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Abstract

Background

Automatically detecting gene/protein names in the literature and connecting them to data-
bases records, also known as gene normalization, provides a means to structure the infor-
mation buried in free-text literature. Gene normalization is critical for improving the
coverage of annotation in the databases, and is an essential component of many text min-
ing systems and database curation pipelines.

Methods

In this manuscript, we describe a gene normalization system specifically tailored for plant
species, called pGenN (pivot-based Gene Normalization). The system consists of three
steps: dictionary-based gene mention detection, species assignment, and intra species nor-
malization. We have developed new heuristics to improve each of these phases.

Results

We evaluated the performance of pGenN on an in-house expertly annotated corpus consist-
ing of 104 plant relevant abstracts. Our system achieved an F-value of 88.9% (Precision
90.9% and Recall 87.2%) on this corpus, outperforming state-of-art systems presented in
BioCreative lll. We have processed over 440,000 plant-related Medline abstracts using
pGenN. The gene normalization results are stored in a local database for direct query from
the pGenN web interface (proteininformationresource.org/pgenn/). The annotated literature
corpus is also publicly available through the PIR text mining portal (proteininformationre-
source.org/iprolink/).

Introduction

A major focus of modern biological research is to link big data to knowledge [1], which
requires tools to provide structure to information in unstructured sources such as the scientific
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literature. One barrier to structured representation of information in the literature is the highly
complex nature of the nomenclature of genes and proteins. Multiple names and symbols are
frequently used to refer to the same entity, and conversely, a given name or symbol can refer to
multiple entities. In order to comprehensively annotate gene/protein records and to support
queries from biologists from a variety of backgrounds who may use different names to refer to
a gene/protein of interest, curators of knowledge bases, such as UniProt [2], need to capture
the full range of names and symbols by which a protein/gene is known. Automatic detection of
gene/protein names in the literature and their linkage to database records, also known as gene
normalization (GN), is being developed as an alternative to the current time-consuming prac-
tice of manual extraction of names and has become an essential component of many text min-
ing systems and database pipelines. For example, PubTator [3], incorporates GN to assist
curation of genes in PubMed abstracts. Our group also uses GN of kinase and substrate men-
tions to integrate phosphorylation information from the text mining tool RLIMS-P [4] into
iPTMnet (proteininformationresource.org/iPTMnet), a bioinformatics resource for protein
post-translational modifications. GN also enables semantically refined literature searches [5]
(e.g. retrieval of literature for a given protein in a particular taxon group), Thus, efficient and
reliable GN systems can play a key role in the effort to link big data to knowledge.

GN involves two essential tasks: (i) the detection of gene mentions (GM) in text, and (ii) the
association of database identifiers (IDs) to the detected genes. Both have significant challenges.
Challenges for the GM task include: (i) textual variations of a given gene name in different arti-
cles (e.g., AtPLAIIA vs. AtPLA ITA), and (ii) polysemy, mentions that can refer to gene names
or non-gene concepts or even common English words. (e.g., SNI can name both a gene and a
non-gene entity) Challenges for the second database ID mapping task include: (i) identification
of the species name, which is required for unique mapping to a species-specific database record
and which may or may not be named in the same part of the text as the gene, and (ii) ambigu-
ity, when multiple genes share the same name (e.g., SEN1 is used to name two Arabidopsis
genes with UniProt ACs Q9IM1ES8 (tRNA-splicing endonuclease subunit Sen2-1) and ASMRI9
(Senescence-associated protein DIN1).

Gene normalization has been a key theme in several BioCreative Challenge Evaluations:
BioCreative I [6] focused on the GN task for yeast, fly, and mouse genes, while BioCreative II
[7] focused on the GN task for human genes, as illustrated below with a few examples. ProMi-
ner [8] is a dictionary-based GN system involving manual clean-up of a dictionary and the
inclusion of different biomedical dictionaries. GNAT [9] is a GN system encompassing four
steps: named entity recognition for genes and species, validation of gene mentions, correlating
gene mentions with species, and finally gene mention disambiguation. GeNo [10] tackles the
GN problem by employing a carefully crafted suite of symbolic and statistical methods, and by
tully relying on publicly available software and data resources. TF-IDF [11] weighting is used
to calculate semantic similarity scores for resolving ambiguous names.

In BioCreative III [12], the GN task was further extended to cover genes of all relevant spe-
cies in the literature corpora. Among the systems, Bhattacharya et al. [13] tried to associate a
species name with a gene name by considering their proximity, which was achieved by choos-
ing various window sizes for character boundaries. Dai et al. [14] employed a multi-stage GN
procedure and selected dictionary entries from only the top 22 most common species in NCBI
(from 7283 species) to speed up the GN process. A document-level gene normalization system,
called GeneTUKit [15], employed features from the local context and the global context within
the whole full-text article, and normalized genes of different species simultaneously. GenNorm
[16] follows three steps: gene name recognition, species assignment, and species-specific gene
normalization, and uses SR4GN [17] for assigning species to gene mentions. GenNorm has
been widely used in text mining systems that require GN, such as in PubTator and in an event
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extraction pipeline [18]. The lack of limitation on species in GenNorm makes it suitable for
such integration.

Despite this large body of work, gene normalization continues to be inadequate for certain
taxonomic groups, particularly plants, where (i) there is a lack of common standard nomencla-
ture across species [19-24], (ii) locus or ORF species-specific names are frequently used, and
(iii) there is a high frequency of ambiguity in gene names because of the high number of para-
logs in multigene families.

In this paper, we describe a plant-specific gene normalization system, called pGenN (pivot-
based Gene Normalization). Because a dictionary is an essential component in GN and its qual-
ity significantly affects system performance, we built a large plant gene dictionary, providing
extensive coverage while containing minimal false matches. We introduced an orthographic
concept called pivot which captures the shared part of gene names of same family, and devel-
oped techniques centered around this idea that help in both the gene mention and the normali-
zation processes. We also developed a method that can automatically generate an annotated
gene mention corpus from scientific literature and employed this method to build a large gene
mention corpus that includes text from the plant literature.

For evaluation purposes, we had to develop our own curated literature corpus given the lim-
ited availability of annotated plant literature in existing corpora. Evaluation on this corpus,
which includes 104 Medline abstracts, shows that our system has better performance than Gen-
Norm, a state-of-the-art system evaluated in BioCreative III, and the only publicly available
GN tool for plant-related abstracts.

As GN tools can play an important role in text-mining pipelines, we demonstrated the inte-
gration of pGenN with RLIMS-P, a tool for curation of protein phosphorylation information.
We used pGenN to normalize kinase and substrate mentions detected by RLIMS-P, illustrating
that pGenN can successfully interoperate with other text mining modules for knowledge base
curation.

Finally, we applied pGenN to all plant-related Medline abstracts to test its scalability. The
results, which are updated monthly in sync with PubMed, are stored in a local database called
pGenN_DB. The pre-processed results are publicly available via a web interface for multiple
modes of querying and downloading of results.

