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Abstract: Due to the blur information and content information entanglement in the blind deblurring
task, it is very challenging to directly recover the sharp latent image from the blurred image. Consid-
ering that in the high-dimensional feature map, blur information mainly exists in the low-frequency
region, and content information exists in the high-frequency region. In this paper, we propose a
encoder–decoder model to realize disentanglement from the perspective of frequency, and we named
it as frequency disentanglement distillation image deblurring network (FDDN). First, we modified
the traditional distillation block by embedding the frequency split block (FSB) in the distillation block
to separate the low-frequency and high-frequency region. Second, the modified distillation block,
we named frequency distillation block (FDB), can recursively distill the low-frequency feature to
disentangle the blurry information from the content information, so as to improve the restored image
quality. Furthermore, to reduce the complexity of the network and ensure the high-dimension of the
feature map, the frequency distillation block (FDB) is placed on the end of encoder to edit the feature
map on the latent space. Quantitative and qualitative experimental evaluations indicate that the
FDDN can remove the blur effect and improve the image quality of actual and simulated images.

Keywords: image deblurring; feature disentanglement; distillation block; frequency split

1. Introduction

Image blur, caused by camera shake, object motion or out-of-focus, is one of the most
common visual artifacts. The purpose of image deblurring is to recover a sharp latent
image from a blurred image using edge structure and details when a single blurred image
is given. Image deblurring has long been an essential task in computer vision and image
processing. The image blurring can be expressed by Equation (1). Blurred image, blur
kernel, sharp image, noise and the operation of convolution are represented by B, K, I, N
and ∗ respectively.

B = K ∗ I + N, (1)

According to whether the blur kernel is a known condition, the deblurring task can
be divided into two major branches: non-blind image deblurring [1] and blind image
deblurring [2–10]. For non-blind deblurring, the information of the blur kernel K must
be known in advance. According to the blur kernel, the sharp image can be recovered
by reverse convolution on the blurred image. This process is relatively easy to follow
by a calculation standard. However, in most cases, the blur kernel is unpredictable. The
blind image deblurring is to estimate a sharp image when only the blurred image is given.
Obviously, It can be seen that non-blind deblurring is an ill-posed problem. The traditional
methods [11–13] tend to estimate the blur kernel and the sharp image simutaneously. These
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methods generally use assumed prior knowledge to limit the uncertainty of the blur kernels,
thus turning the blind deblurring problem into a non-blind problem. For example, Ref. [11]
believes blur will cause the gradient change of the image. The sharp image is restored by
updating the gradient. Pan et al. [13] proposed a dark channel prior constraining method,
which can solve this ill-posed problem. However, due to the complexity of blur kernel in
the real world, the assumed prior knowledge is inevitably limited and difficult to fully
express the blurry situation in the real scene, which leads to the artifacts in the restored
image. Moreover, these methods based on iterative optimization techniques are very
computationally expensive and usually require tuning a large number of parameters.

With the development of deep learning, many methods [2–10] began to no longer
predict blur kernels but directly restored sharp images end-to-end by constructing an
encoder–decoder structure. Encoder–decoder architecture aims to invert a given blur image
back into the latent space by the encoder, and the image then can be faithfully reconstructed
from the latent feature by the decoder. Nah [2] has built three parallel encoder–decoder
paths, and different paths receive different image scales, so that a sharp image can be
gradually recovered from the blurred image. SRNnet [3] also uses a similar multi-scale
framework, but it introduced the LSTM [14] to share the intermediate layer information
in the latent space. Deblurgan [5] uses the unet-based network as the backbone of the
generator. Deblurganv2 [9] replaced unet-based with pyramid network to achieve the effect
of feature reuse. Through our observation, although the above method solves the problem
of image blurring to some extent. They still cannot restore the original information of the
image well and even introduce artifacts inevitably. Through our analysis, such defects are
mainly due to the design of the encoder–decoder architecture can not disentangle the blur
information from the content information. The encoder task is to extract semantic content
feature map from the image, which will served as important clues to reconstruct a high-
fidelity sharp image. Then, the decoder is guided by the loss function to supplement the
detailed information lost due to the down-sampling in the decoder. It seems reasonable that
since the original blur information has also been eliminated mainly in the encoding process.
There may be only the content information of the image left in the intermediate feature maps
of the latent space. In fact, the blur information of the image is entangled with the content
information. Even if the encoder extracts the semantic feature of content information to the
maximum extent, there will still be some surviving blur information that is entangled with
it so that it is impossible to remove blur features as a single vector or a independent feature
channel from the whole feature maps through linear reorganization. These entangled blur
features are mistaken as valuable clues in the process of decoder, which disturbs the image
reconstruction process of the model and leads to produce unnatural textures and artifacts.

