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ABSTRACT

Direct coupling analysis of nucleotide coevolution
provides a novel approach to identify which nu-
cleotides in an RNA molecule are likely in direct con-
tact, and this information obtained from sequence
only can be used to predict RNA 3D structures with
much improved accuracy. Here we present an effi-
cient method that incorporates this information into
current RNA 3D structure prediction methods, specif-
ically 3dRNA. Our method makes much more accu-
rate RNA 3D structure prediction than the original
3dRNA as well as other existing prediction methods
that used the direct coupling analysis. In particular
our method demonstrates a significant improvement
in predicting multi-branch junction conformations, a
major bottleneck for RNA 3D structure prediction.
We also show that our method can be used to opti-
mize the predictions by other methods. These results
indicate that optimization of RNA 3D structure pre-
diction using evolutionary restraints of nucleotide–
nucleotide interactions from direct coupling analy-
sis offers an efficient way for accurate RNA tertiary
structure predictions.

INTRODUCTION

Efficient and accurate methods to build RNA 3D struc-
tures from sequences are much needed due to the increas-
ing disparity between the number of known sequences and
the number of solved 3D structures (1–15). Over the past
5 years, the accuracy of RNA 3D structure prediction has
been greatly improved (1,2,4,16–27). In 2011, for example,
Liang and Schlick (28) evaluated the existing methods then

and found that most computational predictions differed
from the experimental structures with RMSD (Root Mean
Square Deviation) values >6 Å. Worse still, for RNAs
longer than 50 nucleotides (nt), the mean RMSD value
reached 20 Å. Current methods, however, have reduced the
mean RMSD to <6 Å for RNAs of <100 nt and sim-
ple topology (16,21,23). Yet for RNAs of complex topol-
ogy and large size of more than 100 nt, the RMSDs of
these prediction methods are still high. One of the bot-
tlenecks for achieving better accuracy is the prediction of
correct conformations of multi-branch junctions, which re-
flect the orientations of their branches and thus the ter-
tiary interactions such as the kissing interaction of two hair-
pin loops. For example, most existing methods of RNA 3D
structure prediction, such as fragment-assembling methods
(FARNA/FARFAR (6,7), MC-Sym (9), Vfold (16), RNA-
Composer (22), 3dRNA (21), etc.), use local 3D templates
to build the entire 3D structures. If the conformations of lo-
cal 3D templates are inaccurate, the tertiary interactions, es-
pecially multi-branch junctions, will be incorrect. One way
to mitigate this problem is to use available information on
tertiary interactions as restraints in the RNA 3D struc-
ture prediction. A recent method based on Direct Coupling
Analysis (DCA) of nucleotide coevolution provides a novel
way to do this (29).

DCA was originally used to infer direct interactions
(DIs) in proteins as well as between proteins (30,31). Re-
cently it was also applied to RNAs and RNA–protein com-
plexes (29,32). For RNAs, the DCA-based methods first in-
fer physical interactions, both secondary and tertiary, be-
tween nucleotides in an RNA molecule by analyzing the co-
evolutionary signals of nucleotides across sequences in the
RNA family. A global probability model on sequence co-
variation is used to disentangle direct from indirect interac-
tions. Then, the inferred DIs are used as restraints in RNA
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Figure 1. Workflow chart of DCA-enhanced 3D RNA structure predic-
tion.

3D structure predictions. At present, these DI restraints
have been used in the sampling process of Rosetta (29) and
the folding process of NAST (32) to achieve better accu-
racies. Here, we show that alternative way of incorporating
these restraints in 3D RNA structure prediction methods,
however, leads to remarkable improvement in accuracy.

DIs contain only residue-level information on likely inter-
acting pairs of nucleotides in an RNA molecule. Most RNA
3D prediction methods including fragment assembly meth-
ods, however, produce models of atom-level precision with
detailed contact energies. Instead of using DI as restraints
in the sampling or folding processes of RNA 3D structure
prediction as was previously done (29,32), we use the DI re-
straints to optimize the predicted models of the fragment
assembly methods, specifically, 3dRNA (Figure 1). This al-
ternative way to incorporate the DI restraints effectively
integrates the information at both residue level and atom
level. The optimization is performed at residue level by a
Monte Carlo algorithm with simulated annealing. In order
to preserve the secondary structures during the optimiza-
tion process, we keep the conformations of all helices and
short loops fixed and only change their orientations since
the fragment assembly procedure usually assures accuracy
of them. For longer loops (hairpin loops of more than 4 nt
or internal loops of more than 7 nt), both conformations
and orientations are allowed to change. Thus, we no longer
need to distinguish the secondary and tertiary interactions
in DIs. We find that this way can greatly increase the accu-
racies of predictions, especially, for those of multi-branch
junctions.