System and Methods

The overall architecture of pGenN is shown in Fig 1. The input text in Medline abstract format
is broken up into sentences and then into individual tokens. Potential gene name candidates
are first identified using a dictionary lookup. Next, a context-based disambiguation component
decides which of these candidates correspond to actual gene mentions. Then, a species is asso-
ciated with each detected gene mention. Using different features gathered from text and dictio-
nary, pGenN completes the normalization process by assigning an identifier for a species-
specific gene in the dictionary among those that matched the name found in the text.

Text preprocessing

The system accepts as input a single or multiple PMIDs. Although it can process any text as
input, some of the rules for species assignment were developed specifically for abstracts.

Given a list of PMIDs, the titles, abstract text, and the MeSH terms are extracted for each
PMID. We use an in-house developed tool to split the abstract text into sentences and then
tokenize the sentences. This tokenization is based entirely on orthographic features such as the
combination of lower case followed by uppercase letters or presence of numerals and symbols.
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For example, terms such as AtAurl and Mn(2+) are tokenized as “At Aur 1” and “Mn (2 +)”
respectively. We then use an in-house developed tool to tag noun phrases in each sentence.

Gene Dictionary: Creation and Use

Many existing gene mention recognizers (e.g., AITAGMT [25] and BANNER [26]) do not use a
dictionary-based approach. For example, BANNER uses conditional random fields (CRF) with
orthographic, morphological and shallow syntax features. In contrast, we use a dictionary-
based approach for the gene mention task. Dictionary matching is an essential part in the gene
normalization task since the task of gene normalization is to link gene mentions with identifiers
included in the dictionary. So even if a GN system uses a system such as BANNER to detect
gene mentions, it would still need to match the detected mentions with a gene dictionary for
normalization. Additionally, using a dictionary for gene mention detection avoids the problem
of false negatives produced by the gene mention systems. Similar points have been observed
earlier by others, e.g., Verspoor et al. [27].

There are three basic parts to a dictionary-based approach to gene mention detection, as
depicted in Fig 2. First is the creation of an extensive dictionary. The dictionary must be as
inclusive as possible so that gene mentions are not missed, but should also exclude names that
can lead to incorrect matches. Second is the use of the dictionary in matching input text to
identify gene names. Since gene names (especially short names) can also correspond to names
of other biological entities such as diseases, matching against text only provides gene name can-
didates. A third step disambiguation is needed to determine whether a candidate corresponds
to a gene mention or not. Typically, local context in the form of words close to the candidate is
used for such disambiguation.

These three basic parts of the dictionary-based gene mention detection are discussed next.
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Fig 2. Components of dictionary-based gene mention detection.

doi:10.1371/journal.pone.0135305.g002

Creating a plant gene dictionary

The plant gene dictionary is based on the UniProt database. Of interest to us, UniProt protein
entries contain protein accessions (ACs), protein names and gene names. Our dictionary is cre-
ated by downloading all entries for all plant proteins in UniProt (http://www.uniprot.org/). Simi-
larly to others who have built gene mention detection or normalization tools, we do not
distinguish between genes and their protein products. Hence, we collected both gene and protein
names from UniProt for all the plant gene/proteins. Each entry in the dictionary contains addi-
tional information, such as its species and synonyms (alternate names), along with the name.

While gene names from an entry are taken directly, protein names are further processed to
extract parts that are likely to be found in text. Consider the following protein names “Pre-
mRNA-splicing factor SLU7” (UniProt AC A2YQUS8) and “Salt stress root protein RS1” (Uni-
Prot ID A2WMGS®). In addition to the full names, we also include the shorter versions “SLU7”
and “RS1” in the dictionary as they are often found in the abstract text without the preceding
“descriptive” part. Both the shorter name version and the descriptive parts are useful, the for-
mer for the gene mention task whereas the latter can play an important role in the normaliza-
tion task. In order to split the full name into these two parts, we look for protein names in a
specific pattern: “wordl word2 . .. wordN f-term c-term”. The notions of c-terms and f-terms
were introduced in [28] and further developed in [29]. An f-term comes from a small list of
words such as gene, protein, factor and enzyme, which indicate that the entity is a gene or its
product. Table 1 shows the regular expression we used for identifying gene f-terms. A c-term,
on the other hand, is characterized by the presence of orthographic features such as capital
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Table 1. Regular expression for identifying gene f-terms.

/(gene|protein|factor|kinase|[*abehiou]ase|oncogene?|binder|globulin|tubulin|inter-?feron|lectin|galectin|
globin|tinin|matin|ietin|tropin|zyme|kine|leukin|nogen|receptorlenzyme|hormone|protease|permease|
nuclease|oncogene)$/

doi:10.1371/journal.pone.0135305.t001

letters, numerals and special prefix symbols, which indicates that the term is not a typical
English word but likely to be a name.

UniProt contains two types of entries: reviewed and unreviewed. The reviewed entries are
curated by domain experts with information extracted from literature and curator-evaluated
computational analysis and are assumed to be of high quality. Proteins and gene names in the
reviewed entries include recommended name and synonyms from the literature and nomenclature
standards, plus locus names and open reading frame names (ORFs) for gene names. The unre-
viewed entries, on the other hand, contain protein sequences (e.g., from translation of sequences in
GenBank [30]) associated with computationally generated annotation and large-scale functional
characterization. These entries have not been curated by human annotators. Protein and gene
names in unreviewed entries come from direct submissions, propagation of annotation rules devel-
oped by UniProt, or other external sources. UniProt coverage for plant proteins in the reviewed sec-
tion is limited; as an example there are only 446 entries for tomato proteins in the reviewed part, but
37,386 entries from this species in the unreviewed part. Thus, we also considered including gene
and protein names from unreviewed entries in UniProt. A quick analysis of some unreviewed
entries suggested that while the gene names were acceptable, the protein names should be used with
caution because they are often very general. For example, in the unreviewed entry UniProt AC
B6SS10, the Submitted (protein) full name is “Receptor kinase”. Using such names would lead to
too many non-specific matches. As discussed above, the fact that the name ends with an f-term indi-
cates that it is likely to be a generic name description rather than a specific name. Thus, from the
unreviewed entries, we extract all gene names and only those protein names that include c-terms.

Organization of the Dictionary

To discuss the organization of the dictionary, we first consider how a name like AtAurl is stored.
Every name extracted from UniProt is tokenized into three parts that we call the prefix, the pivot,
and the suffix. The prefix represents the species, in this case, ‘At’ for Arabidopsis thaliana. A num-
ber of plant species follow a similar convention to indicate the species (two-letter abbreviation with
the first letter uppercase and the second letter lowercase), but it is not universal. Several alternatives
are shown in Table 2. Additionally there are species-specific locus ID conventions as well. The pre-
fix is set to null if the species abbreviation is not included as part of the name. Because the species
can be determined based on the UniProt record linked to the name, the prefix information is
redundant and is not stored in the dictionary. The suffix includes numbers or Greek alphabet let-
ters (or single uppercase alphabet letters corresponding to common Greek alphabet letters) that are

Table 2. Plant species prefix conventions.

