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Evidence for 4e charge of Cooper quartets in a
biased multi-terminal graphene-based Josephson
junction
Ko-Fan Huang1,6, Yuval Ronen 1,6, Régis Mélin2, Denis Feinberg2, Kenji Watanabe 3, Takashi Taniguchi 4 &

Philip Kim 1,5✉

In a Josephson junction (JJ) at zero bias, Cooper pairs are transported between two super-

conducting contacts via the Andreev bound states (ABSs) formed in the Josephson channel.

Extending JJs to multiple superconducting contacts, the ABSs in the Josephson channel can

coherently hybridize Cooper pairs among different superconducting electrodes. Biasing three-

terminal JJs with antisymmetric voltages, for example, results in a direct current (DC) of

Cooper quartet (CQ), which involves a four-fermion entanglement. Here, we report half a flux

periodicity in the interference of CQ formed in graphene based multi-terminal (MT) JJs with a

magnetic flux loop. We observe that the quartet differential conductance associated with

supercurrent exhibits magneto-oscillations associated with a charge of 4e, thereby presenting

evidence for interference between different CQ processes. The CQ critical current shows

non-monotonic bias dependent behavior, which can be modeled by transitions between

Floquet-ABSs. Our experimental observation for voltage-tunable non-equilibrium CQ-ABS in

flux-loop-JJs significantly extends our understanding of MT-JJs, enabling future design of

topologically unique ABS spectrum.
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At a normal (N)-superconductor (S) boundary, below the
superconducting gap Δ, current is induced via Andreev
reflection (AR)1, i.e., an electron impinging on S binds to

another electron near the interface, transmitting a Cooper pair
into the S region while a hole is reflected. By constructing two
such boundaries one creates an SNS Josephson junction (JJ),
which can be viewed as an electronic analog of the optical Fabry-
Perot interferometer: Each boundary acts as an AR mirror and
resonances are formed in the junction. In this case, these reso-
nances coherently superimpose electron and hole waves, forming
the so-called Andreev bound states (ABSs)2–4. Each AR picks up
the phase of the corresponding superconductor; therefore, the
ABS wave-functions and energies depend on the phase difference
φ between the two superconductors. Each populated ABS α
contributes a current, derived from its ABS energy EαðφÞ with
respect to φ, to the total Josephson current. Recently, much
attention has been paid both in theoretical predictions5–7 and in
experiments8–12 to multi-terminal Josephson junctions (MT-JJs),
where a single metallic region bridges three or more super-
conductors. With ARs taking place at each SN interface, the SNS
physics is generalized in several aspects. First, the equilibrium
ABS spectrum of a multi-terminal JJ depends on multiple phase
differences φi, where φi is the phase of ith S electrodes connected
to the junction13,14. The ABS energy appears as a contour in a
multi-dimensional voltage space11,12. The high dimension phase
space spanned by φi’s offers the prospect of engineering artificial
high-dimensional crystal band structures with topological
properties15–19. Second, multi-dimensional current-voltage
characteristics may present a complex subgap structure due to
local (between two terminals) or non-local (among multiple
terminals) multiple Andreev reflections (MARs)9–12,20. Third,
MT-JJs allow DC transport of multiple entangled Cooper pairs
for commensurate combinations of applied voltages. For instance,
in a three-terminal junction with two leads biased with anti-
symmetric bias scheme at (V, −V), a Cooper pair from the
grounded terminal is split into two quasiparticles via crossed
AR21–23. The two quasiparticles propagate toward two distinct
terminals and then recombine with the ones originated from the
other pair splitting, forming two entangled Cooper pairs—the
Cooper quartet (CQ) within the junction6,7 (see Fig. 1a). We note
that the crossed AR is a local AR at one of the SC electrodes as
opposed to CAR across a SC metal.

Since a CQ minimally requires four coherent ARs, its under-
lying mechanism is distinct from a simple extrinsic locking
between two separated JJs biased at opposite voltages. In the
externally coupled JJs with the antisymmetric bias condition, this
can produce an alternating current (AC) Josephson oscillations
with the same frequency. Synchronization of these oscillations
can occur by photon exchange between the JJs via a classical
impedance24. This view of mode-locked JJs, however, only con-
siders external coupling between local AR processes. For MT-JJs
with low energy ABS in the weak link, new possibility arises for
an intrinsic synchronization of asymmetrically biased JJs via non-
local AR processes6,7, leading to the entangled CQ spreading over
multiple JJs.

