 0.0538

Metastasis to death

Year 1 0.009 (26)

Year 2 0.0088

Year 3 0.0085

Year 4 0.0083

Year 5 0.008

as either high-risk, intermediate-risk or low-risk, and the 
recurrence score was determined using the 12-gene assay. 
We combined patients of the intermediate-risk group with 
those of the low-risk group, and it was assumed that patients 
in the high-risk group received adjuvant chemotherapy. Of 
247 patients, 35 patients (14%) were categorized as high-
risk, whereas 212 patients (86%) were categorized as low-
risk using the 12-gene assay. For strategy 2, the recurrence 
score was calculated for a total of 416 patients using the  
18-gene assay. It was determined that 153 (36.77%) patients 
were in the high-risk group and 263 (63.22%) patients were 
in the low-risk group. For strategy 3, of the 393 patients  
who were classified as either low-risk or high-risk,  
177 patients (45.03%) were categorized into the former and 
216 patients (54.96%) were categorized into the latter using 
the 482-gene signature. For strategy 4, 1,434 patients were 
classified using the Immunoscore assay. Of these patients, 
1,045 patients (72.87%) were classified as low-risk and  
389 patients (27.12%) were classified as high-risk.

Costs

The data related to the direct and indirect medical costs 
were identified from the published clinical and health 
economic studies (6-9,20-21,25-31). All costs were 
standardized to 2014 US dollars. The costs associated with 
adjuvant chemotherapy, administration, and adverse events 
were sourced from the literature. The costs of genomic tests 
were based on the list price and were obtained from publicly 
available resources (Table 3).

QALYs

In the model, we combined utility values with the amount 
of time a patient remained in that particular health state 
and derived QALYs. We referred to the literature to obtain 
the utility values for different health states, including 
no recurrence, recurrence, and productivity loss due to 
adjuvant chemotherapy. These values were in the range 
of 0 to 1, where 0= health equivalent to death and 1= best 
imaginable or perfect health.

Outcomes

The outcomes of the model included an estimation of 
total expected costs and QALYs for the 12-gene assay, the  
18-gene expression assay, the 482-gene signature. and the 
Immunoscore assay. The ICER values of the four genomic 



Annals of Translational Medicine, Vol 10, No 23 December 2022 Page 5 of 13

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2022;10(23):1260 | https://dx.doi.org/10.21037/atm-2022-77

tests at a willingness to pay of $50,000 per QALY were 
calculated using the formula:

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

Strategy 1 Strategy 2 Strategy 3 Strategy 4

Strategy 1 Strategy 2 Strategy 3 Strategy 4

Cost Cost Cost Cost
ICER =

Effects Effects Effects Effects
− − −

− − −

	 [1]

Sensitivity analyses

One-way sensitivity analyses were conducted on the model 
parameters and the robustness of the results was assessed. 
A Tornado diagram was employed to identify important 
parameters, which may have direct effects on the results 
of the model. In probabilistic sensitivity analysis, specific 
distribution was assigned to each parameter of the model, 
and 1,000 Monte-Carlo simulations were performed to 
assess the uncertainty of the model parameters on the 
results of the ICERs for the four genomic tests.

Results

Decision analytic framework

A decision analytic framework was designed for the 
evaluation of the costs and QALYs associated with genomic 
tests guided treatment strategies (Figure 1).

Base-case analysis

The Immunoscore assay vs. the 12-gene assay, the  
18-gene assay, and the 482-gene signature
The cost of the Immunoscore guided treatment in stage 
II colorectal cancer patients was estimated to be $23,564 
as compared with the 12-gene assay guided treatment at 
$24,545, the 18-gene assay guided treatment at $28,374, 
and the 482-gene signature guided treatment at $33,315. 
The use of treatment strategies guided by the Immunoscore 
assay, 12-gene assay, 18-gene assay, and 482-gene signature 
resulted in gains of 3.903, 3.623, 3.677, and 3.704 QALYs 
respectively. These results and ICER values indicate that 
the Immunoscore assay might be a more cost-effective 
strategy than the other three marketed tests at a threshold 
willingness-to-pay of $50,000 per QALY (Table 4).