2 letter First letter is upper case and second is lower case. e.g., “At” for “Arabidopsis thaliana”, “Os”
prefix for “Oryza sativa”.

3 letter Only for Brassica species. First letter must be upper case “B”, which is short for “Brassica”.
prefix Second and third letters are lower case. e.g., “Bra” for “Brassica rapa”, “Bni” for “Brassica

nigra”.

4 letter For Latin binomial. The symbol for a binomial consists of the first two letters of the genus,
prefix plus the first two letters of the specific epithet. e.g., “PASM” for “Pascopyrum smithii”.

5 letter All the letters must be upper case, and the first three letters must be “VIT”. e.g., “VITVI” for
prefix “Vitis vinifera”.

doi:10.1371/journal.pone.0135305.1002
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Fig 3. Pivot based plant gene dictionary structure.

doi:10.1371/journal.pone.0135305.g003

found at the end of the names. Again the suffix is set to null if it is not present. We call the remain-
ing part between the prefix and the suffix the pivot. Thus, in this case, ‘Aur’ is the pivot.

The dictionary is organized hierarchically into three layers, as shown in Fig 3. At the top are
nodes that are labeled with pivots. These pivot nodes have multiple child nodes where each
child node corresponds to a different suffix. Each suffix node (together with its parent pivot
node) corresponds to a specific gene name (recall the prefix nodes are not stored) and has as
children UniProt AC nodes. In addition to storing the UniProt AC, the UniProt AC node has
other information such as the species and all gene/protein names in the corresponding UniProt
record. A UniProt AC node can have multiple parent nodes since many names may be listed in
a given UniProt entry and hence share the same UniProt AC. Thus the dictionary is organized
as a directed acyclic graph rather than a tree.

Using the dictionary for Identifying Gene Mention Candidates

Consider 'AtAurl’ appearing in text. It will be tokenized into prefix, pivot, and suffix ('At Aur
1') as stated earlier. This tokenization allows us to handle name variations similar to Joachim
et al’s standardization [10] for dealing with name variations and will also handle cases men-
tioned by the regular expression approach of Jorg et al [9]. In our case, it allows matching the
dictionary with text using a pivot based approach. Hyphens are treated in a special manner,
during the dictionary matching process. All hyphens, except for the ones that appear between
numbers (or single letters), are treated exactly like blank space during matching. On the other
hand, hyphens between numbers (or single letters) are often used to indicate a range of values
and are left as is during the matching. These are handled further by special rules (see Table 3).
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Table 3. Rules for generating multiple candidates from a sequence of tokens.

Parentheses rule. e.g., from “interleukin (IL)-4”, get “interleukin-4” and “IL-4”.

Suffix in conjunction rule. e.g., from “Protein kinase C alpha, beta, and gamma”, get “Protein kinase C
alpha”, “Protein kinase C beta”, and “Protein kinase C gamma”. This rule will also cover cases like “ERK 1/
2", where “ERK 1” and “ERK 2” will be generated.

Suffix in range rule. e.g., from “ERK 1-8”, get “ERK 1”7, “‘ERK 2”,. . ., “‘ERK 8”.
doi:10.1371/journal.pone.0135305.t003

The occurrence of 'Aur’ in text will match a corresponding pivot node in the dictionary. The
next token in text ‘1’ matches one of the dictionary entry suffixes under that pivot node. Hence
the tokens “Aur 1” can now be considered a candidate gene mention, and several UniProt ID
nodes for different species are linked to the suffix node with this candidate gene mention. Note
that preceding token “At” in text is not matched since that information is not included in the
dictionary. However, the presence of this two letter token in text is noted as a string matching a
species prefix and will be used for normalization (species assignment).

Although Table 2 provides the conventions for naming plant gene names, sometimes
authors do not follow them exactly and occasionally, gene names mentioned in text may not fit
the patterns mentioned in Table 2. As examples, ‘AtAurl’ can appear as ‘atAur-1’ or ‘Ataur-1’.
These mentions will not be matched if we fail to detect the prefix. Thus, if a possible gene name
(e.g., a c-term) does not match with the dictionary, its initial letters will be extracted to verify if
it is a plant species prefix. If this is the case then the rest of the name will be used to match with
the dictionary.

Some minor extensions are added to this simple matching approach to enhance the perfor-
mance. The first extension is a longest match strategy: if one match occurred inside another,
only the longer match will be kept. For example, ‘Bcl-2’ in 'Bcl-2-associated athanogene 7' can
be matched to a name in the dictionary, but it will not be kept as candidate gene mention
because it is nested in another longer match ('Bcl-2-associated athanogene 7).

Another extension involves creation of multiple candidates from a sequence of tokens. Con-
sider, for example, the input sequence 'Interleukin (IL)-4'. Triggered by the parenthesis, the sys-
tem will form two sequences 'Interleukin- 4' and TIL- 4" and both of them will be matched against
the dictionary using the pivot based approach. The input sequence is considered a match even if
only one of the sequences produced from it matched with the dictionary. Due to the parenthesis
in the sequence, our heuristic rule will assume both sequences represent the same gene candidate
and hence both will be normalized to just one UniProt entry. Other rules allow for matching a
single sequence of tokens with multiple entries. Consider the input sequence: 'Protein kinase C
alpha, beta, and gamma'. After matching the pivot 'Protein kinase', during matching of the suffix,
we note the conjunction and hence produce three sequences (‘Protein kinase C alpha’, ‘Protein
kinase C beta’, ‘Protein kinase C gamma’). However, in this case, unlike in the parenthesis case,
it is not assumed that the multiple sequences represent the same gene candidate. Two similar
rules are used to handle input sequences like ERK 1-8 and ERK 1/2. The rules for generating
multiple candidates from a sequence of tokens are summarized in Table 3.

Finally, we noted that pivot-based matching allowed for detection of gene mentions beyond
the names found in the dictionary. For example, consider the occurrence of 'FLORAL BIND-
ING PROTEIN 11'in PMID 12481066. While the dictionary derived from UniProt does not
have this name, there are other names such as 'FLORAL BINDING PROTEIN 1' sharing the
same pivot. As the only difference between these two names is in the suffix, and the suffixes are
of the same type (numbers), pGenN proposes FLORAL BINDING PROTEIN 11' as candidate
gene mention. Of course FLORAL BINDING PROTEIN 11' cannot be normalized and hence
this detection is only useful if the tool is being used independently as gene mention detector.
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We also note that pivot-based matching allows for detection of family names. For example,
consider the occurrence of 'ERF' in PMID 25641039, which matches with a dictionary pivot
node (‘ERF’), but has no suffix. All the names in the dictionary linked with this pivot node
have suffixes, such as ‘ERF1', ‘ERF2’ and ‘ERF14’, so we will predict that 'ERF' is a gene family
mention.

Using Context to Determine Gene Mentions

As discussed earlier, dictionary look-up alone is not sufficient to detect gene mentions. For
example, consider the following sentence from PMID 6857705: “injection of the purified toxins
are 91 (SN1) and 71 (SN2) micrograms/kg mouse”. The name candidate “SN1” matches a
pivot and suffix in the dictionary, but it is not a gene mention.