MT-JJs with conducting weak links have been fabricated in 2D
metallic8 and 1D semiconducting9 channels as well as in
graphene10. While non-local supercurrent was probed in MT-JJs
by measuring cross-correlated current noise9, a direct experi-
mental observation of the presence of phase coherent entangled
CQs has yet to be realized. In this work, we employ a magnetic
flux loop coupled to the MT-JJs to modulate the junction prop-
erties. Using both bias voltage and threaded magnetic flux, we
control the CQ dynamics, including coherent CQ-ABS and
interference between different CQ processes. As the bias increa-
ses, we find non-monotonic behavior of the CQ critical current as

a function of bias, which can be interpreted within a simplified
model by transitions between Floquet CQ-ABSs generated by
intrinsic synchronizing of the entangled CQs25–27.

Results and discussions
Characterization of MT-JJ in the Josephson regime. Along with
the ability of controlling the number of conducting channels, low
superconducting contact resistance and weak back-scattering28–30

make graphene an ideal choice for exploring MT-ABS physics.
Utilizing the tunability of graphene chemical potential, one can
modulate the coupling strength at each contact, thereby engi-
neering the ABS spectrum. Our graphene-based MT-JJs use Ti/Al
as the superconducting contacts, where Al is chosen owing to its
large superconducting coherence length (~1 μm). A three-
terminal JJ (four contacts including a superconducting loop) is
fabricated on the graphene-hBN-SiO2 structure as shown in
Fig. 1a (additional fabrication information can be found in the
“Method” section).

All measurements were performed at 300 mK. Before we
conduct the MT-JJ measurement, we first characterized our
device with a two-terminal measurement as the S-loop imple-
ments a superconducting quantum interference device (SQUID)
geometry. For this measurement, we applied a bias voltage V to
the loop via two series connected RC filters. The output current I
is measured at S2 while S1 is floating. Figure 1c shows an I-V
measurement curve of the junction. In the smaller bias regime,
supercurrent flows in the junction and the bias voltage drops are
only on the series connected resistors RRC (200Ω each) in the
filters. As the current exceeds the critical current Ic of the SQUID,
the slope of I-V curve changes suddenly at the corresponding
applied voltage Vc. Since the bias voltage is distributed among
two filter resistors and the normal junction resistance, the critical
current can be obtained from Ic ¼ Vc=2RRC . Upon applying the
magnetic field B, Ic is modulated and exhibits SQUID-like pattern
as a result of the two interfering superconducting paths in the
loop (blue and red dashed lines in Fig. 1b). Figure 1d shows the
differential conductance (G ¼ dI=dV) as a function of bias
voltage and magnetic field. The higher conductance area near the
zero-bias regime (central part) is the supercurrent region and its
edges mark the value of Ic. As the magnetic field is swept, Ic is
modulated with a periodicity of δB ¼ 145 μT, corresponding to
the unit flux quantum Φ0 ¼ h=2e for an enclosed area of
A ¼ 14:2 μm2, matching our device loop size (including the area
increase due to London penetration depth). An additional lower
frequency (δBF ¼ 3 mT) originated from the Fraunhofer oscilla-
tions is observed, corresponding to an area of 0.69 μm2, which
agrees with the junction dimensions. We find that the strength of
the critical current can also be tuned according to the graphene
carrier density via a back-gate voltage Vbg . As shown in Fig. 1e, Ic
decreases monotonically as Vbg approaches the charge neutrality
point of graphene located at Vbg � �32 V. Reduction of Ic close
to the Dirac point is expected due to the decreasing number of
ABS carrying current in the graphene channels31.

