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Stroke outcome is determined by a complex interplay, where age and stroke severity are pre-
dominant predictors. Studies on hemorrhagic stroke indicate that APOE genotype is a predictor of
poststroke outcomes,1,2 but results from studies on ischemic stroke are more conflicting.1,3 There
is 1 study suggesting an influence of APOE genotype on age at ischemic stroke onset,4 and sex-
specific effects on outcome have been reported.5 Taken together, there is a need for larger studies
on APOE and ischemic stroke outcomes with integrated information on age, severity, and sex.

The 3 common APOE alleles e2, e3, and e4 can be separated by a combination of 2 single
nucleotide polymorphisms (SNPs), rs429358 and rs7412. Thus, associations withAPOE alleles are
not directly captured in a regular genome-wide association study (GWAS), where each SNP is
investigated separately. We derived the 3 common APOE alleles and investigated the interplay
betweenAPOE, age at ischemic stroke onset, severity, sex, and outcomewithin a large international
collaboration, the Genetics of Ischaemic Stroke Functional Outcome (GISCOME) network.

Methods
The design and results of the first GWAS on ischemic stroke outcome within GISCOME have
been reported,6 and the present study comprises the 6,165 cases included in this GWAS. Each
center individually obtained ethical approval and participant consent. Baseline stroke severity
was assessed by the NIH Stroke Scale and 3-month functional outcome by the modified Rankin
Scale (mRS). Genotyping was performed with SNP arrays with subsequent imputation to the
1000 Genomes Phase 3 reference panel as described.6 In the present study, we investigated
effects ofAPOEminor alleles e4 and e2 separately in comparison to the most common allele e3.
To this end, e4 allele count was defined as the continuous imputed minor allele dosage of
rs429358(C), excluding samples with minor allele dosage >0.4 for rs7412(T), and vice versa for
e2, as depicted in figure, A. Each cohort was analyzed separately, and for each analysis, cohorts
with an effective number of minor alleles ≤5 or an extreme effect size (β > 100) were excluded.
Results from the remaining cohorts were meta-analyzed using inverse variance-weighted fixed
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effects, unless there were signs of heterogeneity (pheterogeneity ≤
0.05) in which case random effects were used.

We used directed acyclic graphs (DAGs) to investigate
associations between APOE, age at stroke onset, stroke se-
verity, and outcome. A DAG illustrates associations between
variables according to a definite direction of causality as
depicted by the arrows connecting the variables. For instance,
APOE can influence age at stroke onset and/or stroke se-
verity, but reverse causality is unlikely as APOE genotype is
determined at conception. As age and stroke severity are well-
established predictors of stroke outcome, we aimed to ac-
count for both possible direct effects of APOE on outcome
and/or indirect effects via associations with age and/or stroke
severity as depicted by the 3 different arrows originating from

APOE in figures, B and D. All genetic analyses were adjusted
for ancestry (the 5 first principal components), and adjust-
ments for age and stroke severity were made as indicated
(figure, B and D). Prespecified sex-stratified analyses were
performed. Associations between allele count, age, and stroke
severity were analyzed by linear regression. Associations with
outcome were analyzed with logistic (dichotomized mRS
score 0–2 vs 3–6) and ordinal logistic regression.

Results
Increasing allele count of e4 was associated with younger age at
stroke onset (β −1.8, p < 0.001, figure, B). This association was
consistent across a majority of cohorts (figure, C), significant in

Figure APOE allele distribution and associations with age at ischemic stroke onset, stroke severity, and outcome

