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Abstract

Medulloblastoma is a highly heterogeneous pediatric brain tumor with five molecular sub-

types, Sonic Hedgehog TP53-mutant, Sonic Hedgehog TP53-wildtype, WNT, Group 3, and

Group 4, defined by the World Health Organization. The current mechanism for classifica-

tion into these molecular subtypes is through the use of immunostaining, methylation, and/

or genetics. We surveyed the literature and identified a number of RNA-Seq and microarray

datasets in order to develop, train, test, and validate a robust classifier to identify medullo-

blastoma molecular subtypes through the use of transcriptomic profiling data. We have

developed a GPL-3 licensed R package and a Shiny Application to enable users to quickly

and robustly classify medulloblastoma samples using transcriptomic data. The classifier uti-

lizes a large composite microarray dataset (15 individual datasets), an individual microarray

study, and an RNA-Seq dataset, using gene ratios instead of gene expression measures as

features for the model. Discriminating features were identified using the limma R package

and samples were classified using an unweighted mean of normalized scores. We utilized

two training datasets and applied the classifier in 15 separate datasets. We observed a mini-

mum accuracy of 85.71% in the smallest dataset and a maximum of 100% accuracy in four

datasets with an overall median accuracy of 97.8% across the 15 datasets, with the majority

of misclassification occurring between the heterogeneous Group 3 and Group 4 subtypes.

We anticipate this medulloblastoma transcriptomic subtype classifier will be broadly applica-

ble to the cancer research and clinical communities.

This is a PLOS Computational Biology Software paper.

Introduction

Medulloblastoma (MB) is the most common of childhood brain tumors and accounts for

nearly 20% of all pediatric CNS neoplasms [1]. Based on histology, these tumors are classified
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as high-grade embryonal tumors, but they comprise of molecularly distinct subtypes based on

their genetics [2]. The current long-term survival rate is approximately 70%, however there is

significant variation in survival in the population based on molecular subtype, age, residual

disease, presentation of metastases, and other factors [3]. Additionally, conventional treat-

ments can cause significant morbidity in patients with several long-term consequences [4].

This prompted the medical and research communities to seek other treatment options that are

more targeted, engendering a focus on molecular characterizations of these tumors. In 2016,

based on several profiling studies, five molecular subtypes of MB were recognized, Sonic

HedgeHog (SHH) TP53 mutant, SHH TP53 wild-type, WNT, Group 3, and Group 4 [5,6].

Specifically, these subtypes were independently identified and demonstrated as concordant

from multiple bioinformatic analyses of gene expression, comparative genomic hybridization,

and DNA methylation microarray data: prediction analysis of microarrays [7], unsupervised

two-way hierarchical clustering and bootstrap analysis [8], unsupervised SubMap [7], non-

negative matrix factorization [7,9]. These subtypes are widely used in both the research and

clinical communities and have been accepted by the World Health Organization [6]. Cur-

rently, clinical classification of MB is most frequently accomplished by immunostaining, but

genomic methods, specifically, methylation profiling [10,11], have recently supplemented

immunostaining in the clinic. The use of methylation over gene expression microarrays or

RNA-Sequencing (RNA-Seq) has predominated because RNA tends to degrade at a much

faster rate relative to DNA or methylation markers [9] and historically, methylation arrays

were more cost effective than RNA-Seq. However, there are several reasons to develop a classi-

fier based on transcriptomic data. First, there are numerous studies and experiments that have

deposited MB transcriptomic data without the corresponding molecular subtypes listed. Being

able to quickly classify these samples into molecular subtypes may help with retrospective and/

or new analysis of these studies. Second, when MB RNA-Seq data is generated without corre-

sponding methylation data, this classifier will enable investigators to subtype their samples.

Third, the prediction output of this tool may be used in conjunction with predictions from

other modalities such as immunostaining, methylation, or genetic data to confirm classifica-

tion of samples that may classify as more than one molecular subtype. Fourth, even though

MB subgrouping has increased in complexity, clinical practice often still relies on the SHH,

WNT and non-SHH/WNT subtyping only [5,12,13], and here, we show that gene expression

classification enables this type of subgrouping reliably. RNA-Seq has substantial benefits com-

pared to gene expression microarrays in both the ability to capture a much more exhaustive

dynamic range and to quantify many more genes and/or isoforms [14].