The 12-gene assay vs. the 18-gene assay
The estimated cost of treatment for stage II colorectal 
cancer patients using the 12-gene assay was $24,545, with a 
gain of 3.623 QALYs, as compared with an estimated cost 
of $28,374 and a gain of 3.677 QALYs when the 18-gene 
expression assay was used. A cost savings of $3,829 was 
associated with the use of the 12-gene assay, whereas the 
18-gene expression assay guided treatment was associated 
with a gain of 0.054 additional QALYs (Table 5).

Table 3 Utilities, risk reduction and costs

Variables Base case parameters Sensitivity analysis range Distribution References

No recurrence 0.85 0.68–1.02 Beta (20)

Recurrence 0.60 0.48–0.72 Beta

Productivity loss due to 
chemotherapy

0.47 0.376–0.564 Beta (27,28)

Relative risk reduction due to 
chemotherapy

0.18 0.144–0.216 Beta (20)

Immunoscore assay $3,000 2,400–3,600 Gamma Communication with 
HalioDx, February 2019

12-gene assay $4,420 3,536–5,304 Gamma (29)

18-gene expression assay $3,400 3,080–4,620 Gamma (30)

482-gene signature $3,850 2,720–4,080 Gamma (31)

Adjuvant chemotherapy and 
administration 

$7,746 6,196–9,296 Gamma (21)

Adverse events $23,589 18,871–28,307 Gamma (21)
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Table 4 Incremental cost-effectiveness ratio for all marketed genomic tests 

Genomic tests Costs, $ Incremental, $ QALYs Incremental QALYs C/E, $/QALYs ICER, $/QALYs

Immunoscore assay 23,564 – 3.903 – 6,037 –

12-gene assay 24,545 981 3.623 −0.28 6,774 Dominated

18-gene expression assay 28,374 4,810 3.677 −0.226 7,716 Dominated

482-gene signature 33,315 9,751 3.704 −0.199 8,994 Dominated

C/E, cost-effectiveness; ICER, incremental cost-effectiveness ratio; QALYs, quality adjusted life-years.

Immunoscore assay

12-gene assay

18-gene expression
assay

482-gene signature

Genomic tests for stage II colorectal
cancer

Low-risk (no adjuvant
chemotherapy)

High-risk (adjuvant
chemotherapy)

No recurrence

Local recurrence

No recurrence
No recurrence

No recurrence
No recurrence

No recurrence

Recurrence

Recurrence

Recurrence

Recurrence

Recurrence

Recurrence
Recurrence

Recurrence
Recurrence

Recurrence

Recurrence

Recurrence

Recurrence

Recurrence

Death

Death

Death
Death

Death
Death

Death
Death

Death
Death

Death

Death

Death

Death

Local recurrence

Distant recurrence

Decision node Chance node Markov node Terminal node

Distant recurrence

Figure 1 Decision analytic framework assumed a simulation of stage II colorectal cancer patients and compared four genomic test strategies. 
In each strategy, the patients were offered either 12-gene assay or 18-gene expression assay or 482-gene signature or Immunoscore assay and 
then, distributed into two risk categories. This stratification of patients into the two risk categories, high or low, was based on the recurrence 
score of genomic tests. The patients in the high-risk category classified by any of the genomic tests were assumed to receive adjuvant 
chemotherapy, while the patients in the low-risk category classified by any of the genomic tests were assumed to be treated without adjuvant 
chemotherapy.
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Table 5 Incremental cost-effectiveness ratio for 12-gene assay and 18-gene expression assay

Genomic tests Costs, $ Incremental, $ QALYs Incremental QALYs C/E, $/QALYs ICER, $/QALYs

12-gene assay 24,545 – 3.623 – 6,774 –

18-gene expression assay 28,374 3,829 3.677 0.054 7,716 Dominated

C/E, cost-effectiveness; ICER, incremental cost-effectiveness ratio; QALYs, quality adjusted life-years.