MATERIALS AND METHODS

3dRNA

3dRNA is a fast and automated method of building 3D
RNA structure based on sequence and secondary struc-
ture and it builds 3D RNA structure from the smallest
secondary elements (SSEs) (21). The SSEs include helix,
hairpin loop, internal loop (including bulge loop), pseu-
doknot loop and junction loop. Recently we have updated
3dRNA in its tree representation, template library, sam-
pling and scoring. 3dRNA works as follows: For a target
RNA 3dRNA first represents its secondary structure by a
tree in which each node corresponds to an SSE; Second,
3dRNA finds a 3D template for each SSE by matching its
sequence and secondary structure type to those of the tem-
plates library. Then, 3dRNA traverses the tree and assem-
bles the 3D template of each node with that of its parent
node to get a complete tertiary structure. Since each SSE
may have multiple templates, 3dRNA can get a set of as-
sembled structures for the target RNA by repeating the pro-
cess above. If there is no appropriate template for an SSE,
3dRNA uses Distance Geometry (DG) (33) method to con-
struct its 3D templates. Finally, 3dRNA clusters assembled
structures and uses 3dRNAscore (34) to rank the cluster
centers for user to choose the appropriate structures.

It is noted that the consensus secondary structures from
Rfam database (35) are used in building 3D RNA structures
in this work. The details of 3dRNA and 3dRNAScore are
described in refs. (21) and (34). 3dRNA is provided at the
website: http://biophy.hust.edu.cn/3dRNA.

Direct interactions

The detailed description of DCA can be found in refs
(29,32). Here we just briefly describe the procedure of cal-
culating the direct-coupling information used in the present
paper and it mainly follows ref. (30,31).

(i) Multiple sequence alignment (MSA)
DCA infers contact residues in a sequence using co-

evolutionary information across all sequences belonging to
the same family of the target sequence. In this work Rfam
database (35) is used to identify which family each of the
target RNA sequences belongs to. The alignment result of
the sequences in the same family is extracted from Rfam
database and pre-processed before being used to calculate
the direct-coupling information:

First, the columns in MSA showing more than 50% gaps
are removed except those containing residues of the target
sequence.

Second, the sequences in MSA are reweighted to increase
their statistical independence. To do this, for each sequence
in MSA of M sequences, we count the number (denoted as
m) of the sequences that are similar to it. The similarity be-
tween two sequences is defined as number of positions with
coinciding residues. Two sequences are considered as simi-
lar if their similarity is larger than xL, where x is a similarity
threshold with 0 < x < 1 and L is the length of sequences
in MSA. In this work x is set as 0.9 according to ref. (36),
which found that the results were insensitive to the values
of x. The weight of a sequence is set to 1/m. Then the single

http://biophy.hust.edu.cn/3dRNA
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and pair frequencies can be represented as:
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where Ai (Aj) is the residue type at position i (j) along the
aligned sequences and it may be ‘A, U, G, C, -’; Aa

i denotes
the ith residue in the ath aligned sequence; � is the Kro-
necker delta. In this equation a pseudo-count � is intro-
duced as a standard treatment for finite sample effect and
Mef f = ∑M

a=1 1/ma .
(ii) Direct-coupling analysis (DCA)
DCA assumes a global statistical model of residue cor-

relation in a sequence, i.e. the single and pair probabilities
depend on the rest of its family, i.e.

Pi (Ai ) = ∑
{Ak|k�=i}

P (A1, . . . , AL)

Pi j
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where P(A1, . . . , AL) is the global probability of the se-
quence A1, . . . , AL including residues and gap. Using a
maximum-entropy modeling, this leads to a generalized
Potts model of sequence variability,

P (A1, . . . , AL) =
exp

[∑
i< j ei j

(
Ai , Aj

) + ∑
i hi (Ai )

]
Z

(3)

where ei j (Ai , Aj ) and hi (Ai ) correspond to residue pair in-
teraction energy (coupling strength) and single energy; Z is
the normalization constant.