We sought to develop a tool that can accurately predict the four major molecular subtypes

of medulloblastoma, SHH, WNT, Group 3, and Group 4 using any type of transcriptomic

data, including RNA-Seq, microarray data, or panel data from NanoString nCounter or HTG

platforms. Frequently, classifiers work with one type of technology, but cannot be used outside

of that platform. The classifier we have developed can span technologies because we don’t rely

on individual gene expression measures and instead use gene expression ratios (GER). The use

of GERs is not novel and has been utilized previously for other disease subtyping and classifi-

cation efforts [15–17]. The major draw-back of using GERs is that the number of features is far

greater than using individual gene measures and presents a tremendous problem from a fea-

ture selection perspective, which we mitigate here by filtering genes on low expression and low

variance as well as by only using subtype specific upregulated genes as input for the GER

matrix. The most significant benefits include having more features to choose from, corre-

sponding to interesting gene regulatory networks, and having features with a level of self-nor-

malization that result from calculating a ratio. Thus, the use of GERs, in addition to the

classification method, allows us to use the same classifier regardless of how the transcriptomic
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data was generated, assuming that standard initial transformations & normalizations have

been applied e.g. FPKM for RNA-Seq and RMA for microarray.

We tested the classifier across a number of datasets to show its predictive power and have

developed both a package (https://github.com/d3b-center/medullo-classifier-package) and

web application (code: https://github.com/d3b-center/medullo-classifier-shinyapp, portal:

https://komalrathi.shinyapps.io/medulloclassifiershinyapp) that can be used to classify tran-

scriptomic data. It is important to note that there are recent studies that classify medulloblasto-

mas into many more subgroups utilizing methylation data [11, 18], however, there is

insufficient training data, that is, patient tumors with transcriptomic data labeled using these

subgroups, to develop a model to classify into these more granular subtypes. Therefore, at the

current time, we can only capture the four main subtypes of MB [11].

Design and implementation

Classifier development

The Medulloblastoma subtype classifier was trained and developed on two different transcrip-

tomic datasets using different platforms and from different research groups. The first dataset

profiled 97 primary medulloblastoma samples using RNA-Seq (European Genome-Phenome

Archive (EGA) accession number EGAD00001001899). Data was processed and normalized

similar to [19]. The second dataset was a microarray dataset characterized using the Affymetrix

Human Genome U133 Plus 2.0 Array comprised of 76 primary medulloblastoma samples

(Gene Expression Omnibus (GEO) accession number GSE37418). Both datasets had corre-

sponding molecular subtype labels, though some programmatic edits were required to harmo-

nize them.

Fig 1 depicts the workflow for choosing GERs for each medulloblastoma subtype. The

RNA-Seq dataset was first filtered for genes for which at least one sample had an FPKM > 20.

This was done to ensure expression was sufficiently high enough that variance in the gene

expression was not driven by technical artifacts and noise (S1A Fig). The expression matrix

was next log-transformed, Z-scored, and filtered at a threshold of -1 coefficient of variation

(CV). This cut-off was determined based on examination of the distribution of CVs for all

genes in the dataset (S1B Fig). Finally, all genes corresponding to mitochondrial, ribosomal,

and small nuclear RNA genes were excluded, as they have varied and often-times very high

expression depending on sampling and capture methodology. The filtering steps were neces-

sary in order to reduce the number of genes since the size of GERs grows dramatically as the

number of genes increases. The filtered expression matrix was then analyzed to identify genes

specific to each subtype, both upregulated and downregulated. Specifically, differential expres-

sion to select gene expression features was performed in three steps. In step 1, we used variable

logFC as a cutoff + adj p.value < 0.05 and gathered unique subtype-specific up/down regulated

genes, that is, genes differentially expressed in one group versus all other groups. This corre-

sponded to taking the intersection of the differentially expressed genes for any given subtype

versus the other groups. In step 2, we gathered the top 250 differentially expressed genes,

sorted by adj. p-value, for each pairwise comparison per subtype and took a union of these

genes. While step 1 captured features specific to a given subtype, step 2 allowed us to capture

features highly discriminatory between any two subtypes, but not necessarily specific to one

subtype. In both steps we observed recurrent features that were discriminatory for the different

subtypes and comparisons. For example, in step 1, PTCH2 was upregulated in SHH versus

other subtypes, but downregulated in WNT compared to other subtypes. In step 2, MMP2 was

upregulated in SHH vs Group 4 but also upregulated in WNT vs Group 3 and WNT vs Group