In general, a candidate can have a gene sense or a non-gene sense. In this section we discuss
how we decide if each candidate is a gene mention or has a non-gene sense. First, we apply
some heuristic rules to decide whether a candidate gene mention is an actual gene mention or
not. Next, we apply a support vector machine (SVM) model for predicting gene or non-gene
sense. It is customary for sense disambiguation to be handled by considering context in the
form of words that appear nearby, and hence the words appearing nearby are used as the fea-
tures for SVM learning. One of the distinguishing aspects of our sense disambiguation
approach is that we use only immediate local context (within two words to the left or right) as
features. We believe that such an approach has potential to achieve high precision but can also
lead to low recall. To alleviate this problem we have developed a technique to propagate gene
context to other instances of candidate mentions. This technique is assisted by the idea of piv-
ots we have introduced here. Additional motivation for and details of these steps are described
next. The automated method for creating a large gene mention corpus which includes plant
related literature is discussed in a later section.

Rule-based disambiguation

The first rule is applicable for a candidate mention that matches a dictionary full name. Since
long names are assumed to not correspond to a non-gene concept, these full name mentions
are directly considered as gene mentions, and therefore are not subjected to the processes
described below.

Second, candidate mentions can sometimes be inferred to be family names or complex
names, and hence excluded on that basis. Rules for filtering out these types of mentions are
shown in Table 4.

Third, some language structures are used by the author to give additional descriptive infor-
mation, hence they provide clear clues to disambiguate names as gene or non-gene. For exam-
ple, in the sentence. . .flowering by repressing the transcription of FT, a flowering-integrator
gene that encodes. . ., the appositive of name ‘FT°, ‘a flowering-integrator gene . . .’, provides a
strong clue that ‘FT” is indeed a gene. The pGenN method detects two language structures,

Table 4. Rules for filtering out family and complex name.
If NAME appears at the end of a noun phrase, and the noun phrase starts with “a” or “another”, then NAME
will be considered as family name and filtered out.

If NAME is followed by words “family” or by an f-Term in plural form, then NAME will be considered as
family name and filtered out.

If NAME appears at in the end of a noun phrase, and the NAME is preceded by “subunits of”, then NAME
will be considered as complex name and filtered out.

If NAME is followed by word “complex”, then NAME will be considered as complex name and filtered out.

doi:10.1371/journal.pone.0135305.t004
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Table 5. Rules for disambiguation of name as gene or non-gene.
Acronym rule: If an acronym pair is detected, and the full name matches with the gene dictionary or ends
with an F-term, then the short name will be assigned a gene sense.

Appositive rule: If NAME has an appositive, and the appositive ends with an F-term, then NAME will be
assigned a gene sense.

Dictionary matched name in relation rule: If two or more names are matched with the dictionary and they
appear together in a conjunction with other candidate mentions, then all the names will be assigned a
gene sense.

Synonym rule: If NAME1 and NAME2 are synonyms (matched with the same dictionary entry), and they
appear in the same article, then both NAME1 and NAME2 will be assigned a gene sense.

doi:10.1371/journal.pone.0135305.t005

acronym and appositive. Acronyms are detected using an in-house build acronym detector,
which is based on Stanford acronym detection algorithm [31], and appositives are detected
using the text mining system iSimp [32]. Rules that are based on these two language structures,
as well as two other rules (Dictionary matched name in relation and Synonym) used for disam-
biguation purposes are shown in Table 5.

SVM-based disambiguation

We use the presence of nearby words to determine if the candidate mention is an actual gene
mention or represents some other type of entity. We restrict the use of context to words
appearing immediately to the left or right of a candidate. Such use of immediate context is
motivated by an attempt to achieve high precision, since words adjacent to the candidate are
likely to be related to candidate, whereas words that are further away may pertain to some
other entities and hence not be necessarily related to the candidate.

Support vector machines (SVMs) [33] are supervised learning models and are commonly
used for classification. We employed SVM-light [34], an implementation of the SVMs, using
default parameter settings and a linear kernel to learn the disambiguation model.

The six features used for learning correspond to: a single word appearing to the immediate
left or immediate right (LI-SW and RI-SW), a single word appearing within two words to the
left or right (LW2-SW and RW2-SW), and two words appearing to the immediate left or
immediate right (LI-TW and RI-TW). For example, given the sentence “Mutants lacking jas-
monate synthesis or response had decreased MYB21 expression and . . .”, the feature attributes
associated with the candidate “MYB21” are ‘LI-SW: decreased’, ‘LI-TW: had decreased’,
‘LW2-SW: decreased’, LW2-SW: had’, ‘RI-SW: expression’, RI-TW: expression and’,
RW2-SW: expression’, and ‘RW2-SW: and’. Using an automated method discussed below, we
developed a large gene mention corpus which covers plant related literature and annotated the
named entities as gene or non-gene. We collected all words and bigrams that appeared next to
the annotated named entities to form a feature set. To enhance effective learning, we removed
the common English words in the feature set using a stop word list, and selected only the fea-
tures with a frequency greater than 30. Finally, we got a feature set with 1739 features.

Propagating Contexts

Despite developing a large training corpus for training the SVM-based disambiguation model,
it still may suffer from low recall. Many occurrences of gene names might not have words
immediately to the left or right for us to assign a gene sense with confidence. Consider the
occurrence of “rab5” (or “rab7”) in Fig 4. Clearly words nearby are not sufficient to clearly
assign a gene sense (or a non-gene sense). However, if there is another occurrence of “rab5” (or
“rab7) in the same abstract, which had a clear-cut evidence for the disambiguating model to
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PMID - 2115402

TI- Localization oflow molecular weight GTP binding proteins to exocytic and endocytic compartments.

AB - A set of 1| clones encoding putative GTP binding proteins highly homologous to the yeast YPT1U/SECSY gene
products have been isolated fom an MDCE cell cDNA libmary.

Welocalized three of the corresponding proteins in manmmalian cells by using affinity-punfied antibodies in

immunofluorescence and immunoelectron microscopy studies.

One, the MD CE homolog ofrab?, is associated with a structure having the characteristics of an intenmediate

compartment between the endoplasmic reticulum and the Golg apparatus.

The second, rab?, 15 located at the cytoplasmic surface of the plasma membrane and on early endosomes, while the third,

rab7, is found onlate endosomes.

These findings provide evidence that members of the YPT1I/SECH subfamily of G TP binding proteins are localized to

specific exocytic and endocytic subcompartments in mammalian cells.
Fig 4. Example for ‘uni-pivot gene sense assumption’.

doi:10.1371/journal.pone.0135305.g004

assign a gene sense, then we assume that both the occurrences will have the gene sense. This
assumption, that multiples occurrences of the same candidate name within the same abstract
have the same sense, has a long history in natural language processing and can be called as the
single sense per name per document rule. But, in this abstract (Fig 4) there is no other occur-
rence of “rab5” (or “rab7”) to apply this rule. However, the notion of pivot allows us to general-
ize the rule to single sense per pivot per document rule. By this rule, the occurrence of rab2
(which shares pivot with rab5 and rab7), which can be clearly disambiguated as having a gene
sense by the SVM model on the basis of its context to the left, will allow occurrences of rab5
and rab7 also to have a gene sense. Note that the single sense per pivot per document rule sub-
sumes the single sense per name per document rule for propagating context.