Sensitivity analyses

One-way sensitivity analyses involving costs, utilities, 
hazard ratios, and probabilities were performed, where 
input values of all of the parameters across the ranges were 
varied. As shown in the Tornado diagram, the ICER values 
of the Immunoscore assay vs. the 12-gene assay or the  
18-gene assay or the 482-gene signature were most sensitive 
to the costs of genomic tests and utilities related to patients 
in the no-recurrence health state (Figure 2A-2D). 

In a probabilistic sensitivity analysis, we used the 
Immunoscore assay as a reference strategy versus the other 

genomic test strategies and performed 1,000 Monte-Carlo 
simulation trials. We constructed four scatterplots on the 
cost-effectiveness plane, where the incremental cost was on 
the vertical axis and incremental effectiveness was on the 
horizontal axis (Figure 3A-3D). These scatterplots provide 
a representation of each simulation trial specific ICER 
values. Each scatterplot is composed of four quadrants. The 
location of ICER values among these quadrants indicates 
whether the Immunoscore assay produces more effectiveness 
and more cost (northeast quadrant), more effectiveness and 
less cost (southeast quadrant), less effectiveness and less cost 
(southwest quadrant), or less effectiveness and more cost 

Tornado diagram-ICER
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Tornado diagram-ICER
Immunoscore assay vs. 482-gene signature
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12-gene assay vs. 18-gene expression assay
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Figure 2 Tornado diagram of deterministic sensitivity analyses between different genomic test strategies. (A) Tornado diagram of 
Immunoscore assay versus 12-gene assay. (B) Tornado diagram of Immunoscore assay versus 18-gene expression assay. (C) Tornado diagram 
of Immunoscore assay versus 482-gene signature. (D) Tornado diagram of 12-gene assay versus 18-gene expression assay. These diagrams 
indicated the list parameters in the model in order of magnitude of influence on the ICER. Each bar, blue and red, represents a one-
way sensitivity analysis performed at the selected node, for different precision molecular diagnostics tests that are being compared. ICER, 
incremental cost-effectiveness ratio; c, cost; u, utility; hr, hazard ratio; chemo, chemotherapy; EV, expected value.
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(northwest quadrant) as compared with the other genomic 
test strategies. 

In the scatterplot for the Immunoscore assay and the  
12-gene assay, 83.20% of the total ICER values were in the 
southeast quadrant and 16.20% of total values were in the 
northeast quadrant. This suggests that the Immunoscore 
assay generated more QALYs at lower costs (Figure 3A). In 
comparison, in the scatterplots between the Immunoscore 
assay and the 18-gene expression assay or the 482-gene 
signature, 100% of the ICER values were in the southeast 
quadrant (Figure 3B,3C). 

Overall, these scatterplots suggest that the Immunoscore 
assay might be the dominant strategy when willingness 
to pay was set at $50,000 per QALY. The scatterplot 
evaluating the 12-gene and the 18-gene expression assay 
showed 99.80% of total ICER values were located in the 
southwest quadrant (Figure 3D). This underscored that 
patients using the 12-gene assay gained less QALYs at lower 
costs in comparison with the patients who used the 18-gene 

assay-based treatment. 