In response to the above problems, we proposed a frequency disentanglement distil-
lation image deblurring network (FDDN) edit on intermediate feature map in the latent
space. We proposed the frequency split block(FSB), inspired by octconv [15], disentangles
the intermediate feature map in latent space in the dimension of frequency. We think that
blur information usually exists in low-frequency features, and semantic feature of content
information usually exists in high-frequency features. Extracting blur information from
blur image or disentangling blur information from content information is a complicated
thing. We cannot solve it directly either, but we can narrow down the scope of solution
through our frequency distillation block (FDB). FDB will greatly retain the high-frequency
features in the feature channel and distillate the low-frequency features so as to solve the
entanglement problem of blur information as far as possible.

There are three clear positive impacts of the FDDN algorithm. First, FDDN is the
first time to define the deblurring task as the disentanglement operation of deblurring
information and image content information, which is different from the previous encoder–
decoder algorithm to generate sharp image directly. Compared with the direct method,
FDDN is more instructive to the network and purposefully guides the network to eliminate
blurry information, rather than relying solely on the training set and loss function. Second,
FDDN algorithm has a great positive impacts in network parameters and running speed,



Sensors 2021, 21, 4702 3 of 15

which is due to the FDB disentanglement work at latent space, where the complexity of
eigenvectors is the lowest. Third, FDDN has achieved a excellent result both in quantitative
and qualitative aspects.

Our contribution can be summarized in the following three points:

• A frequency split block (FSB) is proposed, distilling high-frequency and low-frequency
features in different channels.

• We propose a frequency distillation block (FDB) that can better retain the information
of the high-frequency characteristic channel and filter and reorganize the information
of the low-frequency characteristic channel.

• A lot of experiments have been conducted to prove the validity of the FDDN that
we designed.

2. Related Work

Image deblurring has also been rapidly developed because of the multi-scale mecha-
nism [2,3,9,16,17]. Nah et al. [2] creatively proposed the multi-scale deblurring pipline at
the first time, which introduced three kinds of blurry images with different sizes into the
model, and achieve a state of the art result in the year of 2017. This multi-scale design make
the model can perceive both detail and semantic information. However, this method re-
quired the network to carry out feature extraction and image reconstruction for three times,
which lead to the number of network parameters is too large, and the model performance
is low. SRN [3] optimized the pipeline of multi scale by employing LSTM mechanism. This
design let model share the feature extraction results across scales. However, the problem of
parameter overload cannot be solved fundamentally. Zhang et al. [16] investigate a new
scheme which exploits the deblurring cues at different scales via a hierarchical multi-patch
model, and propose a simple yet effective multi-level CNNs model called Deep Multi-Patch
Hierarchical Network (DMPHN), which uses multi-patch hierarchy as input. Gao et al. [17]
believed that [2,3] were in two extremes, in which the information of Deep deblurring
net [2] was utterly independent at each scale, while SRN net [3] fused all intermediate
information without screening and both of them could only obtain suboptimal results.
Therefore, [17] proposed a selective sharing mechanism on the basis of multi-scales and
solved the complex problem of very deep network training through jump connection.
Deblurganv2 [9] also introduces a FPN network [18] into the generator to take advantage of
multi-scale feature information, enabling the integration of high-level semantic information
with low-level detail information. However, this design still has some shortcomings. The
upper semantic information will be diluted in the process of transmission, so the higher
semantic information will be gradually weakened in the process of network transmission.
Kupyn et al. [5] creatively introduced the model of adversarial generation network in
image deblurring, which define the task of deblurring as a transformer task. The generator
received blur images as input and sharp images as output, and the discriminator was used
to discriminate the authenticity of the generated images.