Cooper quartet. With reconfiguration of the external circuitry,
our device can serve as a MT-JJ where the common N-region
graphene channel is proximitized. MT-JJ with magnetic flux loops
was studied theoretically and experimentally in bi-SQUID
devices32–34, where the equilibrium (i.e., no potential difference
between the junctions) ABS spectrum was investigated. Our four-
contact device geometry with gate-tunable graphene weak link
allows us to study biased MT-JJs in the non-equilibrium regime,
where the non-local CQ formation can be investigated35. More-
over, by threading a flux through the device loop we aim to
modulate the CQ-ABS spectrum. Figure 2a shows the
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measurement scheme adopted in this study for phase sensitive
quartet detection. We apply DC bias voltages V1 and V2 to S1 and
S2, respectively, and a small AC bias voltage δV to the loop
electrodes S0a and S0b. At given bias voltages, we measure the AC
current contributions δI1 and δI2 flowing to S1 and S2, respec-
tively. Voltages V1 and V2 are applied to the total circuit
including RRC , which is about 100 times larger than the actual
voltage applied at the junction (see circuit in Fig. S1).

Figure 2b shows the differential conductance measured at S1
(G1 ¼ δI1=δV) as a function of the two DC bias voltages V1 and
V2 with Vbg ¼ 40 V. We identify four high conductance regions
(marked by four white dashed lines crossing at the origin), which
correspond to four different supercurrents. For instance, when S2
and S0 are equipotential along V2 = 0, a Josephson supercurrent
flows between these two contacts carried by a Cooper pair-ABS.
Subfigures (i), (ii) and (iii) illustrate these local supercurrents
between different pairs of S-contacts. The critical values of the
supercurrents can be extracted from the widths of the signals,
which are 0.47, 0.42, 0.38 μA, respectively. Similar data can be
obtained for differential conductance G2 ¼ δI2=δV measured at
S2 (see Section 2 in the Supplementary Information).

In addition to the two-terminal Josephson currents (i)–(iii), we
observe another supercurrent signal along the V1 ¼ �V2 line, as
shown in Fig. 2b. This line originates from the sharp black lines,
which define the 2-terminal critical current contour (CCC). To
ascertain the intrinsic nature of this signal and that it is due to
quartets, let us first remark that no clear MARs are observed in
this sample in the bias voltage range where we observe a quartet
signal. Indeed, given the low value of the junction voltage, those
MARs, whether local or non-local, would have very high orders.
In a non-ballistic graphene with interface scattering, such high-
order MARs are unlikely to take place, in contrast to clean InAs
2DEG samples such as those in ref. 11. In the work of ref. 11,
where the critical currents are high, the situation is very different:

several bright local MAR lines were observed, but no supercurrent
was observed along the V1 ¼ �V2 line beyond the CCC. This is
not surprising because quartets require four ARs, two local and
two non-local processes, and are easily masked by bright local
MARs. Notice that the same conditions (low voltage compared to
the gap, no MARs or very weak ones) were met in refs. 8,9 and a
quartet line was indeed observed.

We labeled the V1 ¼ �V2 line as (iv) Quartet and it signals the
existence of non-equilibrium CQ-ABSs within the junction,
despite the fact that all contacts are at different chemical
potentials. In this regime all 2e Josephson currents taking place
between each pair of terminals are AC. On the contrary, in this
configuration, as depicted in Fig. 1a, two Cooper pairs from two
S-contacts (S1 and S2) are entangled into a four-electron state via
two local ARs and two crossed ARs at the middle S-contact ðS0Þ to
form CQ-ABS5–9. The shape and width of the anomaly is very
similar to that of an ordinary Josephson current, and it allows to
define a “quartet critical current” Iqc. Remarkably, in this regime
where the local DC-Josephson currents disappear, the CQ-ABSs
form only when the junction is biased antisymmetrically and they
carry non-local DC supercurrent flowing among all terminals
simultaneously. The corresponding bias condition V1 þ V2 ¼ 0
satisfies the energy conservation for the CQ DC current, where
correlated Cooper pairs originating from S1 and S2 are
simultaneously transmitted into S0. Notice that this necessary
condition does not tell anything about the microscopic mechan-
ism for quartets. Our experiment precisely helps elucidating this
mechanism, by using the tool of a magnetic flux and by
investigating the periodicity and the voltage dependence of the
field modulation.