4. In the final step, step 3, we pooled the results of step 1 and step 2 and then selected genes
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that were both significantly upregulated in at least one subtype and significantly downregu-

lated in another. At the end of these three steps, we obtained 1,399 genes, which were used as

input for t-SNE and heatmap clustering of the subtypes. Next, a GER matrix was created from

the 1,399 genes and limma was performed to obtain subtype-specific upregulated genes using

the limma R package [20] with a Benjamini-Hochberg (BH) adjusted p-value cut-off of 0.05

and variable log-fold change thresholds. This filtered set of genes served as input to the next

step of the pipeline, the creation of subtype-specific GERs. In this step, ratios for all pairs of

genes from the filtered gene set were calculated. These were then analyzed to search for GERs

specific to certain subtypes using the limma R package. The outputs of the RNA-Seq analysis

were four sets of GERs, each specific to a medulloblastoma molecular subtype. Subsequent to

this, a microarray expression matrix (GSE37418) was filtered to genes that were part of the

GERs obtained from the RNA-Seq dataset. This expression matrix was then converted from a

gene matrix to a GER matrix and the limma R package was used to identify GERs specific to

each subtype based on this dataset. The GERs isolated from this microarray dataset were finally

merged with those from the RNA-Seq analysis to create the model used for classification of all

subsequent studies.

Classifier evaluation

To test the accuracy of the classifier, we chose a superset of 23 GEO datasets containing 1,641

samples (GEO accession id: GSE124814). From the 23 datasets, we removed one dataset that

was used for training the classifier, GSE37418 (n = 95) and removed seven datasets which did

not have subtype information associated with them: GSE22569, GSE25219, GSE3526,

GSE35974, GSE4036, GSE44971, GSE60862. The classifier was then evaluated on the

Fig 1. Medulloblastoma subtype-specific feature selection workflow. Workflow of identifying MB subtype-specific

GERs using two transcriptomic data sets. DS1 represents the RNA-seq dataset EGAD00001001899 and DS2 represents

the Microarray dataset GSE37418.

https://doi.org/10.1371/journal.pcbi.1008263.g001
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remaining 15 medulloblastoma datasets (N = 1,286 samples) with both expression data and

corresponding molecular subtype classification data.

The classification steps for each of these datasets were 1) convert the gene-expression

matrix into a GER matrix, 2) filter to GERs in the model, 3) take the mean-score of GERs for

each subtype, and 4) assign the sample with the subtype corresponding to the highest score

(taking an unweighted mean of normalized scores) [20]. We also performed a t-test of the best

predicted subtype vs. the remaining three subtypes and took the maximum p-value represent-

ing a confidence score associated with the predicted subtype. This step was employed because,

as the classification system is coded, a class will always be selected. However, it is probable that

for certain samples two or more classes may have scores not significantly different from one

another, raising the likelihood of a misclassification. This p-value indicates if the mean GERs

of the selected class is significantly higher than the mean GER score of the class with the sec-

ond highest mean GER. A very low p-value should not be interpreted as related to the proba-

bility of that classification being correct. However, a high p-value may warrant a deeper look at

the data to verify the prediction. Accuracy, precision, and evaluation metrics were obtained by

using the confusionMatrix function from the caret R package [21]. Finally, for the 15 test data-

sets, we compared the performance of our medulloblastoma classifier to the previously pub-

lished gene expression Medullo-Model To Subtype (MM2S) classifier [22,23], which performs

k-nearest neighbor classification using a single sample gene-set enrichment analysis ranked

matrix. Summary plots were generated using the ggplot package.