Under the mean-field approximation, the couplings be-
tween residues can be estimated by the inverse of the re-
duced covariance matrix with gap-gap, gap-residue and
hi(gap) being set as 0

ei j
(

Ai , Aj
) = −Ci j

(
Ai , Aj

)−1
(4)

where Ci j (Ai , Aj ) = fi j (Ai , Aj ) − fi (Ai ) f j (Aj ) is the co-
variance matrix. Since only 4 out of the 5 symbols ‘A’, ‘C’,
‘G’, ‘U’, ‘-’ are effectively independent, we restrict the co-
variance matrix to the full-rank 4L × 4L submatrix without
gap.

The direct-coupling information can be represented as:
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where, PD
i j (Ai , Aj ) is determined by a two-site model,
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In this equation ei j (Ai , Aj ) is determined above, h̃i (Ai ),
h̃ j (Aj ) and Zi j are determined iteratively by satisfying the
condition:

∑
ij PD

i j (Ai , Aj ) = 1 and imposing the empirical

single-site frequency counts as marginal distributions,
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Optimization with restraints

Original version of 3dRNA contains an atom-level refine-
ment process to eliminate atom clashes and optimize the
bond length in the assembled RNA 3D models by using the
steepest descent and conjugate gradient methods. To use the
restraints from DCA or other experimental measurements,
we add a residue-level optimization algorithm to 3dRNA,
which uses a Simulated Annealing Monte Carlo (SAMC)
algorithm. In order to preserve the secondary structure dur-
ing the optimization process, we keep the conformations
of all helices fixed and only change their orientations. For
short loops (hairpin loops of <5 nt or internal loops of
<7 nt), their conformations are also fixed but their orienta-
tions can be changed. This is because the fragment assembly
procedure usually assures the prediction accuracy for short
loops. For longer loops, both conformations and orienta-
tions are allowed to change.

To speed up the optimization process without losing too
much precision, we use a coarse grained model for the
optimization. Each residue is represented by 6 atoms: P,
C4′, C1′, C2, C4, C6 (see Supplementary Figure S1). P is
the phosphate atom of the backbone, C4′ and C2′ atoms
are from the sugar ring, and C2, C4 and C6 atoms from
the base. Since the two pseudo-torsions angles η (between
atoms C4′

n-1, Pn, C4′
n and Pn+1) and θ (between atoms Pn,

C4′
n, Pn+1 and C4′

n+1) are sufficient to describe RNA back-
bone conformation in most cases (37), P and C4′ are fre-
quently used to construct coarse-grained model, e.g. Vfold
(16), iFoldRNA (8,12) and SimRNA (19,27). C1′ atom is
the joint of the sugar ring and the base. We use this atom
for two reasons: first, it is used as the pivot to rotate the
base of a randomly selected nucleotide in the moving stage
of SAMC; Second, it is used to represent the position of the
nucleotide in the grid system which will be illustrated below.
The grid system was devised for accelerating the optimiza-
tion procedure. C2, C4 and C6 atoms are used to help 3dR-
NAscore to compute the pairing score and stacking score
between two bases. They also help to calculate the clash en-
ergy to avoid steric clashes when the coarse grained model
is converted to all-atom model.

Monte carlo moves

In each step of the simulation, it needs to sample molec-
ular conformation. Since we preserve the conformation of
helices and short loops in the sampling process, we move at
each step either a randomly selected residue in a randomly
selected loop or all residues in a randomly selected helix
with or without short hairpin loops and internal loops. This
ensures that we will not destroy the structures of helices or
the secondary structure of the whole molecule. In addition,
this saves the time consumed in forming helices.
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To keep the shape of helices, small hairpin loops and
small internal loops unchanged in the process of optimiza-
tion, we use a dedicated moving strategy. In each step, the el-
ement to be moved is a fragment, the length of which varies
from 1 nt to the length of the whole sequence. All possi-
ble fragments should satisfy the condition that any helix or
small hairpin loop or internal loop should be included only
in one fragment.

To illustrate symbolically, the set of the fragments Fi j we
would move in each step is:

{Fi j |1 ≤ i ≤ L, 1 ≤ j ≤ L, (∀k)(Elk ⊆ Fi j or Elk ∩ Fi j = φ)}, (8)

where L is the length of the sequence, and Elk is the kth of
all the helices or small hairpin loops or small internal loops.