Two types of Cooper quartet processes. Similar quartet super-
current signatures were inferred previously in three-terminal JJ
made from diffusive metal8 and 1D nanowires9. The novelty in
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Fig. 1 Illustration of quartet formation and a single source voltage bias characterization of four-terminal Josephson junction including a loop.
a Schematic illustration of the three-terminal quartet process with the Andreev reflection picture. The middle superconductor S0 is grounded while the
other two superconductors are biased at +V, −V, respectively. The two entangled Cooper pairs (with red and blue electrons) are formed in S0 through two
local Andreev reflections and two crossed Andreev reflections. b False color scanning electron microscopy (SEM) image of the device with measurement
configurations. Graphene (purple) is top-contacted by Ti/Al superconducting electrodes (blue) and the electrode separations typically are 80–100 nm.
Here we split S0 in a into to two contacts S0a; S0b connected by a loop, c I� V curve of the device from the measurement configuration in b Ic is the critical
current and the corresponding voltage value is labeled as Vc (the blue dots). d Magnetic field dependence, dI/dV as a function of the bias voltage and
magnetic field. Bright region (high conductance) is the supercurrent and the edge corresponds to the value of critical current, which is modulated by the
magnetic field. The SQUID-like pattern indicates the interference between two supercurrent paths (red and blue dashed lines in b). The periodicity of the
fast oscillation (white dashed curve) corresponds to the loop area and the slow oscillation (yellow dashed curve) is the first lobe of Fraunhofer pattern.
e Gate dependence of the supercurrent, dI/dV as a function of the bias voltage and global back-gate voltage Vbg. The critical current reaches the minimum
as graphene is tuned to the Dirac point near Vbg = −32 V.
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our four-terminal JJ device is the study of the nontrivial bias
voltage dependence, and the presence of a magnetic flux loop,
enabling direct probing of the CQ-ABS coherence via the periodic
dependence of the critical current with magnetic field. The left
panels of Fig. 3a, b show the quartet differential conductance
measured at S2 (i.e., G2 along the quartet line V1 ¼ �V2) as a
function of the magnetic flux Φ ¼ B � A measured at different
back-gate voltage Vbg . The quartet differential conductance Gi¼1;2

probes the quartet critical current Iqc (see Section 5 in the Sup-
plementary Information). As a function of Φ, clear oscillations of
Gi are observed, demonstrating periodic modulation of IqcðΦÞ due
to phase coherence of the CQ-ABS. By taking the Fourier
transform of GðΦÞ (the right panel of Fig. 3a, b), we find two
major periodicities Φ0=2 and Φ0, where Φ0 ¼ h=2e. The relative
strength of the periodicities is tuned non-monotonically, since
Vbg modifies the number of channels in graphene as well as the
coupling of S-electrodes, which modifies the ABS spectrum.

In particular, at Vbg ¼ 25 V (Fig. 3a), Iqc exhibits a prominent
contribution from Φ0=2-periodicity, which, as we show below,
provides direct evidence for the charge 4e associated with the
CQ-ABS.

At first sight, the observation of the two periodicities tuned by
the gate voltage resembles the SQUID oscillation in Fig. 1d, where
the Φ0=2 oscillation would be viewed as the second harmonic of
the fundamental quantum flux periodicity. However, the
magneto-oscillation here in Fig. 3a, b cannot be related to usual
DC-SQUID harmonics since, as stressed above, we do not operate
in the Josephson regime but well beyond, i.e., in a range where
AC Cooper pair Josephson currents flow between each pair of
terminals, rather than DC ones. Only the junction between S0a
and S0b is equipotential but the current is not measured through
this junction. Furthermore, as opposed to the 2-terminal case, in a
MT-JJ, quasi-particle current and quartet DC current flow
simultaneously due to the inequivalent chemical potential of the
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SC contacts under the quartet condition. We delineate our signal
from the quasi-particle current contribution by measuring an
oscillatory differential conductance, following the Iqc Φð Þ variation
along the quartet bias condition (V1 ¼ �V2) on top of the quasi-
particle current background (see Fig. S3c).