Package & portal creation

We developed an R package, medulloClassifierPackage, to facilitate annotation of user-supplied

medulloblastoma samples and transcriptomic datasets with molecular subtype information.

The package consists of 2 functions, Classify.R and calcStats.R. The Classify function takes in

a sample expression dataset and returns back a character vector of the classes & a relative con-

fidence metric associated with each class. The confidence metric is derived from calculating T-

statistics between the predicted class and the other classes from GER scores and then assigning

a prediction using the max p-value. This corresponds to comparing the predicted class, the

class with the highest GER average, with the class with the second highest score. Users may use

this as a threshold to reject or accept the given prediction to control for sensitivity and specific-

ity for their given project. The second function, calcStats, takes in a sample expression dataset

and user-supplied classes and returns statistics related to how well the RNA-Seq model-based

prediction matches the classes provided by the user. This will help validate the classifier for in-

house use and/or may be used to compare against other predictors to identify more robust

classification models. The R Package contains a README file to provide the user with a

descriptive overview of the package including the project objectives, methods, and installation

details. In addition to the package, we have developed a Shiny Portal that allows users to

upload a file corresponding to a medulloblastoma expression datasets via a browser and ascer-

tain a list of subtype predictions.

Results

Our final filtered list (see above for methods) maximizing separation, resulted in a final list of

1,399 genes (S1 Table). These select genes were able to separate the DS1 into specific sub-

groups as shown in the clustered heatmap (Fig 2A).

These 1,399 genes were then used to generate 977,901 GERs which were filtered to identify

GERs specific to each subtype. In this step, we only chose GERs that were either significantly

upregulated in a single subtype in comparison to all others, resulting in a final list of 1,059
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GERs corresponding to 609 genes. These genes were used to initially filter DS2 (overlap of

which ended in only 584 genes) at which point GERs were calculated, resulting in a total set of

340,472 GERs. Filtering for GERs that were significantly upregulated in one subtype, and not

in the others, a final set of 789 GERs from DS2 were identified. The union of GERs from DS1

and DS2, resulted in a set of 1,795 GERs (S2 Table). A breakdown is shown in Fig 2B. Surpris-

ingly, the overlap between the significant GERs between DS1 and DS2 was smaller than antici-

pated, especially given that the initial sets of genes were identical. We thus wanted to confirm

that the union of the GERs was still able to split up these datasets into their molecular subtypes.

For both datasets, we filtered to the 1,795 GERs and then performed t-SNE analysis using the

R package Rtsne using the following parameters: initial dimensions to be retained in the initial

PCA step i.e. initial_dims set to 200, perplexity set to 10 and maximum iterations i.e. max_iter

set to 500. We utilized t-SNE to determine if the samples clustered into distinct groups and

indeed observed that molecular subtypes in both datasets were able to be captured by this

union set of GERs, with the RNA-Seq dataset able to better separate Group 3 and 4 subtypes

than the microarray dataset, as shown in Fig 3A & 3B. Interestingly, we observed four cases in

the RNA-Seq dataset which were classified pathologically as the Group 3 subtype, but cluster-

ing based on the GERs selected, these tumors are potentially the Group 4 subtype (Fig 3A),

demonstrating the utility of this classifier even when orthogonal methods are being used to

determine medulloblastoma subtypes. Though our primary goal was to develop a medulloblas-

toma classifier based on RNA-Seq data, we were curious as to the GERs associated with each

molecular subtype. In order to determine this, we assessed genes from each of the GERs and

plotted their frequency in each molecular subtype. The top five GERs distinguishing each sub-

type are shown in Fig 3C & 3D, and include expected pathway driver genes. The GERs are spe-

cific to each subtype in that they have markedly higher expression in that subtype versus other

Fig 2. Top genes and GERs representing each Medulloblastoma subtype. A. Heatmap of 1,399 genes associated with 4 molecular subtypes across

97 primary MB samples (RNA-seq: EGAD00001001899). B. Bar chart showing count of 1,795 selected GERs associated with each MB molecular

subtype.

https://doi.org/10.1371/journal.pcbi.1008263.g002
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subtypes. Classification was performed by calculating the mean GER score for each class and

then identifying the class with the maximum mean GER score. Since the GERs are all ratios,

they are approximately normalized and hence are comparable without any other type of addi-

tional transform (S2A Fig & S2B Fig). Example GERs for each subtype in DS1 and DS2 are

shown in Fig 4. The GERs associated with SHH and WNT are much more discriminatory

than those for Group 3 and Group 4 subtypes, the latter of which are more transcriptomically

similar.