There are three possible kinds of operations (as shown in
Supplementary Figure S2) that are applied to the fragment:
the first is simply translating it in space; the second kind
of operations is only applied to fragments satisfying i = 1
or j = L. We rotate the fragment around the P atom of the
residue j if i = 1 or around the P atom of residue i if j = L.
The third kind of operations is to rotate the fragment along
the axis passing through the atom P of residue i and the
atom P of residue j + 1, when i > 1 and j < L.

Using grid system to accelerate optimization

To avoid steric clashes and to check if the distance of two
residues satisfies a given distance cutoff, it’s needed to cal-
culate the minimum distance of each residue pair. If the
molecule has L residues and each residue has n atoms av-
eragely, then the time complexity is O( 1

2 L(L − 1)n2). As the
length of RNA sequence increases, the time is increasing
quadratically.

To accelerate optimization, we use a grid system as shown
in Supplementary Figure S3. Before the simulation, we con-
struct a cubic lattice in space. Each grid in the lattice records
which residues are located in it. If the conformation of
the molecule changes, the state of the lattice would update.
Thereafter, the time complexity is O(mLn2), where m is the
average number of residues in the nearest grids around a
certain residue, e.g. those around G-48 within the dashed
square in Supplementary Figure S3. The number m is sta-
ble that it will not increase with L. Hence, the consuming
time will increase linearly rather than quadratically as L.

Energy function for the optimization

We built a residue-level energy function to guide the Monte
Carlo simulation. The energy function is composed of six
parts:

G = Gvb−len + Gvb−ang + Gvb−tot + Gstacking + Gpairing + Grestr (9)

where,

Gvb−len = kl (l − l0)2

Gvb−ang = ka (a − a0)2

Gvb−tor = kt sin2 ( t−t0
2

)
Grestr = kr

∑
n

(
rn − rn

0

)2

(10)

Here the symbol ‘vb’ means virtual bond representing
a dummy link between two adjacent residues. The virtual

bond is defined as a fictitious bond between the backbone
C4′ atoms of two adjacent residues. Gvb−len, Gvb−ang, and
Gvb−tor are the energy functions associated with stretching,
bending, and twisting of the standard virtual bond length
l0, bond angle a0 and dihedral angle t0 with corresponding
weights kl, ka, and kt, respectively. Gstacking and Gpairing are
energy items used in 3dRNAscore (34) related to base stack-
ing and base pairing. The values of these parameters used
in the present study are given in Supplementary Table S1.
To incorporate the restraints such as DIs from DCA into
the optimization process, we introduce one additional term
Grestr as a penalty cost with a weight factor kr for any pu-
tative direct contact to deviate from the assigned contact
length r0. We set the value of r0 according to the type of
the DI restraint. If the DI restraint corresponds to a base
pair, we calculate all the distances (rn) between atoms of
the same type (P-P, C4′-C4′, C1′-C1′, C2-C2, C4-C4, C6-
C6) in the two bases. The values of rn

0 are given in Supple-
mentary Table S2 and they are derived from statistics of all
RNA monomers in PDB databank (38). Then the six en-
ergy items between the atoms of the same type in the two
bases are calculated according to Equation 10 and added to
get the total restraint energy of the base pair. The restraint
(i, j) is considered as a base pair if there is a restraint (i+1,
j-1) or (i-1, j+1) in addition to the restraint (i, j). If it is not
possible to determine whether a DI restraint is a base pair,
only the distance between the C1′ atoms of the two bases is
calculated as the value of rn and the value of rn

0 is set as 10 Å
(as in Supplementary Table S1). Then the restraint energy
is also calculated according to Equation 10. As described in
the discussion, when the distance between the C1′ atoms of
the two bases is >17 Å, the value of k is set to be small.

Generating and ranking 3D structural models

In this work 3dRNA will generate 1000 candidates (assem-
bled structures) for a target RNA. Then, 3dRNA uses the
DBSCAN (39) clustering method to classify all the candi-
dates into clusters. The five largest clusters are selected and
scored by 3dRNAscore, and the model with best score in
each cluster will be picked out. Thus, we get five final mod-
els.

3dRNAscore is an all-atom statistical potential scoring
function of atom–atom distances and backbone dihedral
angles. We compared 3dRNAscore with several other scor-
ing methods in ref. (34) and 3dRNAscore performed well
in distinguishing the near-native (RMSD <7 Å) from non-
native structures of RNA molecules.