The observed periodicities are therefore intrinsic to the quartet
process itself. In a perturbative model approach expanded toward
the finite bias regime (see Section 5 in the Supplementary
Information for detailed discussion), we consider the minimal
number of four ARs required for quartet processes, taking place
between four terminals instead of three. We find that the
modulation of the periodicity is indeed associated with
interference of three different contributions to the CQ-ABS:
two conventional quartets (3-terminal), denoted as Qa and Qb,
and a novel process, the split-quartet (specific to four terminals),
denoted as SQab. As shown in Fig. 3c, the two conventional
quartets, Qa and Qb, take place among S1, S2 and only one
electrode of the S-loop. In these processes, the entangled Cooper
pairs enter the loop either through S0a or S0b. Since every AR
picks up the phase of the superconducting contact, these
conventional quartet processes acquire phase factors eiðφ1þφ2Þ at
S0a and eiðφ1þφ2þ4πΦ=Φ0Þ at S0b, where φ1 (φ2) is the phase
difference between S1 (S2) and S0. Note that the factor 4 in the
exponent reflects that two Cooper pairs depart from the same
electrode of the grounded loop. If there were only this type of
3-terminal quartet process in the system, the phase factor at
Φ=Φ0 ¼ 0 would become equivalent to that at Φ=Φ0 ¼ 1=2,
leading to Φ0=2-periodicity in Iqc Φð Þ.

While the conventional quartet process Qa and Qb described
above is common with simple three-terminal JJs, the three-

terminal JJ with a loop enables a new type of quartet, the split-
quartet process SQab. As shown in Fig. 3d, two entangled Cooper
pairs are spatially separated into the two electrodes of the loop,
yielding a phase factor eiðφ1þφ2þ2πΦ=Φ0Þ. Interference of split and
conventional quartet processes leads to Φ0-periodicity. We
observe that the Fourier component associated with Φ periodicity
stays constant while the Φ/2 component varies sensitively with
the gate voltage. Although a full understanding of this
dependence is beyond the scope of this work, it indicates that
the strengths of the two different (i.e., conventional and split)
quartet processes are determined by the relative contact
couplings, which are tunable via gating (see Section 5 in the
Supplementary Information).

Bias voltage dependence of quartet supercurrent. Most
importantly, the quartet supercurrent can be modulated by the
quartet voltage Vq, which is the actual voltage applied on the
junction along the V1 ¼ �V2 line. The variation of GðΦ;VqÞ
with Φ or Vq is proportional to that of IqcðΦ;VqÞ along the
quartet line since it is an increasing function of the critical current
(see Section 5 in the Supplementary Information). Therefore, this
differential conductance measurement serves as a good indicator
to investigate the behavior of quartets as a function of magnetic
field and the quartet voltage Vq. Figure 4a shows a 2D color plot
of G1 (the quartet conductance measured at S1) as a function of
Vq and the normalized magnetic flux Φ=Φ0 at a fixed gate voltage
Vbg =−5 V, where the quartet current is strong (see Fig. Sup-
plementary 4 in the Supplementary Information). Both voltage
scales (at the junction and at the circuit resistance) are presented,

Fig. 3 Different types of quartet process. a Left panel shows the quartet differential conductance G2 (= δI2=δV) measured at S2 as a function of the flux
Φ ¼ B � A=Φ0, where Vbg= 25 V. In the right panel, discrete Fourier transform (DFT) analysis of the data shows prominent harmonics, a consequence of 8
oscillations in the left panel. The quartet is biased at V1=−V2= 0.4 mV, where the DC 2e process and MARs are not effective. b for Vbg = 26–30 V. The
periodicity evolves from half-flux quantum to one flux quantum as Vbg increases. c (Qa) (Qb) shows the conventional three-terminal quartet process with
only one out of the two loop contacts involved. Electron-hole conversion happens twice at the same contact of the loop (either S0a or S0b), resulting in
periodicity of half-flux quantum. d (SQab) shows the split-quartet process involving both contacts of the loop. With the odd parity of Cooper pairs
transferred, the periodicity is one flux quantum.
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with the latter equal to the quartet line in the zero-field map of
Fig. 2b. This shows that this voltage region lies beyond the
Josephson regime (black line in the bottom of Fig. 4a). At a
constant Vq, G1ðΦÞ exhibits oscillations corresponding to Iqc Φð Þ
with periodicity Φ0=2 and Φ0 components as discussed in Fig. 3.
Interestingly, we find that the oscillation period and phase of
Iqc Φð Þ are also tunable as Vq varies. As shown in Fig. 4b, in the
low bias regime (Vq < 7:2 μV), Iqc Φð Þ shows predominantly the
Φ0-periodic oscillation, in phase with the SQUID phase of equi-
librium supercurrent. However, as Vq increases, Iqc Φð Þ oscillation