In 2021, image deblurring [19–24] also achieved good results. GCResNet [19] proposed
a new codec network, in order to increase the amount of convolution of the graph, the
feature map is converted into the vertices of the pre-generated graph to synthesize the
structure data of the graph. By doing this, we apply Tulaplacian regularization to feature
maps to make them more structured. Pan et al. cited 34 to divide the deblurring process
into two steps and proposed a two-stage network. In the first stage, a public convolutional
network is used to generate an initial deblurred image. In the second stage, the initial
data distribution is transformed into a potential sharp image distribution, and sharp
edges are obtained through a priori network. In addition, they proposed a relativistic
training strategy aimed at learning the priors of potentially sharp images to train prior
networks. Wu et al. [21] designed a deblurring method based on a two-stage wavelet-based
convolutional neural network, which embeds discrete wavelet transform to separate image
context and texture information, and reduces computational complexity. In addition, they
modified the initial module by increasing the pixel attention mechanism and the channel
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scale factor so that the weight of each convolution kernel was changed, and at the same
time, the receiving field was increased and the parameters of the module were significantly
reduced. In order to guide the network to perform higher-quality deblurring and improve
the feature similarity between the restored image and the clear image, SharpGAN [22]
proposes a method that combines feature loss of different levels of image features. In
addition, they introduced the network into the receiving domain block network to improve
the ability to extract fuzzy image features. Wang et al. [23] proposed a new framework that
uses depth variational Bayes to blindly deblur the image. This framework uses discrete
reasoning and deep neural networks (DNNs) to jointly estimate the posterior of potential
clean images and blur kernels. In addition, under the guidance of the lower bound of
evidence, the data of clean images and blur kernels can be considered. Drive a priori
supervision and physical fuzzy models to train the inference DNNs involved. MPRNet [24]
proposed a method, which has two characteristics. One is that information is exchanged in
the order from early to late; the other is to avoid information loss. It is also in the feature
processing block. A horizontal connection is added, and a tightly connected multi-level
architecture is created on this basis.

3. Proposed Method
3.1. Overview

In this article, we also constructed an encoder–decoder network structure as shown
in Figure 1, and it can be divided into three parts. In the first part, the structure of the
encoder is mainly composed of two identical inception down-sampling blocks, as shown
in Figure 2. The inception down-sampling is inspired by the inceptions block [25], where
the down-sampling operation has been completed by max-pooling with a kernel of 2 × 2
and a stride of 1, so that the length and width of the feature map are each 1/2 of the
original length and width. Before pooling, the feature is resampled with the convolution
kernel 3 × 3 and the stride is 1 without changing the size of the feature map. The receptive
field of the feature pixel will expand due to the resampling, thus solving the problem of
detail loss in the process of feature map scale reduction. After the encoding path, it enters
the second part. The middle layer feature in the latent space completes the operation of
frequency disentangle and distillation here through 16 frequency distillation blocks(FDB)
to reduce the disturbance of the network by useless features. We will introduce it in detail
in Section 3.2. The third part is the decoder, in which the gray module is the residual
channel attention block [26], which is also used for feature reorganization, also does not
change the size of the input feature map, but through its channel attention mechanism to
make the decoding network more targeted recovery Image details. The green module is
pixel-shuffle convolution [27], which uses convolution to expand the number of feature
channels without changing the size of the feature map. Then squeeze the feature maps
of multiple channels into one feature map to achieve the purpose of up-sampling, as
shown in Figure 3. Since the expanded feature channels are obtained by convolution layers,
these convolutions can be trained together with other parameters, so compared with the
traditional interpolation up-sampling method [16,17], it can produce more realistic results.
Furthermore, in our frequency disentangle distillation image deblurring network (FDDN),
we design a large number of skip connection mechanisms [17] between encoding path and
decoding path.
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Figure 1. Overview the frequency disentanglement distillation image deblurring network (FDDN).

Figure 2. Inception down-sampling block.

Figure 3. The architecture of pixel-shuffle block.