RNA 2D and 3D structure visualization and plots are
generated using Forna (40) and PyMOL (41) (http://www.
pymol.org/), respectively. The 2D and 3D structures are
generated by Forna. The accuracies of the predicted 3D
structures are measured by RMSD (42) against their cor-
responding experimental structures. The RMSDs are cal-
culated using the method in AMBER molecular dynamics
simulation software (43) except when comparing with the
results in ref. (32), where the RMSD is calculated by Py-
MOL in order to be consistent with ref. (32).

http://www.pymol.org/
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RESULTS

Comparison with existing methods

To compare our method with previous approaches (29,32)
that combine Rosetta or NAST with the DI restraints, we
analyzed two groups of RNAs used by previous approaches.
Group I contains the same five RNAs as in ref. (32): 1FIR,
1Y26, 2GDI, 3Q3Z and 4LVV, and Group II the same six
RNAs as in ref. (29): 1Y26, 2GDI, 2GIS, 3IRW, 3OWI and
3VRS. Two RNAs (1Y26 and 2GDI) appear in both groups.
The detailed information of RNAs of these two groups is
given in Supplementary Tables S1 and 2. These nine RNAs
constitute Test Set I. We removed 3D templates extracted
from these nine RNAs and their homologs from the tem-
plates library during the test.

In Group I, the average length of the five RNAs is 78 nt
and four of them contain pseudoknots except 2GDI. Figure
2A and Supplementary Table S3 show the prediction results
of 3dRNA and NAST using and not using DI restraints.
The mean prediction accuracy (RMSD) of NAST without
and with DI restraints is about 16.05 Å and 9.75 Å, respec-
tively (32). In comparison, those of 3dRNA are 7.10 Å and
3.97 Å, respectively. In Group II, the average length of the
six RNAs is 79 nt and four of them contain pseudoknots ex-
cept 2GDI and 3OWI (29). Figure 2B and Supplementary
Table S4 show the comparison of 3dRNA and Rosetta. The
mean prediction accuracies of 3dRNA and Rosetta with-
out DI restraints are 8.99 Å and 13.72 Å, respectively, while
those with DI restraints are 6.29 Å and 9.47 Å, respectively.
These results show that the prediction accuracies of 3dRNA
are much better than those of NAST and Rosetta for the
nine RNAs.

The role of DI restraints in improving the prediction ac-
curacy can also be seen intuitively from the changes of op-
timized structures and their contact maps with and with-
out the restraints (Figures 3 and 4). The promotion of
the prediction results using DCA comes from two aspects.
First, DCA can capture the existing pseudoknots, and sec-
ondly, DCA can predict non-pairing tertiary interactions.
A typical example of capturing pseudoknots is RNA 4LVV.
Residues 37–41 of 4LVV form a pseudoknot (see Figure
4B) with residues 79–83. The points in the red circle in Fig-
ure 4A are the pseudoknot predicted successfully. It can
be seen from Figure 4C and D that the use of DIs as re-
straints can help the formation of helix at the pseudoknot.
A typical example of predicting non-pairing tertiary inter-
actions is RNA 3U4M. There are tertiary interactions (see
Figure 4F) between the residues 7 and 14 and the residues
39, 40, 43 and 44. The points in the rectangular box in Fig-
ure 4E represent residue pairs that have non-pairing ter-
tiary interactions. It can be seen from Figure 4G and H that
the use of DIs as restraints can help the formation of non-
pairing tertiary interactions. By the way, the contact maps
for other RNAs of Test Set I can be downloaded online:
http://biophy.hust.edu.cn/resources/3drna opt dca.

Improvement of multi-branch junction prediction

As mentioned above, one of the bottlenecks for accurate
predictions of RNA 3D structures is finding correct confor-
mations for multi-branch junctions. Typical examples are

Figure 2. (A) Comparison of predictions of five RNAs in Group I using
3dRNA and NAST without and with restraints. (B) Comparison of pre-
dictions of six RNAs in Group II using 3dRNA and Rosetta without and
with restraints. (C) Comparison of predictions of multi-branch junctions
of nine RNAs in Test Set I using 3dRNA without and with restraints.

http://biophy.hust.edu.cn/resources/3drna_opt_dca
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Figure 3. Comparison of the optimized structures of the nine RNAs in Test Set I with (dark blue or dark on the right) and without (magenta or dark on
the left) DI restraints against their native structure (green or light). The tertiary structures are generated by PyMOL (41).