(A) Distribution of APOE alleles according to the SNPs rs429358 and rs7412. As the allele counts are inferred from imputation, they are given as a continuum between
homozygosity for themajor allele and homozygosity for theminor allele, with slightly shifted positions to improve clarity in the graph. In the analyses of e4 vs e3, 5,325
cases were included, and 4,519 cases were included in the analyses of e2 vs e3. Red positions correspond to cases excluded from both analyses. (B and D) Directed
acyclic graphs (DAGs) displaying associations between APOE allele count and age at ischemic stroke onset, stroke severity (baseline NIH Stroke Scale score), and
dichotomized 3-month mRS score (mRS score 0–2 vs 3–6). N indicates number of cases with nonmissing information, except for APOE allele count where N refers to
maximum number of cases included in the analysis, that is, cases with allele dosage ≤0.4 for rs7412(T) for e4 vs e3 and ≤0.4 for rs429358(C) for e2 vs e3. Figure, B
examinesassociationswith e4allele count and includesboth sexes,whereas figure,Ddisplaysassociationswith e2allele count inmenonly.Associationsare reported in
thesquared textboxesasβ andp valuederived from linear regression forassociationswithageandstrokeseverity, andORandp valuederived from logistic regression
forassociationswithpooroutcome (mRSscore>2).Adjustmentsare indicated in theparenthesesas follows:PC, adjusted forancestry (the5 firstprincipal components);
A, age adjusted; S, stroke severity (baseline NIH Stroke Scale) adjusted. *Refers to result from random effects meta-analysis. Arrow thickness illustrates standardized
effect size after the full adjustment specified in the respective text box. Arrow color refers to the direction of the effect. A dotted arrow indicates a nonsignificant
association. (C) Bubble chart showing median age at ischemic stroke onset and e4 allele frequency for individual cohorts in GISCOME. The cohorts are described in
Söderholm et al.6 Bubble diameter is proportional to the number of cases. Bubble color refers to the effect size (β) of e4 on age at stroke onset derived from linear
regression. GISCOME = Genetics of Ischemic Stroke Functional Outcome; mRS = modified Rankin Scale; OR = odds ratio; SNP = single nucleotide polymorphism.
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both sexes and in cases with first-ever stroke only (data not
shown). There was an association between e4 allele count and
favorable outcome (mRS score ≤2) when adjusting only for
ancestry, but this association was no longer retained after ad-
ditional adjustment for age and stoke severity (figure, B).

For e2 allele count, we found a direct association with poor
outcome (mRS score >2) in men after adjustment for an-
cestry, age, and stroke severity (figure, D). No such associa-
tion was detected in the whole sample or in women. Neither
e4 nor e2 allele count showed association with stroke severity.

Discussion
This is the largest meta-analysis with combined information
on common APOE alleles, age at ischemic stroke onset, se-
verity, and outcome to our knowledge. We found that in-
creasing e4 allele count was associated with younger age at
stroke onset, which is in line with a previous meta-analysis of
candidate gene studies.4 However, we found no evidence of
a direct effect of e4 on outcome, similar to 1 recent candidate
gene study (N = 786)7 and 1 meta-analysis (N = 1,453).1

Future studies should elucidate the biological mechanisms
behind the association between APOE e4 allele count and
younger age at ischemic stroke onset. However, possible
mechanisms include effects of altered lipid metabolism. In
a pooled analysis, where associations between APOE geno-
type and several biomarkers were investigated, there was an
apparent dose-response segregation of low-density lipo-
protein cholesterol concentrations by APOE genotype, with
the highest values in subjects homozygote for the APOE e4
allele.8 Furthermore, the same ordering was observed for
increasing carotid intima-media thickness and risk of ische-
mic stroke.8

In the sex-stratified analysis, we found an association between
increasing e2 allele count and poor outcome in men. Sex-
specific effects of APOE on ischemic stroke outcome have
been reported5 and are not unreasonable to assume from
a cardiovascular viewpoint. The e2 allele has been associated
with increasing white matter disease (WMD) in patients with
ischemic stroke,9 and WMD is in turn associated with poor
stroke outcome. Our results might thus be related to a higher
prevalence of WMD in male e2 carriers. However, as we
lacked data on WMD for all participants, this hypothesis
remains speculative.

The GISCOME study has the advantage of being the largest
sample of genetic and ischemic stroke outcome data available.
Study limitations have been previously discussed.6 In addi-
tion, the sample size for the sex-stratified analyses in our
present study was small, and we used imputed values from
SNP arrays to establish common APOE alleles. However,
imputation based on the 1000 Genomes reference panel has
been reported reliable in inferring these APOE alleles.10

In conclusion, this study shows that APOE e4 carriers have
a younger age at ischemic stroke onset.We also detected worse
functional outcome in male e2 carriers, a result needing rep-
lication. Given these findings, even larger studies would be of
interest to investigate associations between APOE alleles and
ischemic stroke outcomes in different age and sex strata.
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