becomes predominantly Φ0=2-periodic near Vq � Vin � 7:2 μV.
Above this critical bias voltage Vin, Iqc Φð Þ oscillation resumes the
Φ0-period, but the phase is shifted by π compared to
IqcðΦ;Vq < VinÞ: For this high bias quartet regime ðVq > VinÞ, the
flux dependence of the quartet critical current is «inverted», i.e.,
Iqc Φ ¼ 0ð Þ < Iqc Φ ¼ Φ0=2

� �
, suggesting that an unusual quartet

behavior occurs as we approach the high bias limit. Indeed, a naive
expectation is that destructive interference would instead decrease
the quartet critical current for half-flux in the loop. The quartet
bias condition (V1=−V2) is essential for observing this 0-π phase

ππ π π π

Fig. 4 Quartet conductance and the Floquet spectrum as a function of Vq and magnetic flux. a Quartet conductance G1 measured along the quartet line in
(Vq;Φ)-plane. Left y-axis is quartet voltage, taken across the junction. Right y-axis is the external applied voltage as shown in Fig. 2 along the yellow dotted
line. The red dashed line traces the minimum conductance for �2:5 <� Φ=Φ0 < 0 and the red sphere represents the local minimum at Φ=Φ0 ¼ �2.
b waterfall plot of G1ðΦÞ for Vq = 6.9–7.6 μV. It shows clear evolution of G1 from maxima to minima at integer values of flux. At the critical quartet
Vq � Vin � 7.2 μV, periodicity is Φ0=2 and for Vq> Vin, the quartet critical current is «inverted». c Zoom-in surface plot of G1(Vq;Φ) for �2:5 < Φ=Φ0 < 0.
The winding of the red sphere (local minimum) is marked with the red dashed line, matching that in a. The gray spheres represent quartet conductance at
different values of Vq. d waterfall plot of G1(Vq) for Φ=Φ0 =−2~ 0. The local minimum V� presents a zig-zag pattern as flux is tuned. e When the quartet
voltage Vq is in the adiabatic limit, the adiabatic Andreev levels <EABS> depend only on one phase variable, the quartet phase φq. The minimum difference
between the two levels is the Andreev gap Δ0 and a finite Vq creates resonant coupling between the two levels. f upper panel shows the energy of the
Floquet states as a function of the quartet phase φq at different values of Vq. The corresponding quartet current Iq carried by these Floquet states is shown
in the lower panel. The gray and red spheres mark the critical values of the quartet current Iqc ¼ Iqðφ�

qÞ, matching the ones in c. In (III), the red sphere
denotes Vq = V� when Iqc reaches a local minimum, reflecting an avoided crossing in the Floquet spectrum.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30732-7

6 NATURE COMMUNICATIONS |         (2022) 13:3032 | https://doi.org/10.1038/s41467-022-30732-7 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


change as such phase change is absent at incommensurate bias
condition (V1 ≠�V2) (see Fig. Supplementary 7 in the Supple-
mentary Information).

Furthermore, for a fixed Φ, G1ðVqÞ displays distinct non-
monotonic behavior as Vq varies near Vin. As shown in Fig. 4c
(zoom-in 3D map) and Fig. 4d (line-cuts for flux in the range
[−2.5Φ0, 0]), G1ðVqÞ first decreases to yield a local minimum at
Vq � V� (represented by the red sphere) and then increases for
Vq > V�. We note that V� shifts in a zig-zag pattern in the (Vq,
Φ)-plane centered at Vin. Particularly, V