To test the classifier, we first applied it to the combined superset of 15 test datasets

(N = 1,286 samples). The R package caret was used to obtain the overall confusion matrix,

accuracy, and evaluation metrics, such as sensitivity and specificity, across the four subtypes

(Table 1). Using this larger sample size, we observed an accuracy of 97.7%, sensitivity (TPR i.e.

true positive rate) of 96.3%, 96.6%, 99.2% and 100% and specificity (TNR i.e. true negative

rate) of 98.9%, 99.3%, 98.8% and 99.8% in predicting Group 3, Group 4, SSH and WNT sub-

types, respectively. Next, the classifier was applied individually on each of the 15 test datasets

to determine whether sample size had any effect on the classifier performance. We observed a

Fig 3. Selected GERs are able to distinguish between the four Medulloblastoma subtypes. A. t-SNE Plot of 1,795 selected GERs across 97

primary medulloblastoma (RNA-seq: EGAD00001001899). B. t-SNE Plot of 1,795 selected GERs across 76 primary medulloblastoma (Microarray:

GSE37418). C. Bar chart showing top 5 genes frequently occuring in numerator of GERs in each molecular subtype. D. Bar chart showing top 5

genes frequently occuring in denominator of GERs in each molecular subtype.

https://doi.org/10.1371/journal.pcbi.1008263.g003
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minimum accuracy of 85.71% in the smallest dataset, GSE62803, which has a sample size of 8

and a maximum of 100% accuracy in four datasets (i.e. EMTAB292, GSE50765, GSE50161 and

GSE41842). Overall, the classifier was able to differentiate between the four subtypes with a

median accuracy of 97.8% across the 15 datasets (Fig 5A). On average across the 15 datasets,

our classifier was able to maintain a specificity of 97.1%, 98.8%, 99.3% and 99.7% and sensitiv-

ity of 95.1%, 94.7%, 98.7% and 100% in predicting Group 3, Group 4, SSH and WNT subtypes,

respectively (Fig 5B). Predictions across each of the 15 datasets and associated p-values are

reported in S3 Table and summary stats are presented in Table 2.

Finally, we compared the MB classifier to an existing gene expression classifier for MB sub-

typing. The MB classifier outperformed the MM2S classifier for all 15 test datasets (S3 Fig).

Although MM2S previously reported accuracies of 100% for WNT and SHH, 87.5% for Group

3, and 79.4% for Group 4 [23] for their dataset, when we applied the classifier to the 15 datasets

herein, we observed combined accuracies of between 25–93.3%. Interestingly, the two datasets

in which MM2S showed poorest performance (GSE62803: 25% and GSE74195: 38.5%) were

skewed in favor of Group 3 and Group 4 subtypes. Our MB classifier achieved 85.7% and 95%

for these datasets, respectively, indicating enhanced discrimination of these two subgroups

with our MB classifier.

Discussion

Here, we present a highly specific and sensitive GER-based medulloblastoma subtype classifier

for use on transcriptomic data. All code related to the classifier development, training, and

accuracy testing have been made available in github. We have also created an R package and

corresponding R shiny application for easy accessibility to both the research community and

clinical investigators. Additionally, we have licensed the software as GPL-3, which is Open

Source Initiative compliant. Below are the direct links for the software:

Classifier development repository: https://github.com/d3b-center/medullo-classifier-dev

R package: https://github.com/d3b-center/medullo-classifier-package

Fig 4. GERs associated with SHH and WNT are more discriminatory compared to Group 3 and Group 4 subtypes. Boxplot of example GERs

associated with molecular subtypes across 2 studies. DS1 represents the RNA-seq dataset EGAD00001001899 and DS2 represents the Microarray

dataset GSE37418.