4LVV and 3VRS that have very large RMSD values rela-
tive to their native structures before the optimization with
DI restraints (Figure 3). The large deviation is due to incor-
rect conformations of the multi-branch junctions built by
3dRNA. However, the conformations of the multi-branch
junctions can be greatly improved through the optimization
with the DI restraints since these restraints contain tertiary
interactions that restrain the orientation of the helices and
in turn the conformations of the multi-branch junctions.
To see this we analyzed the conformational changes of the
multi-branch junctions due to optimization with and with-
out the DI restraints. The results are presented in Figure
2C, Supplementary Table S5 and Figure 5. They show that
the optimization with the DI restraints indeed improve the
conformations of most multi-branch junctions greatly, es-
pecially for those that are much different from the native
ones, such as 4LVV and 3VRS. And the mean RMSDs of
the multi-branch junctions change from 6.48 Å to 4.33 Å.

Improvement of longer RNA prediction

To further see how the co-evolutionary information can be
used to improve the prediction accuracy of 3dRNA, we
built a Test Set II of 29 RNAs elaborately selected from
Rfam database according to the following standard: (i) the
longest one from different families; (ii) having complete
3D structures; (iii) having more than 100 homologous se-

quences; and (iv) longer than 50 nt. In particular, this test
set includes 14 long RNAs with their lengths varying from
100 to 388 nt. 3D templates extracted from these RNAs and
those of their homology families are removed from the tem-
plates library during the test. Figure 6 and Supplementary
Table S6 give the results. The mean RMSDs of the predicted
structures without and with DI-restrained optimization are
16.90 Å and 14.15 Å, respectively. In particular, for the 14
long RNAs, the mean RMSDs of the predicted structures
without and with DI-restrained optimization are 22.64 Å
and 18.41 Å, respectively. The RMSDs of most predicted
structures are significantly reduced after DI-restrained op-
timization. It is noted that for the loops in these long RNAs
the 3D templates were unavailable in most cases and were
generated using the DG method and so the predicted struc-
tures usually have larger RMSDs. Furthermore, there are
no enough homologous sequences in most cases.

The prediction accuracy of these long RNAs is similar to
the situation of the RNAs with lengths from 50 to 100 nt
in 2011 (28). For these long RNAs, it seems that their over-
all shapes are similar to the native ones if their RMSDs are
<20 Å. Figure 7 shows the native and DI-restrained opti-
mization structures of two RNAs 4UE4 (266 nt) and 3IZ4
(377 nt).

In Supplementary Table S6 we also listed the prediction
results using RNAComposer web server (22). It is noted



Nucleic Acids Research, 2017, Vol. 45, No. 11 6305

Figure 4. Two examples showing the roles of DI-restrains in RNA 3D structure optimization. A–D and E–H are the contact maps, 2D structures, 3D
structures optimized without and with DI restraints for RNAs 4LVV and 3U4M, respectively. Cnat, Cnrs and Crs denote the contacts in the native structure
and the structures optimized without and with DI restraints, respectively; DI* are the top L DIs but with the isolated points removed; The red circle and
rectangular box are the regions of the pseudoknot and tertiary interactions, respectively. The red regions in the 3D structures are residues that would form
pseudoknot or tertiary interactions. The 2D and 3D structures are generated by Forna (40) and PyMOL (41), respectively.

that the option of RNAComposer (44) to exclude user-
specified structures or templates is not used since we are
not sure whether their homologs are used or not. Thus, in
the predictions of 9 of the 29 RNAs RNAComposer used
the 3D templates from themselves or their homologs. It also
gave no result for one of the RNAs. Therefore, only the re-
maining 19 RNAs are used to test the performance of the
optimization procedure. For the remaining 19 RNAs the
mean RMSDs of the predictions by RNAComposer and by
3dRNA are 19.37 Å and 18.19 Å, respectively. After DI-
restrained optimization, they are reduced to 16.03 Å and
15.36 Å, respectively. Among the remaining 19 RNAs, 10
RNAs have lengths ≥100 nt. For these 10 long RNAs the

mean RMSDs of the predictions by RNAComposer and
3dRNA are 22.89 Å and 22.82 Å, respectively. After DI-
restrained optimization, they are reduced to 19.39 Å and
18.28 Å, respectively. These results show that the predic-
tions of RNAComposer can be further optimized by using
DI restraints.