Finally, we found that the single sense per pivot per document could improve gene mention
detection even when the gene names were not present in the dictionary. Of course, since the
additional names are not in the dictionary, they cannot be normalized and so only the gene
mention detection part is improved.

In spite of our efforts to increase the application of context based disambiguation by such
propagation, there could still be instances of candidates which do not have context features to
assist the disambiguation. Based on our experience of analyzing a significant number of Med-
line abstracts, those candidates should be assigned a non-gene sense.

Species Detection and Assignment

A gene name matched in text can be associated in the dictionary with several UniProt records
corresponding to different species. So the next task we considered was the assignment of a spe-
cies to a matched instance based on the text around it. This involved using a recognizer of spe-
cies mentions in text and connecting each gene mention with the species mentions that were
detected in the document.
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SR4GN is a well-known recognizer of species names in text that assigns species to gene
mentions and has been adopted by other gene normalization tools such as GenNorm. SR4GN
uses a species name dictionary for recognizing species and uses a few rules to assign species to
gene mentions. However, we found we could not use it for our purpose. First, while it uses pre-
fixes found in gene/protein names to assign species, the prefixes are limited to those of a hand-
tul of species that did not include the range of plant species of interest to us. Second, SR4GN
employs additional heuristics such as the presence of words in the document like “cohort” or
“ferment” to assign species when none are detected in the document. Again these heuristics do
not appear to extend to plant species. Finally, SR4GN always tries to assign some specific spe-
cies to every gene mention, whereas our analysis of plant literature suggested that there were
several cases where the gene mentioned did not correspond to a specific species but rather had
a more generic usage (i.e., species independent). Thus, we concluded that we needed to develop
a method to detect and assign species to gene mentions that extends the rules developed for
SR4GN.

The detection of species is handled by two components. The first component performs a
dictionary matching, using a species dictionary built from NCBI Taxonomy. Because authors
often abbreviate the species name by using the initial letter for the genus (e.g. A for Arabidop-
sis) followed by a period and then the species name (thaliana). Accordingly, the dictionary was
extended by adding these type of names. e.g., new name ‘A. thaliana’ was generated from ‘Ara-
bidopsis thaliana’. The second component identifies prefixes in gene and protein names that
conform to plant species prefix conventions (same conventions as shown in Table 2), as these
could indicate the presence of a species. e.g., ‘At’ for ‘Arabidopsis thaliana’, Zm’ for Zea mays’,
‘Os’ for ‘Oryza sativa’.

The gene mentions are associated with the species based on the following rules. Note that
the rules are ordered based on our confidence in their precision. This ordering is used to deter-
mine which rule should be used in case more than one of them applies. If a species is assigned
for a particular mention based on some rule numbered x, then no other rule lower in the order-
ing (i.e., numbered greater than x) can over-ride that assignment.

1. Prefix. If a gene mention has a species prefix, we assign the species based on the prefix. e.g.,
‘AtAuroral’ would be assigned the species ‘Arabidopsis thaliana’. This rule is similar to Rule
Rlain SR4GN.

2. Same noun phrase. If a gene mention and species are in the same noun phrase, we assign
that species to the gene mention. e.g., ‘Arabidopsis TOC1/PRR1 gene’ would be assigned the
species ‘Arabidopsis thaliana’. There is no direct analog in SR4GN, but this rule is inspired
by Rule R1b.

This rule also considers the case where the species appears in a prepositional phrase that is
attached to the noun phrase containing the name (as in ‘SEX4 from Arabidopsis’). This is
an improvement over SR4GN Rule R1b in cases where multiple species and multiple genes
are mentioned in the same sentence. For example, in PMID 23879260, the sentence "The
predicted protein for CpPG1 has 416 amino acids, with a high homology to other pollen
PGs, such as P22 from Oenothera organensis (76%) and PGA3 from Arabidopsis thaliana
(73%)'. Using Rule R1b, SR4GN would assign PGA3 with species Oenothera organensis
whereas our rule will correctly associate PGA3 with Arabidopsis thaliana.

3. Species-free. If a gene mention is in the ith sentence, and the first species mentioned in the
article is in jth sentence and i< j, then we assume that the gene mention doesn’t belong to
any particular species. SR4GN does not have a rule corresponding to this; SR4GN will
always assign the gene mention with a species as long as any species is found in the article.
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4. Single species. If only one species is mentioned in the abstract, then all the gene mentions in
this abstract will be connected with this species. This is similar to SR4GN Rule Rlc.

5. Species consistency. If a gene mention with name ‘NAMEL’ has been assigned a species in
one of the previous sentences, then this occurrence of NAMEL will be assigned the same
species used for the closest occurrence. This rule captures the intuition that authors typically
do not switch species without some explicit notification. There is no corresponding rule in
SR4GN.

6. Species in the same sentence. A gene mention is assigned to a species that occurs in the
same sentence. If there are multiple species in the same sentence, pick the one to the left.
This is the same as SR4GN Rule R1b.

7. Species in the previous sentence. A gene mention is assigned to a species that occurs in the
previous sentence. If there are multiple species in the previous sentence, then this rule is not
applied. There is no corresponding rule in SR4GN.

8. Major species. Species in the title and in the MeSH terms are considered to be the major spe-
cies of the article. A gene mention is assigned to the major species. If there is more than one
major species, then this rule is not applied. This is similar to the idea of focus species in
SR4GN, except that we have introduced several other rules, which have no corresponding
rules in SR4GN, prior to the application of this rule.

Intra-species normalization

Once we have detected gene name mentions and we have assigned a species to each gene men-
tion, we then use the dictionary to obtain a list of candidate identifiers (UniProt ACs) for that
name and species pair. To complete the gene normalization task, we need to choose one of the
candidate identifiers. Like other gene normalization tools, we use the context of the gene men-
tion and information about the identifiers obtained from gene/protein resources to make the
choice. Some gene normalization system, e.g., GNAT, use additional information, such as the
GO terms associated with the identifier for disambiguation. Like GenNorm, pGenN only con-
siders the names associated with the identifiers from the dictionary. However, unlike Gen-
Norm, pGenN uses text close to the gene mention for disambiguation, whereas GenNorm only
use the names detected in text for disambiguation.

As for previous steps, we have a number of rules that are applied hierarchically, where the
order of the rules is based on our confidence in them.

The first type of context we considered is in the form of the acronym, appositive, or relative
clause attached to the gene mention, or words appearing in the same noun phrase containing
the gene mention. Again as noted before, this type of context is typically used to introduce
descriptions relevant to the entity. Hence we believe words in this type of context are the stron-
gest clues for disambiguation. Words in this type of context are compared to the words associ-
ated with each candidate identifier in the dictionary, and the identifier with the most word
matches is chosen as the normalization result. However, the context discussed above might not
always exist for all gene mentions. If we cannot disambiguate (i.e., identify a single identifier)
based on this type of context, we will consider words in the same sentence as context.