�ðΦÞ is the largest at
integer Φ0 and the smallest at half-integer Φ0, similar to the
inverted quartet current in previous discussion. The non-

monotonic variation of Iqc Vq

� �
and the inversion of the quartet

current flux dependence provide a clue to the dynamic behavior
of quartets in the non-equilibrium condition at a finite Vq. We
note that, in order to reproduce such a behavior with a
phenomenological extrinsic locking MT-JJ model24, one would
need to introduce an ad hoc anomaly of the circuit impedance
Z(ω) at the Josephson frequency corresponding to V, and
moreover assume that Z(ω) is modulated by the magnetic flux,
which is unlikely. Another possible cause of a voltage-dependent
anomaly are Fiske steps36, realized in a tunnel junction that is
coupled to a cavity resonance. To confine these modes, a
sufficiently large magnetic field is required, corresponding to the
area of the JJ. In our study, the anomaly appears in a much lower
field range, corresponding to the larger SC loop area. Therefore,
our observation cannot be associated with the Fiske steps. Finally,
loop impedance effects may also be neglected at the measured
voltage ranges (~µV, ~GHz) as it is estimated at 2.5 mΩ.

Emergence of Floquet energy bands. To better understand the
Vq dependence of quartet current, we suggest considering the
superconducting phase modulation due to the AC Josephson
effect at finite bias. In the presence of a voltage bias V, the
Josephson relation _φ tð Þ ¼ 2eV

_ implies a periodic sweeping in time
of the ABS energies, defined at equilibrium as functions of φ1 and
φ2. We set the phase of the grounded loop S0 to be zero and the
other two superconducting leads S1 and S2 have phases φ1 and φ2,
respectively. When voltages are applied to S1 and S2, the phases
acquire time (t)-dependence following the Josephson relation:
_φ1 tð Þ ¼ 2eV1

_ , _φ2 tð Þ ¼ 2eV2
_ . Under the quartet condition

(V1 ¼ �V2) and by choosing a new set of phase variables

φq � φ1 tð Þ þ φ2 tð Þ;φr � φ1 tð Þ � φ2 tð Þ ¼ 4eVq

_ t, we obtain a sta-

tionary quartet phase φq and a running phase φr
2 that is periodi-

cally driving the system with a frequency
2eVq

_ , enabling intrinsic
synchronization of CQs. In the adiabatic limit, i.e., Vq being
much smaller than the Andreev minigaps Δ0 between the ABS
pairs, one can take a time average of the equilibrium ABS spec-
trum over φr and obtain an adiabatic ABS energy <EABS>, which
now only depends on the quartet phase φq (see Section 5 in the
Supplementary Information). For simplicity, let us illustrate the
effect of a running phase on the ABS spectrum by considering
only a single pair of ABSs at a bias small enough for the adiabatic
approximation to work. Iq , the supercurrent carried by quartets,
can then be derived from the usual JJ current-phase relation:
Iq ¼ 2e

_ ∂ <EABS>=∂φq. However, as Vq increases, we eventually

enter the non-adiabatic regime: the running phase φr
2 creates an

internal effective RF-field, which triggers non-adiabatic transi-
tions between adiabatic CQ-ABS (Fig. 4e and Supplementary
Information), and thus favors the occupation of higher level
ABSs. This eventually creates resonances, in a way reminiscent of

Shapiro steps5 or microwave resonances in transparent metallic
contacts37–39, and this manifests as a quartet current minimum.
This demonstrates, by analogy to other microwave resonance
phenomena in metallic junctions, that a non-monotonic depen-
dence of the quartet current on applied voltages is expected. In a set
of non-equilibrium ABSs, its effective separation depends on the
bias voltage in analogy to the Floquet bands40,41 separated by 2eVq;

emerging from the periodically driven Bloch bands35,42.
This picture is corroborated by detailed non-equilibrium

calculations within a single-level quantum dot model (see
Supplementary Information Section 5Ba). While this simple
model is not intended to be quantitative in a multi-channel
junction as the one in our experiment, similar physics can be
applied: when the Josephson frequency due to Vq matches the
spacing between the ABS levels, resonance would occur, resulting
in an oscillation of Iqc with Vq. Numerical studies on multi-
channel models have confirmed this picture (see Supplementary
Information Section 5Be).