https://doi.org/10.1371/journal.pcbi.1008263.g004
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Shiny web application code: https://github.com/d3b-center/medullo-classifier-shinyapp

Shiny web application: https://komalrathi.shinyapps.io/medulloclassifiershinyapp

Utilizing GERs, as opposed to traditional gene expression values, we were able to classify

data stemming from orthogonal expression platforms and we demonstrate that this methodol-

ogy is advantageous as a broad transcriptomic classifier. Specifically, the chosen GER features

represent a union of features from DS1 and DS2 and this union could easily classify both DS1

and DS2 (i.e. GERs from DS2 did not decrease classification accuracy of DS1 and vice-versa).

This lack of overlap between the two sets could be explained by the fact that the starting set of

features was much larger (~100x) than the size of the reduced feature sets. Coupling this with

the chosen cutoffs and other differences between the two datasets, such as platform, dynamic

range, RNA degradation, we observed decreased overlap between the two sets.

Moreover, the set of GERs we discovered serves as our model, utilizing it with the very sim-

ple standardized score for classification. This allowed us to calculate the confidence in our call

based on a t-test between the predicted class and the scores of the other classes. Despite other

similar classification methods, including LASSO, the advantage of the GER solution is that it is

relatively accessible, simple to use, and less susceptible to error when features are absent.

Table 1. Confusion Matrix, Accuracy, and other evaluation metrics obtained after combining 15 test MB datasets followed by applying the classifier on the com-

bined dataset (N = 1,286 samples).

Confusion Matrix

Ref_Group3 Ref_Group4 Ref_WNT Ref_SHH

Pred_Group3 210 10 0 1

Pred_Group4 5 478 0 0

Pred_WNT 0 0 110 2

Pred_SHH 3 7 0 392

Overall Stats

Accuracy 97.70%

Kappa 96.70%

AccuracyLower 96.70%

AccuracyUpper 98.50%

AccuracyNull 40.60%

AccuracyPValue 0.00E+00

McnemarPValue NaN

Class Stats

Sensitivity Specificity Pos Pred Value Neg Pred Value

Class: Group3 96.30% 98.90% 95.00% 99.20%

Class: Group4 96.60% 99.30% 99% 97.70%

Class: WNT 100% 99.80% 98.20% 100%

Class: SHH 99.20% 98.80% 97.50% 99.60%

Precision Recall F1 Prevalence

Class: Group3 95.00% 96.30% 95.70% 17.90%

Class: Group4 99% 96.60% 97.80% 40.64%

Class: WNT 98.20% 100% 99.10% 9.03%

Class: SHH 97.50% 99.20% 98.40% 32.43%

Detection Rate Detection Prevalence Balanced Accuracy

Class: Group3 17.24% 18.10% 97.60%

Class: Group4 39.24% 39.70% 98%

Class: WNT 9.03% 9.20% 99.90%

Class: SHH 32.18% 33.00% 99.00%

https://doi.org/10.1371/journal.pcbi.1008263.t001
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Indeed, we demonstrate that utilizing GERs improved classification compared to k-nearest

neighbor classification of a single sample gene-set enrichment analysis ranked matrix

(MM2S).

We observed multiple WNT signaling genes within GERs associated with the WNT sub-

type. For example, AXIN2 was the top-selected gene with 148 GERs associated with the signa-

ture [24]. The LEF1 gene was the second most frequently selected gene with 40 representative

GERs [25]. Additionally, KREMEN1 was observed in GERs as a gene with high expression in

the WNT subtype but low expression in the Groups 3 and 4 subtypes. Of note, the NOTCH1,

CTNNB1, WIF1, DLL3, DKK1, DKK2, DKK4, WNT11, and WNT16 signaling genes canoni-

cally over-expressed in the WNT subtype [7,8] did not arise as significant GERs. Many of these

genes, while associated with the WNT pathway, are not differentially-expressed when com-

pared to the other subtypes. For the nine genes listed above, only DKK2 and WIF1 were dis-

criminatory for the formerly-named WNT subtype, subtype A, during classification by Kool,

et. al. It is possible that gene expression is not the primary indicator of activity of these genes

and further investigation should be performed. For instance, CTNNB1 nuclear localization

may be a better marker of WNT pathway activity than its overall expression. We found that