So far, we have described the method as though we normalize each gene mention indepen-
dently of all others. This is not strictly true. If a name appears multiple times in a document
and the same species is assigned to these gene mentions, we wish to assign the same identifier
to all of them. Also, since we used only immediate context to match with information of
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candidate IDs, many mentions might not occur with disambiguating words in such context. To
ensure that all the occurrences of the same name were assigned with the same ID, and to
address the potential low recall, we treated all occurrences of the same gene as a single instance
where we combined the context for all the occurrences of the same name.

We generalized this idea of sharing context information even if different occurrences of the
same name had different species assigned to them. However, in this case, although the context
was shared, different identifiers would be assigned, because the genes belong to different species.

Finally, we generalized this context sharing strategy to names with the same pivot: all the
names with the same pivot would share the same context, because we believe the same abbrevi-
ation in one article will have the same expansion. We have never observed any case where one
abbreviation had multiple expansions in one article. However, to make our rule more robust, if
we detected different expansions for the same abbreviation, then this context sharing strategy
would not be used.

Developing annotated corpus for GM task

Recall that we needed an annotated gene mention corpus for machine learning to determine if
the candidate mention is an actual gene mention or represents some other type of entity. The
current existing corpora either tend to be organism specific, domain specific, or not large
enough to cover a wide range of immediate gene contexts. e.g., the GENIA corpus [35] is
focused on a subset of human hematology, the PENNBIOIE [36] corpus is on oncology, the
BioCreative 1 GM corpus [37] contains only 15,000 sentences, the BioCreative 2 GM corpus
[38] contains only 20,000 sentences (15,000 of which were used previously in BioCreative 1). A
machine learning-based disambiguation model trained on those corpora using only immediate
contexts as features is quite likely to suffer from low recall. A similar observation has been
made by Wermter et al. [11]. Also, since our task is focused on plant species, a gene mention
training corpus that includes text from the plant literature will be the best choice for our
system.

To develop a new large gene mention corpus that covers substantial plant literature would
be difficult if it relies solely on expert annotation. Hence we developed an automatic method to
create annotated gene mention corpora. Since our method only requires raw text as input, we
can efficiently create very large annotated data sets. In addition, our method can be applied to
other settings beyond our particular use here. However, we need to take care to ensure that
there is little noise in the data.

We retrieved all of the Medline abstracts containing one or more gene short names that
appear on a list of ~50,000 gene short names from our plant dictionary. Next, we used an algo-
rithm modified from the Stanford acronym detector to detect the full name-short name pairs
in these abstracts and picked the ones which have short names appeared in the dictionary.
Note that the appearance of these names in the abstracts does not mean that they refer to genes
necessarily. Our task was to identify which amongst those pairs represented genes and which
did not. For this purpose, we considered the extracted full name and assigned it a gene sense
only if the full name appeared in the dictionary with the short name or it ended with an f-term.
On the other hand, if the full name does not end with an f-term nor has any word in common
with corresponding full names in the dictionary, then a non-gene sense was assigned. Other-
wise, it was left unannotated. As an example, the pair, “ataxia telangiectasia mutated (ATM)”,
was left unannotated. The full name does not meet the requirement for gene sense assignment.
However since there is a partial match with a full name (which includes ataxia and telangiecta-
sia) corresponding to “ATM” in the dictionary, it was not assigned non-gene sense either.
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These simple rules allowed us to identify instances of names from a gene dictionary that had
gene or non-gene sense with high degree of confidence. We manually analyzed a sample of 40
full name-short name pairs where the short name appears in in our plant dictionary and found
the rule marked 36 as having gene sense and remaining four were left unannotated. All 36
names marked with gene sense were indeed gene mentions. It turns out that even the four
unannotated instances were gene mentions.

Once the mentions were assigned a gene or non-gene sense, all occurrences of the same
name within the abstract were also tagged. Finally, all of the positive full names and short
names were replaced with the string “NAMEP?”, and all the negative full names and short
names were replaced with “NAMEN?”. By applying this method, we obtained a large annotated
corpus and used the first 200,000 abstracts with 157,336 gene positive instances and 120,308
gene negative instances as our gene mention corpus.

Although this method might not identify all the gene mentions in text, our key hypothesis is
that we can still automatically obtain a sufficiently large training corpus that covers a wide vari-
ety of contexts by applying this rule to a very large number of abstracts. Also, since all name
mentions are not annotated with gene or non-gene sense, it cannot be used for evaluation of
gene mention detection. Additionally, this corpus can only be used for learning the context of
gene and non-gene mentions, but not words appearing within the names since the mentions
are replaced by strings “NAMEP” and “NAMEN”.

Evaluation Method

Since we are not aware of any existing corpus annotated for plant gene normalization, we
developed our evaluation corpus in-house. The abstracts used in this set were identified by
searching Pubmed using the query: ("Proteins"[MeSH] OR "Genes"[MeSH]) AND "Viridiplan-
tae"[MeSH]. One hundred and four abstracts were selected from the retrieved abstracts, with a
selection process that attempted to ensure coverage of a range of different gene names, different
species, and different publication years. The annotation was completed by one of the co-
authors who is a senior bio-curator. This annotation was done independently of the system
development and then the system output was compared against the manual annotation for
obtaining the evaluation results. Altogether 195 instances of UniProt accession numbers-
PMID pairs were annotated from the 104 abstracts. The evaluation set is publicly available at
proteininformationresource.org/iprolink.

As noted earlier, most of the existing gene normalization tools were designed for non-plant
species and hence are not appropriate for comparison. Some of these tools are also not publicly
accessible. Thus we were able to compare with GenNorm only. Recall GenNorm is the gene
normalization component used within PubTator, which is applied on all of Medline, and hence
not restricted by species. GenNorm is available through PubTator and obtained the best results
in the BioCreative III gene normalization task. It uses SR4GN to assign species to gene men-
tions in text. Again, the species are not limited, and include plant species. We believe that the
comparison must be viewed with two points in consideration. As noted before, some of the
rules of SR4GN are specific for human and a few other non-plant species. Second the quality of
normalization results will depend on the gene name dictionary used. GenNorm uses Entrez-
Gene to create its dictionary and our cursory observations lead us to believe that UniProt has
more comprehensive coverage of plant species than EntrezGene.

The system performance was computed using the standard measures of precision, recall
and F-measure. Gene/protein mentions linked to accession numbers of non-plant genes were
not considered. pGenN may return multiple UniProt ACs for one gene mention, due to: (1).
the UniProt entries are almost identical except for the subspecies designation. e.g., Oryza sativa
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subsp. indica (Rice), or Oryza sativa subsp. japonica (Rice). (2). the UniProt entries are redun-
dant, corresponding to reviewed and unreviewed entries for the same entity. Errors that origi-
nated from either of these two reasons were ignored. GenNorm normalizes genes to
EntrezGene identifiers. To compare the performance with GenNorm, we used the ID mapping
tool provided by UniProt to convert these identifiers to UniProt ACs.