Discussion

Multiple genomic assays have been developed to identify 
high-risk subgroups in the heterogeneous population of 
stage II colorectal cancer patients that might benefit from 
adjuvant chemotherapy (5-10). Currently, four genomic tests 
(the 12-gene assay, an 18-gene expression assay, a 482-gene  
signature, and the Immunoscore assay) are available for 
clinical use in the US. Among these commercially available 
genomic tests, the clinical validity and utility of the  
12-gene assay has been demonstrated in several studies 
to date (6,11,32-38), whereas the Immunoscore assay was 
made available to the US market on January 8, 2019 (39). 
The Immunoscore assay was validated in a prospective 
multicenter study with tissue samples from stage II 
colorectal cancer patients (9). This study measured the host 
immune response at the tumor site and demonstrated that it 
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Figure 3 Incremental cost-effectiveness scatterplot between different treatment strategies. (A) Incremental cost-effectiveness scatterplot 
between Immunoscore assay versus 12-gene assay. (B) Immunoscore assay versus 18-gene expression assay. (C) Immunoscore assay versus 
482-gene signature. Scatterplots showed that Immunoscore assay strategy generated more QALYs at lower costs in comparison with other 
three strategies. (D) Incremental cost-effectiveness scatteplot showed that 12-gene assay strategy gained less QALYs at lower costs in 
comparison with 18-gene expression assay strategy. WTP, willingness-to-pay; QALYs, quality adjusted life years.
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could provide better prognostic value than the usual tumor 
risk parameters. The Immunoscore assay might identify 
a subgroup of high-risk stage II patients who may derive 
benefits from adjuvant chemotherapy, thereby contributing 
to the improvement of patient outcomes (9,10). In 2020, the 
European Society for Medical Oncology (ESMO) included 
the Immunoscore colon cancer test in its clinical practice 
guidelines for the diagnosis, treatment and follow-up of 
early-stage colon cancer (40). However, the Immunoscore 
assay has not yet been included in the NCCN clinical 
practice guidelines in the US (1). 

In this study, we developed a decision analytic model 
and estimated costs, QALYs, and ICER values of treatment 
strategies based on using these 4 genomic tests. The base-
case and probabilistic sensitivity analyses indicated that 
treating patients as guided by the Immunoscore assay 
was a dominant alternative in comparison with the three 
other genomic test–guided treatment strategies. Also, we 
investigated the cost-effectiveness of treatment strategies 
based on the 12-gene assay and the 18-gene expression 
assay, because these two tests have been available for 
clinical use in the US for several years. Earlier studies had 
compared the cost-effectiveness of the 12-gene assay with 
the current standard of care (20,21), but a direct comparison 
of cost-effectiveness with the 18-gene expression assay had 
not yet been performed to our knowledge. In the base-
case analysis, our results demonstrated that differences 
between effectiveness (QALYs) were minimal across both 
groups, while the cost savings associated with the use of the  
12-gene assay for the entire treatment were more than the 
list price of the 18-gene expression assay. These findings 
were consistent across a wide range of one-way and 
probabilistic sensitivity analyses. 

To date, the 12-gene assay, the 18-gene expression assay, 
the 482-gene signature assay, and the Immunoscore assay 
have not been covered largely by major health insurers in 
the US due to a lack of sufficient evidence on their clinical 
utility (41-44). Such restrictions in the reimbursement of 
genomic tests highlight the gaps in the existing landscape of 
evidence. Our study compared and quantified the value of 
these marketed genomic tests, and generated new evidence 
related to both cost-effectiveness and quality of life for 
stage II colorectal patients. This information on costs and 
outcomes of patients may be helpful for policymakers to 
select the most appropriate genomic test and help inform 
their reimbursement decisions. 

A key strength of the study is the consideration of local 
and distant recurrence as health states and the associated 

utility loss. In this study, we considered the treatment costs 
incurred for the first recurrence of colorectal cancer only. 
Because approximately 50% of colorectal cancer patients 
may develop metastases to their liver over the course of life 
(45-47), examining the costs for multiple recurrences in the 
model for all patients could skew the treatment strategies 
and falsely overestimate the costs. Therefore, estimated cost 
savings and gain in QALYs as demonstrated in our study are 
more reflective of real-world clinical settings than in earlier 
studies, which did not incorporate local or distant relapses 
of colorectal cancer into their models (20,21). 