Fig 5. Classifier is able to distinguish SHH and WNT subtypes with higher accuracy than Group 3 and Group 4

subtypes. A. Bar Chart showing percent Accuracy of classification algorithm across 15 medulloblastoma microarray

datasets. The dotted red line represents the median accuracy of 97.8% across all datasets. B. Line plot of Sensitivity and

Specificity of classification algorithm trellised by molecular subtype across 15 medulloblastoma microarray datasets.

On average, the classifier is able to classify SHH (Avg. Sensitivity: 98.7%; Avg. Specificity: 99.3%) and WNT (Avg.

Sensitivity: 100%; Avg. Specificity: 99.7%) with better accuracy as compared to Group 3 (Avg. Sensitivity: 95.1%; Avg.

Specificity: 97.1%) and Group 4 (Avg. Sensitivity: 94.7%; Avg. Specificity: 98.8%).

https://doi.org/10.1371/journal.pcbi.1008263.g005
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GERs containing NEUROG1 (low), GLI1 (high), ATOH1 (high), and OTX2 (low) were associ-

ated with the SHH signature. This aligns with a study from 2007 which reported high ATOH1
and low NEUROG1 expression samples with high GLI1 expression, a biomarker of the SHH

subtype [26] and a separate study which reported high OTX2 expression in all subtypes except

SHH [27]. Additional GERs for SHH contained the canonical over-expressed genes HHIP,

BOC, and SFRP1 (protein is an immunohistochemistry biomarker) [28], but not SUFU,

PTCH1, or MYCN. As may be expected, the pathways commonly upregulated in WNT and

SHH subtypes, cell cycle, NOTCH and PDGF pathways [8], were not represented in GERs in

either subtype, as they are unable to discriminate these subtypes. Much less has been elucidated

about discriminatory drivers, pathways, and markers of Group 3 and Group 4 MBs, but it is

known that these tumors share some common pathways. For example, PDGFRA, which has

low or no expression in Group 3 and 4 subtype tumors, was present in GERs for both subtypes.

On the other hand, LEMD1, previously annotated as a specific marker for these subtypes [8],

and BLACAT1, a non-coding RNA not previously associated with MB, were highly expressed

and present in GERs for both subtypes. The AFF3 gene could potentially discriminate the

Table 2. Subtype-specific Sensitivity, Specificity and overall Accuracy across 15 test MB datasets.

Study Sample_Size Group3_Sensitivity Group3_Specificity Group4_Sensitivity Group4_Specificity

EMTAB292 19 100% 100% 100% 100%

GSE10327 62 100% 98% 100% 100%

GSE12992 40 87.50% 96.80% 95% 94.70%

GSE21140 103 95.70% 98.60% 94.30% 98.30%

GSE30074 30 100% 92.60% 87.50% 100%

GSE37382 50 100% 100% 100% 100%

GSE41842 19 100% 100% 100% 100%

GSE49243 58 NA 100% NA 100%

GSE50161 24 100% 100% 100% 100%

GSE50765 12 NA 100% NA 100%

GSE62803 8 100% 80% 66.70% 100%

GSE67850 22 88.90% 100% 100% 100%

GSE73038 46 66.70% 100% 100% 91.40%

GSE74195 30 100% 92.30% 90.90% 100%

GSE85217 763 98.50% 99.30% 96.80% 100%

SHH_Sensitivity SHH_Specificity WNT_Sensitivity WNT_Specificity Accuracy

EMTAB292 100% 100% NA 100% 100%

GSE10327 92.90% 100% 100% 100% 98.30%

GSE12992 100% 100% 100% 100% 94.90%

GSE21140 100% 98.50% 100% 100% 96.80%

GSE30074 100% 100% 100% 100% 93.30%

GSE37382 90% 100% NA 97.80% 97.80%

GSE41842 100% 100% 100% 100% 100%

GSE49243 98.30% NA NA 98.30% 98.30%

GSE50161 100% 100% 100% 100% 100%

GSE50765 100% NA NA 100% 100%

GSE62803 100% 100% 100% 100% 85.71%

GSE67850 100% 94.10% 100% 100% 95.50%

GSE73038 100% 100% 100% 100% 93.30%

GSE74195 100% 100% 100% 100% 95%

GSE85217 100% 98.50% 100% 100% 98.40%

https://doi.org/10.1371/journal.pcbi.1008263.t002
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subgroups, as it was downregulated in Group 3, but upregulated in Group 4 tumors. Thus, the