Improvement of RNA-Puzzles predictions of different labo-
ratories

Challenges 6, 8, 12, 13 of RNA-Puzzles were redone to see
if the co-evolutionary information can improve the predic-
tion accuracy of 3dRNA and other methods. The reason
of selecting these four RNAs only is that they have enough
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Figure 5. Comparison of the optimized structures of the multi-branch junctions of the nine RNAs in Test Set I with (dark blue or dark on the right) and
without (magenta or dark on the left) DI restraints relative to their native ones (green). The tertiary structures are generated by PyMOL (41).

Figure 6. Comparison of predictions of Test II using 3dRNA without and
with restraints.

homologous sequences to support DCA. 3D templates ex-
tracted from these four RNAs from the templates library
were also removed during the test. These four RNAs con-
stitute Test Set III. The prediction results are given in Ta-
ble 1. It can be seen that the initial structures of these four
challenges assembled by 3dRNA are all around 20 Å, the
worst of which is 26.32 Å (challenge 8) and the best is 18.96
Å (challenge 6). If the assembled structures were optimized
with DI restraints, the RMSDs of them all decrease to be
around 12 Å, the worst of which is 13.98 Å (challenge 12)
and the best is 9.82 Å (challenge 13). Table 1 shows that
the optimization under the DI restraints can reduce the
RMSDs for nearly all the challenges. The performance of
the optimization could also be seen from the changes of the
ranks of the RMSDs before and after optimization, espe-
cially when the RMSD of the initial structure is large.

Figure 7. Comparison of the native structures (cyan or light) of (A) 4UE4
(266 nt) and (B) 3IZ4 (377 nt) with the predicted structures (brown or dark)
by 3dRNA with DI-restrained optimization. The tertiary structures are
generated by PyMOL (41).
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Table 1. Prediction results of RNA-Puzzles Challenges 6, 8, 12 and 13 (Test Set III)

Challenge
number

Length
(nt) Rfam acc

Number of
sequences Best ranked structure Initial structure

Optimization with DI
restraints

Lab RMSD (Å) Laboratory Rank RMSD (Å) Rank RMSD (Å)

Our 10 18.96 3 13.54
Das/4 1 11.70 1 10.7

6 168 RF00174 2117 Das/4 11.67 Das/8 9 17.96 3 12.54
Chen/2 13 22.26 6 15.25
Dokholyan/6 34 37.47 12 21.98
Our 42 26.32 11 11.15
Das/3 1 4.80 2 5.48

8 96 RF01725 1339 Das/3 4.80 Bujnicki/9 4 6.82 3 6.56
Adamiak/1 33 13.88 5 10.29
Chen/8 37 15.81 11 11.21
Our 49 23.57 21 13.98
Ding/12 1 10.06 2 10.35

12 111 RF00379 1686 Ding/12 10.06 Adamiak/2 13 13.33 5 11.42
Chen/4 27 16.06 8 12.54
Chen/1 48 20.49 26 14.76
Our 47 20.23 11 9.82
Das/7 1 5.41 3 5.79

13 71 RF01750 669 Das/7 5.41 Bujnicki/9 43 17.00 11 10.32
Ding/8 25 14.62 10 9.51
Xiao/7 55 27.60 12 11.52

Four predictions of the four RNA-Puzzles challenges by
other laboratories were selected as the initial structures and
then refined by the optimization procedure. Table 1 shows
the results. The optimization with the DI restraints can fur-
ther reduce the RMSDs of most of the 14 predictions and
only three of them become slightly larger (<1.0 Å) than
those of the initial structures. For example, the RMSD of
the rank 1 prediction of the Das laboratory in challenge
6 decreases by 1.0 Å. The effect of the optimization with
the DI restraints is more significant for the predictions with
larger RMSDs. For example, the RMSD of the rank 43 pre-
diction of Bujnicki laboratory in challenge 13 changes from
17.0 Å to 10.32 Å by the optimization with the DI restraint.
These results indicate that the nucleotide co-evolution in-
formation can be used to further improve the accuracy of
3D RNA structure prediction regardless of the methods.

Structure prediction of RNAs of unknown 3D structures

We also predicted 3D structures of 2377 Rfam families with-
out known 3D structures (35). These RNAs are referred as
Test Set IV. The results could be downloaded online: http://
biophy.hust.edu.cn/resources/3drna opt dca. Figure 8 gives
two examples that were predicted in Ref. (29).