Medline abstracts processing and interactive web Interface

To verify the scalability of pGenN and to develop a large body of pGenN results that we could
make accessible to the community, we processed all plant-related abstracts that we identified in
Medline using the broad query, ‘plant[MeSH] AND hasabstract[Text]’. We used ‘hasabstract
[Text] to filter out the PMIDs which only have titles. The 444,211 abstracts which were returned
by PubMed for this query were processed by pGenN and the results were stored in a local data-
base which we call pGenN_DB. We intend to update pGenN monthly in sync with PubMed.

A web interface (proteininformationresource.org/pgenn) has been developed to enable
community access to the plant gene normalization results in pGenN_DB. Fig 5 shows the
homepage of the pGenN interface where users can search for plant gene normalization results.
Users can query using a list of PMIDs, UniProt ACs, or any keyword(s) in a PubMed-style
query (boolean operators 'AND’, 'OR’, NOT" are allowed). For example, a researcher interested
in the topic of plant anthers can use a query with “anther”. The query is used to obtain a list of

Contact Help User ~

pGenN is a system specifically designed for plant gene
normalization. This pGenN website enables user search gene
normalization information by keywords, a list of PMIDs, or UniProt
IDs in the database. The results (Gene names and corresponding
UniProt IDs) are displayed in sortable tables with text evidence and
downloadable for further research.

Search:

You can search for a keyword, e.g., "AtWBC11", "anther", or multiple keywords connected by "OR" operator. The query will be sent to PubMed to obtain relevant PMIDs so
that PubMed-style query can be used here. Besides, you can search for a list of PMIDs separated by comma, space or newlines, e.g., 19825601, 23271982, 12481088". You
can also search for any particular UniProt ID, e.g., "Q8RXNO0"

« ® By keywords

By PMIDs
By UniProt ID

Submit

Fig 5. Screenshot of pGenN Interface.
doi:10.1371/journal.pone.0135305.g005
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doi:10.1371/journal.pone.0135305.9006

PMIDs from PubMed and the results from the subset of abstracts in pGenN_DB are then
retrieved. Because the results in pGenN_DB are preprocessed, the response is fast.

Fig 6 shows the first page (of over 50 pages) of results obtained using the query “anther”.
Results are displayed in a table with columns for PMID, gene name, UniProt AC and Entrez
gene ID. One gene name with multiple mentions within a single PMID will only be shown
once in the table. Because users may be more interested in the most recent papers, or in some
particular genes, we added a sort function, that will sort results by PMID, by Gene name, by
UniProt AC, or by Entrez gene ID.

Users can view the evidence tagged abstracts for each gene normalization result by clicking
the Abstract button in any table row. On the left half of the text evidence page (Fig 7), every
gene mention, as well as its corresponding UniProt AC and Entrez gene ID are shown. The
UniProt ACs and Entrez gene IDs are hyperlinked to their original entries in UniProt and
EntrezGene. As also shown in Fig 7, in the right side of the text evidence page, the Medline
abstract is shown with all gene mentions highlighted in blue, species highlighted in green, and
query keywords (if searched by keyword) highlighted in red.
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Entrez gene ID PMID 15821864
r— DNA binding and pairing activity of OsDmc1 , a recombinase from rice . A cloned cDNA
4349763 corresponding to OsDMC1 from rice anther tissue was expressed in Escherichia coli .

The OsDmc1 protein was largely present in the inclusion bodies of the cell lysatE . , which
was solubilized by 8.0 M urea containing buffeR . , purified to homogeneity by Ni - CAM
agarose column chromatography , followed by renaturation to its native state through
stepwise dialysis against reduced concentrations of urea . The purified protein cross -
reacted with anti - yeast Dmc1 antibodies . The binding efficiency observed with circular
single - stranded DNA ( ssDNA ) was similar to that with circular double - stranded DNA (
dsDNA ) .The binding to either DNA showed no ATP dependenck . , but required 5-10 mM
Mg2 + in the presence of ATP . Even though the protein binding to dsDNA was as efficient
as it was to ssDNA , the former induced no DNA dependent ATPasE . , whereas the
binding to ssDNA stimulated a significant level of DNA dependent ATPase activity .
OsDmc1 - ssDNA complex , with its ATPase proficiency , also mediated renaturation of
homologous complementary strands as well as assimilation of single strands into
homologous supercoiled duplexes leading to D - loop formation . The D - loop formation
was lowered by excess of OsDmc1 protein . This D - loop formation activity was promoted
by non - hydrolyzable ATP analog , AMP - PNP and was not observed in absence of ATP
or presence of ADP / ATP - gamma-S . These properties reflected the classical hallmarks
of a recombinase and represented the first biochemical characterization of a plant Dmc1
protein .

4349763

4349763

4349763

4349763

Fig 7. Screenshot of pGenN text evidence page.

doi:10.1371/journal.pone.0135305.9007

Use Case Study: Gene Normalization of Large-Scale Text-Mining
Results

Text mining tools that extract gene/protein-based information from text can be run on a large
scale and the information gathered can be stored formats amenable to searching or incorpo-
ration into curation pipelines. However, it is even more useful if the gene/proteins can be nor-
malized to unique database (e.g., UniProt) identifiers. As a use case, we applied pGenN to
plant-related phosphorylation information obtained through large-scale text-mining using
RLIMS-P. RLIMS-P, which extracts information about kinase, substrate, and site from text, has
been run on the entire set of Medline abstracts. For determining the effectiveness of plant gene
normalization in conjunction with this tool, we selected a set of 87 abstracts using the query
“brassinosteroid signaling” in which RLIMS-P extracted at least one kinase or substrate. Brassi-
nosteroids are a class of plant hormones that regulate gene expression via a signaling cascade
that involves multiple phosphorylation events [39]. The quality of gene normalization by pGenN
was compared with a manual annotation of kinase and substrate occurrences in these abstracts.

Results and Discussion
Evaluation results on in-house corpus

Our evaluation set contains 104 abstracts that contain 195 instances of UniProt accession num-
ber-PMID pairs. Currently, pGenN does not process information in full-text articles, so our
evaluation was limited to abstracts only. Table 6 shows the precision, recall and F-measure for
both pGenN and GenNorm.

Table 6. Performance of pGenN & GenNorm on in-house plant corpus.

Precision Recall F-value
pGenN 90.9% 87.2% 88.9%
GenNorm 57.6% 39.0% 46.5%

doi:10.1371/journal.pone.0135305.t006
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Table 6 shows that pGenN achieves high precision and recall. We analyzed the false positive
and false negatives of pGenN to learn how different components of pGenN contributed to the
errors.