Employing the Floquet energy levels EFloquet that are derived
from a pair of <EABS> biased by the quartet bias Vq (Fig. 4e), we
can now explain the experimentally observed non-monotonic
behavior of IqcðVqÞ. Figure 4f illustrates in the simplest case of a
single-channel junction the evolution of two first-order EFloquet as
a function of quartet phase φq. The corresponding quartet current
IqðφqÞ, shown in the bottom panels, is obtained with the Floquet-
Landau-Zener43 consideration (see Section 5 in Supplementary

Information). The critical quartet current Iqc ¼ max Iq φq

� �n o� �

takes place at φ�
q . As Vq increases, four different regimes appear:

(I) for 2eVq < Δ0; no resonant coupling exists between the two
<EABS> and the quartet current is the same as near equilibrium.
(II) 2eVq � Δ0, i.e., the Landau-Zener (LZ)-like transitions
between the two <EABS> bands become appreciable, opening
gaps between different Floquet bands. Hybridization between two
levels and mixing of states that carry opposite directions of
currents reduce the net quartet current, resulting in a drop in

Iqc ¼ max Iq φq

� �n o�
and the shifting of φ�

q . (III) At even larger

quartet voltage Vq ¼ V�, the resonances occur at the φ�
q in regime

(I), denting the peak in Iq and thereby Iqc reaches a minimum
value. (IV) When 2eVq is increased to be greater than the largest
gap between the two levels, there is no more hybridization. Both
the energy levels and the quartet current resume the nearly
adiabatic situation, similar to regime (I). For a more accurate
consideration, the non-equilibrium Keldysh formalism is also
applied to multi-level ABSs25–27. It reveals that the inversion of
Iqc Φð Þ can be associated with the avoided crossings due to LZ
transition in the Floquet bands (see Section 5 of SI). As shown in
the Supplementary Information, a minimal model considers two
quantum dots, each coupled principally to one of the loop
electrodes. The two quantum dots are connected by matrix
elements mimicking the underlying graphene layer. This model
shows «inversion» in a very low Vq range and in a wide range of
junction parameters, consistent with the experimental
observations.

Summary. In conclusion, we experimentally demonstrate the
existence of CQ using MT-JJ with gate-tunable graphene channel.
With a magnetic flux threaded through the loop in the unbiased
branch of our three-terminal junction, the CQ critical oscillation
exhibits two distinct Φ0 and Φ0=2 periodicities, indicating
interferences between different CQ-ABS processes. At a large
bias, we observe non-monotonic variation of the quartet critical
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current, which can be associated to Landau-Zener tunneling
between Floquet CQ-ABS levels, driven by the intrinsic effective
RF-field due to the running phase of CQ.

During the publication period of our work a complementary
transport signature of quartet physics on 2D InAs quantum well
heterostructure have been demonstrated44, showing the univers-
ality of the quartet ABS physics.

Methods
Fabrication. The van der Waals heterostructure—monolayer graphene on top of
40–60 nm thick hBN—is assembled via the inverted stacking technique, where hBN
serves as the dielectric substrate to minimize disorder45. The flakes are picked up
through procedures similar to the dry transfer technique46 except the order is reversed,
where the bottom hBN is picked up first. Via this method the top surface of graphene is
guaranteed to be clean without any polymer contact in the assembling process. The
graphene layer we use in our device is larger in size compared to the MT-JJ, and have
not been etched in any step of the fabrication; thereby eliminating natural/etched edge
effects from interfering with the JJ transport characteristics. The superconducting
contacts are made of 80 nm thick aluminum with 5 nm thick sticking layer of titanium,
directly deposited on graphene through electron-beam evaporation at a pressure of low
10−7 torr. Each channel is designed to be 80–90 nm to ensure the existence of
supercurrents among all of the superconductors.

Measurement setup. The measurements are performed in He-3 fridge with the
base temperature 300 mK, well below the superconducting critical temperature of
aluminum (Tc ~ 1.1 K) and the dual voltage source measurement scheme allows the
detection of quartet signal (see Supplementary Information for additional details).

Data availability
The data generated in this study have been deposited in the online depository Zenodo
(https://doi.org/10.5281/zenodo.6549095).
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