Running time

Supplementary Table S6 gives the running times of all the
RNAs in Test Set II. Supplementary Figure S5 is the plot
of the running time versus sequence length and it shows
that the trend of the rise of the time is indeed close to lin-
earity as expected above. For an example, for an RNA of
233 nt (4C4Q), the optimization takes only 49 minutes. The
CPU information is: Intel(R) Xeon(R) CPU E5-2620 v2 @
2.10GHz.

DISCUSSION

The DIs generated by DCA may have false positives. The
usual method of reducing the effect of false positives is to
select the first L (sequence length) or L/2 largest DIs as

Figure 8. Predicted models of two RNAs of unknown 3D structures. The
two RNAs are (A) RF01739 and (B) RF01695 from Rfam. The models are
predicted by 3dRNA (left) and Rosetta in ref. 29 (right), respectively. The
tertiary structures are generated by PyMOL (41).

the predicted contacts (29,32,36). In the present work the
first L largest DIs are taken as the predicted contacts. Fur-
thermore, we did the following treatments to reduce the ef-
fects of false positives further: (i) we removed all isolated

http://biophy.hust.edu.cn/resources/3drna_opt_dca
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DI points since the false positive DIs exhibited a signifi-
cant feature that they were almost isolated points in con-
tact map (see Supplementary Figure S4); (ii) it is also noted
that a true positive DI point always appears in the upper
left corner or the bottom right corner of another true pos-
itive DI point. If two points locate like this, they are likely
to be stacked to each other. Hence, the points that don’t
satisfy this condition are also removed. The bottom right
triangle of the contact maps in Supplementary Figure S4
gives the processed DIs, i.e. DI*s, which shows that most
false positives are removed. Furthermore, we made the DIs
be short-range, i.e. the two residues interact only when their
distances are <17 Å because the distance of the C1′ atoms
of two paired residues is always <17 Å, which may avoid the
situations that the false positives lead to a false folded state.

Our method still has some limitations. On one hand, for
short RNAs whose assembled structures are usually ac-
curate enough, the optimized structures sometimes have
higher RMSDs than the former. This is due to the coarse-
grained potential we used in SAMC, which may be not so
accurate to lead the conformation of the structure to a near-
native state. On the other hand, for long RNAs, the assem-
bled structures are usually far from the native ones since in
this case appropriate 3D templates of most SSEs are un-
available and are generated by using the DG method. The
generated templates may result in serious steric clashes be-
cause the generating procedure only considers the confor-
mations of the local SSEs but not the entire structure. This
needs more times and more efficient methods to optimize
them. Hence we need to improve the method of generating
SSEs for large RNA in future work.

AVAILABILITY

Source code, used data and other supported materials
are provided through the link http://biophy.hust.edu.cn/
resources/3drna opt dca. Clicking one of RNAs in Test Sets
will fill the input data and switch to 3dNA webpage auto-
matically. The optimization method is integrated in the web
server of 3dRNA: http://biophy.hust.edu.cn/3dRNA. Users
can switch the task type to ‘Optimization’ to do the opti-
mization with and without restraints separately. A web page
that can be used for DCA (http://biophy.hust.edu.cn/DCA)
is provided, and users just need to enter an RNA sequence
or provide multiple sequence alignment files to get DIs or
DI* (DIs after being ranked to pick out the top L DIs and
then processed by removing the isolated points to reduce the
false positives).

CONCLUSION

In this work we proposed an optimization method to incor-
porate DI restraints into 3dRNA, a computational suite for
RNA 3D structure prediction. Essentially, this optimiza-
tion process generated additional configurations from those
obtained by the original 3dRNA according to a novel en-
ergy function that combines force field potential, statisti-
cal potential and DI-restraint potential at residual level.
All configurations were then subject to selection by the all-
atom 3dRNAscore function. This new approach takes ad-
vantages of both the atom-level precision of the original

3dRNA and the residue-level tertiary interaction informa-
tion of DCA. As such, it makes much more accurate RNA
3D structure prediction than the original 3dRNA as well
as other existing prediction methods that use DI informa-
tion. In particular our method demonstrated a significant
improvement in predicting multi-branch junction configu-
ration, a major bottleneck for RNA 3D structure predic-
tion. Therefore, using DI information from DCA to opti-
mize traditional RNA 3D structure prediction offers an ef-
ficient approach to increase prediction accuracy.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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