The ICER is considered to be a measure of value and 
approximately $50,000 per QALY is a standard threshold for 
cost-effectiveness of intervention in the US (22). Although 
our results showed that the implementation of genomic 
tests for colorectal cancer care may have high ICER values, 
previous studies on the use of the 12-gene assay to guide 
adjuvant chemotherapy decisions reduced direct medical 
costs and improved the quality of life of stage II colorectal 
cancer patients (20,21). Thus, based on our results, it is 
possible that the Immunoscore assay may reduce the costs 
associated with treatment in the longer time frame. Further, 
our results showed that the estimated total costs associated 
with use of the 12-gene assay versus the 18-gene assay-
guided treatment may generate cost savings equivalent to 
$3,900. For example, if a hypothetical cohort of 1,000 stage 
II colorectal cancer patients is considered, the use of the 
12-gene assay in comparison with the 18-gene expression 
assay may lead to savings in treatment costs that are nearly 
equivalent to $3,900,000, based on the average per patient 
cost savings of $3,900 achieved by the 12-gene assay.  Such 
estimates on the reduction of total costs of clinical care at 
the population level may inform the resource allocation 
decisions of policymakers.

In sensitivity analyses of the Immunoscore assay versus 
the other three genomic tests, we found that there was a 
significant increase in the ICERs of the treatment strategies, 
specifically when a large proportion of patients received 
chemotherapy. This may be due to our assumptions in 
the economic models, which were heavily dependent on 
the costs and utilities associated with patients receiving 
chemotherapy. However, our assumptions were in 
accordance with clinical practice guidelines, where the use 
of chemotherapy is an integrated part of colorectal cancer 
care for patients with high-risk features (1). 

It is noteworthy that, in one-way sensitivity analyses, 
hazard ratios of the 12-gene assay and 18-gene expression 
assay were not sensitive to their ICER values. This may 
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be due to negligible differences between their currently 
available hazard ratios. The robustness of our economic 
model might be more rigorously tested when the new 
parameters become available from the Prospective 
Study for the Assessment of Recurrence Risk in Stage II 
Colon Cancer Patients Using ColoPrint (PARSC) study 
(NCT00903565) (48).

The interpretations of the results of this study are 
limited by our assumptions in the decision analytic model. 
First, we relied on the published literature for model input 
parameters and considered publicly available data for the 
list price of genomic tests. Real-world evidence data on the 
effectiveness of genomic tests and targeted therapies may 
reflect a broad picture of the heterogeneous population in 
everyday clinical practice. Second, although utility values 
were used in economic analyses of this study, we did not 
incorporate patient preferences in the decision-making 
due to the unavailability of such data at the time. Such an 
inclusion of preference determination in the study might 
have guided a greater use of adjuvant chemotherapy and 
higher gain in QALYs. Third, our economic analysis 
assumed that all stage II colorectal cancer patients received 
genomic tests and, based on their recurrence risk score, they 
were either treated or not with the adjuvant chemotherapy. 
This pattern may change in a real-world clinical setting. 
Finally, our analysis provides information from a societal 
perspective in the United States and, therefore, these results 
may not be applicable in other health care systems.

In summary, we developed a health economic model for 
the comparison of four marketed genomic tests (a 12-gene 
assay, an 18-gene expression assay, a 482-gene signature 
and the Immunoscore assay) for the purpose of guiding 
treatment decisions about adjuvant chemotherapy in stage 
II colorectal cancer patients. Overall, the Immunoscore 
assay appears to be the dominant strategy as compared with 
the other three genomic tests at a threshold willingness-
to-pay of $50,000 per QALY. Additionally, the 12-gene 
assay may generate cost savings for the treatment of stage 
II colorectal cancer patients as compared with the18-gene 
expression assay. 

Conclusions

In this study, we quantified the additional costs and 
consequences of the currently marketed genomic tests and 
compared these with other competing alternatives. Overall, 
the Immunoscore assay appears to be a dominant strategy 
at a threshold willingness-to-pay of $50,000 per QALY, 

but when the duration of clinical use of genomic tests 
in the US is taken into consideration, we found that the  
12-gene assay may generate cost savings compared to using 
the 18-gene expression assay for treatment decisions in 
stage II colorectal cancer patients. The findings of our study 
may provide useful information to policymakers regarding 
selection of the most appropriate genomic test, and resource 
allocation decisions. 
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