The within-species normalization component worked surprisingly well, considering we use
limited features (based only on names in the dictionary) for disambiguation. This component
contributed to error in only one instance, resulting in both a FP and a FN. Many of the errors
were due to incorrect assignment of species. This situation is consistent with an observation in
Wei et al. [16] that accuracy of species assignment is critical for overall performance on the
gene normalization task. When the species is incorrectly assigned, clearly a wrong accession
number will be assigned. This not only results in false positives but false negatives as well. An
example of an incorrect assignment of species comes from PMID 11197326: “OsMADS14 and
-15 are highly homologous to the maize MADS box gene ZAP1 which is an orthologue of the
floral homeotic gene APETALA1 (AP1).” Based on the same sentence rule, the closest species
mention “maize” is assigned to “AP1” incorrectly. Other species assignment errors were also
similar and involved mentions of homologs. The second source of errors is due to the dictio-
nary based gene mention detection. For example, in PMID 16455357, the mention “Ljcen1”
did not match with the correct dictionary entry because we failed to detect the species prefix
“Lj”, which is short for the species “Lotus japonicus”. This was due to the fact that the gene
name cenl did not start with an upper-case letter as expected based on other plant species
naming conventions. Some of the errors were due to failure to capture all variations of a gene
name in the dictionary. In PMID 17114582, the text includes a mention of "MtHAP2-1". How-
ever, the name in UniProt is "HAP2.1" (UniProt AC A4ZVU9), and we had not accounted for
this variation.

Statistics of Large-Scale Processing

Table 7 shows the statistics of the processing of 444,211 plant-related Medline abstracts that
were obtained by the PubMed query “plants[MeSH] AND hasabstract[Text]”. In these
abstracts, 313,334 gene mentions from 58,301 abstracts were normalized. These corresponded
to more than 27,000 unique UniProt accessions and a little over 112,000 pairs of abstracts and
UniProt accessions.

Since the 444,211 abstracts resulted from a search for plant-related articles in general, we
wanted to see if we would obtain a larger proportion of abstracts that are pGenN positive (i.e.,
contain at least one normalized gene mention) if we modified the query to a more gene-specific
query ‘plants[MeSH] AND (gene[MeSH] OR protein[MeSH]) NOT animal[MeSH] AND
hasabstract[Text]’. NOT animal[MeSH]’ was included to rule out articles about pharmaceuti-
cal use of plant products for animal disease. This query resulted in 97,611 abstracts. Table 8
shows that in this subset, nearly 37% of the abstracts were pGenN positive. To get a better
sense of pGenN’s ability to identify relevant abstracts, we manually analyzed 100 PMIDs from
the pGenN negative papers (the remaining 65%). We found that only 7 of these 100 abstracts
contained gene mentions that can be normalized to UniProt ACs (false negatives). In five

Table 7. Statistics of pGenN large-scale processing of plant Medline abstracts.

# of abstracts processed 444 211
# of abstracts which are pGenN positive 58,301
# of gene mentions normalized 313,334
# of unique UniProt ACs obtained 27,496
# of PMID-UniProt AC pairs obtained 112,053

doi:10.1371/journal.pone.0135305.t007
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Table 8. Statistics of pGenN processing of gene/protein-related subset of plant Medline abstracts.

# of abstracts processed 97,611
# of abstracts which are pGenN positive 36,261
# of gene mentions normalized 224,273
# of unique UniProt ACs obtained 20,986
# of PMID—-UniProt AC pairs obtained 74,069

doi:10.1371/journal.pone.0135305.t008

cases, pGenN properly detected the gene mention but not the species and in the remaining two
cases, the gene mention was not detected. Our analysis of the remaining 93 abstracts showed
that most of the pGenN negative abstracts did not have any gene name mentioned in the
abstract although some had indications that the full-length articles might contain some gene
mentions (e.g., PMID 24097262 talks about a family of transcription factors and PMID
21653281 discusses gene expression patterns during seed coat development in Arabidopsis).
There are three abstracts that included plant gene mentions that could not be resolved to any
UniProt plant AC since UniProt did not contain entries for those genes (although it included
entries in other species for the same name).

Use Case Study: Normalization of Genes/Proteins Related to
Phosphorylation in the Brassinosteroid Signaling Pathway

The case study involved a query “brassinosteroid signaling” and the use of those abstracts for
which RLIMS-P, an existing phosphorylation information extraction tool, extracted at least
one kinase or substrate. These 87 abstracts were manually annotated for gene normalization,
yielding 153 instances of UniProt accession number-PMID pairs, where the accession numbers
corresponded to a kinase or a substrate. Table 9 shows pGenN'’s performance against this gold
standard as well as comparison with GenNorm.

These results are better for both systems than those obtained for the evaluation data set. Per-
haps the biased nature of the abstracts and the limited number of proteins may explain the bet-
ter performance on this set.

The results suggest that it would be fruitful to incorporate pGenN for normalizing RLIMS-P
extraction results. We aim to now use pGenN in normalizing kinase and substrate mentions in
all plant-related abstracts from which RLIMS-P has extracted a mention of phosphorylation
events with a kinase and/or phosphorylated substrate. The results of the entire plant-based
text-mined phosphorylation results will be accessible via iPTMNet (http://
proteininformationresource.org/iPTMnet/).

Conclusion

We have presented here a gene normalization system, pGenN, which is designed to normalize
plant genes. The development of pGenN involved design of new methods in all phases: dictio-
nary-based gene mention detection, species assignment and normalization. In developing
pGenN, we have introduced a new concept of pivot that has been used in all phases of the

Table 9. Performance of pGenN & GenNorm on use case data set.

Precision Recall F-value
pGenN 97.9% 93.5% 95.6%
GenNorm 93.5% 66.0% 77.4%

doi:10.1371/journal.pone.0135305.t009
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normalization and helps improve the recall. We have also developed a new method for generat-
ing a large training set for the gene mention task that requires minimal manual intervention.
We believe this method can be used generally to learn context for gene mention detection in
specific domains. We conducted an evaluation of pGenN on a plant-centric set of abstracts and
the results show that pGenN can be used to meet the need for a plant gene normalization sys-
tem, achieving an F-value of 88.9% on our in-house annotated plant gene normalization cor-
pus. Based on the case study we conducted, we believe that pGenN can be integrated into text
mining pipelines and we intend to use pGenN as part of iPTMNet, a resource for protein post-
translational modification that draws, in part, on information gathered by text mining tools.
Additionally, pGenN has been used to process a comprehensive set of over 440,000 plant
related Medline abstracts. The pre-processed results have been stored in our local database,
pGenN_DB, and. can be searched, sorted and downloaded via a web interface, found at http://
proteininformationresource.org/iPTMnet/.

In the future, we plan to expand our system to cover non-plant species. While many meth-
ods that have been introduced here should be directly applicable to other species, we need to
investigate how well our algorithm for species assignment to gene mentions, which was devel-
oped based on analysis of plant-related literature, generalizes to non-plant species. Our aim is
to use pGenN in many text mining applications and steps are already underway to integrate it
into iPTMNet. We also plan to enhance our automatic training corpus creation approach for
detecting other biomedical named entities. Finally, we would like to investigate the usage of
pivot based dictionary matching to enhance two aspects of curation of the Protein Ontology
(PRO) [40]: (1) Detecting gene family names to enhance coverage of protein family classes and
(2) Normalizing family protein names to PRO IDs when terms already exist in the ontology.

Supporting Information

S1 File. Plant gene normalization evaluation corpus
(Z1P)
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