biological function of BLACAT1 and AFF3 in MB may be worth investigating. Specific to

Group 4, we observed CACNA1A (Calcium Voltage-gated Channel Subunit Alpha1 A), in 21

GERs and was identified in systems biology analysis of Group 4 MBs as a novel therapeutic tar-

get [29]. Another recent study profiled the immune repertoire of MBs and found high expres-

sion of CACNA1A in Group 4 MB plasma cells [30]. KHDRBS2 was present in 19 GERs and

over-expressed in Group 4 tumors and was previously reported as a subgroup-specific gene

[31]. Altogether, the classifier detected biomarkers and several canonical signaling pathway

genes related to known MB subtypes. The lack of detection of other canonical genes might

indicate their inability to discriminate subgroups as well as previously thought.

The MB classifier achieved high specificity and sensitivity across all datasets and the pri-

mary misclassifications came from Group 3 and Group 4 samples. As previously mentioned,

these groups are known to have highly similar transcriptomic and genomic profiles which can

lead to molecular ambiguity and histology misclassification. In fact, recent medulloblastoma

genomic studies show extensive heterogeneity of the Group 3 and Group 4 subtypes and rec-

ommend splitting them into as many as 8 subtypes [18]. It should be noted that patients who

present tumors of these molecular subtypes are currently put on the same treatment regimen

[5, 12], so previous misclassification of these groups has not affected treatment recommenda-

tions to date, however, ongoing studies are attempting to stratify treatment by molecular sub-

type, highlighting the need for accurate subtyping. Nevertheless, potential misclassification

may lead to discrepancies in prognosis, therefore, additional classification approaches are rec-

ommended. Future directions include evaluating ways to further reduce the features set with-

out compromising sensitivity and specificity using standard pruning methods. Additionally,

we plan to update our current approach of calculating a p-value to establish confidence in a

class to a more refined calibration method such as histogram binning or Bayesian Binning into

Quantiles [32]. Finally, we intend to apply this classification method to additional underex-

plored pediatric and adult cancer types. Creating additional cancer classification applications

has the potential to enable fast, simple, and accurate RNA-based subtyping from clinical sam-

ples, thereby accelerating subtyping and treatment regimens.

Supporting information

S1 Fig. Genes with high expression and high variability reduce noise in feature selection.

A. Distribution of maximum FPKM across 97 primary medulloblastoma samples (RNA-seq:

EGAD00001001899). B. Distribution of standardized CVs per gene across 97 primary medul-

loblastoma samples (RNA-seq: EGAD00001001899).

(TIF)

S2 Fig. GERs show a normal distribution which is similar and comparable across different

datasets. A. Distribution of maximum GERs across 97 primary medulloblastoma samples

(RNA-seq: EGAD00001001899). B. Distribution of maximum GERs across 76 primary medul-

loblastoma samples (Microarray: GSE37418).

(TIF)

S3 Fig. Accuracy benchmarking of MB classifier vs. MM2S. Barplot of percent accuracy

comparison of MB classifier with MM2S using 15 test microarray datasets shows MB classifier

performs better than MM2S in every case. Dotted lines represent the median accuracies across

all datasets for the MB classifier and MM2S classifier.

(TIF)
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S1 Table. 1,399 genes associated with specific medulloblastoma subtypes.

(CSV)

S2 Table. 1,795 GERs associated with specific medulloblastoma subtypes.

(CSV)

S3 Table. Subtype classification with p-value significance (t-test) of each sample across 15

test MB datasets.

(XLSX)
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