3.2. The Algorithm Frequency Split Block

Inspired by octconv [15], and in response to the needs of our network itself, we
propose a frequency-based split module. As shown in Figure 4, Where the grey block
representing the input feature map, red block representing high-frequency feature map, and
blue block representing low-frequency. The frequency split block(FSB) is the component
of the frequency distillation block. It is responsible for completing the channel split task
during the distillation. Through the channel split, the useful part is retained, and the less
useful part continues to be recursively distilled. Frequency split block splits the channels
from the perspective of high and low frequencies, making the network more interpretable
and efficient. The frequency split block still follows the design of octconv [15], which can
carry out communication in intra-frequency, as well as inter-frequency. FSB is roughly
divided into the following four steps, as shown in Table 1. Step 1, we determine the
hyperparameter ratio. In order to meet the flexibility of the network, we can set different
ratios according to the distribution of the dataset. The high frequency channel number is
HChannel, and the low frequency channel number is LChannel. In the Step 2, the input
feature map through Conv_croase2h and Conv_croase2l divided into two parts, feature
to high and feature to low. This time, the high and low frequencies that are distinguished
are only roughly divided. In the subsequent of the algorithm, the intra-frequency and
the inter-frequency communication are are distinguished in more detail. Since the mostly
redundant information in low-frequency, we perform down-sampling in the low-frequency
information. Here, the down-sampling is done by a convolution operation with the stride
of 2. The Step 3 is to complete the intra-frequency communication by convh2h and convl2l.
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The Step 4 is inter-frequency communication. In the conversion process between high and
low frequency, it will be accompanied by the transformation of the feature scale. In order
to remove the redundancy of low-frequency information. Finally, through such a frequency
dimension-based disentanglement method, the input features are generated under the
operation of keeping the size unchanged, and two different features of high and low are
generated. The parameters of convolution are shown in Table 2.

Figure 4. The construction of frequency split block(FSB). The gray block represent input feature maps
of FSB. The blue represents low frequency channel and the red means high frequency channels.

Table 1. The algorithm frequency split block.

Input: Fin(w, h, input), ratio, input_channel, output_channel
Step1: Hchannel = ratio * output_channnel
Lchannel = (1-ratio) * output_channel
Step2: Feature to High = lucky_relu[Conv_croase2h(Feature in)]
Feature to Low = lucky_relu[Conv_croase2l(down-sampling(Feature in))]
Step3: H2h = Conv_h2h(feature to high)
L2l = Conv_l2l(feature to low))]
Step4: h2l = lucky_relu[Conv_h2l(down-sampling(feature to high))]
L2h = lucky_relu[Conv_l2h(up-sampling(feature to low))]
Output: Fh = H2h + L2h
Fl = up − sampling(L2l + h2l)

Table 2. The detail parameters of the convolution layer of FSB.

Conv_Name Input_Channel Output_Channel Kernal-Size Stride

Conv_croase2h input_channel Hchannel 3 1
Conv_croase2l input_channel Lchannel 3 1

Conv_h2h Hchannel Hchannel 1 1
Conv_h2l Lchannel Lchannel 1 1
Conv_l2l Lchannel Lchannel 1 1
Conv_l2h Lchannel Hchannel 1 1

3.3. Frequency Distillation Block (FDB)

Frequency distillation block is used in latent space. There are two reasons for this. The
first is to improve the performance of the network. There are high-dimensional features
in the latent space, and the feature size is generally small, which makes the amount of
calculation less during the convolution operation. Second, our purpose is to distinguish
feature information in the frequency dimension. High-dimensional features make it easier
to distinguish between foreground semantic information and background information, as
well as areas with rich features and flat gradients. This makes the high-dimensional features
in latent space suitable for entangled operations. As show in Figure 5a, The traditional
distillation block [28] is a progressive refinement module. It employs three channel split
operations on the preceding features, which will produce two-part features. This one will
be sent directly through the jump link mechanism in the feature fusion stage; this part’s
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channels are regarded as the useful information for restoring the image. The remaining
part will be sent to the next recursive channel split operation. However, it simply divides
the feature channel only according to a ratio. The detail of traditional distillation block [28]
is show in Equations (2)–(5).

Fdistilled1, Fcoarse1 = Split1(L1(Fin)) (2)

Fdistilled2, Fcoarse2 = Split2(L2(Fcoarse1)) (3)

Fdistilled3, Fcoarse3 = Split3(L3(Fcoarse2)) (4)

Fdistilled4 = L4(Fcoarse3)) (5)

Figure 5. (a) represent tradition distillation block; (b) the disgn of FDB.

Therefore, in this article, we propose a frequency distillation block (FDB), as show
in Figure 5b , which is regarded as a frequency-based disentanglement. FDB uses the
frequency split block (FSB) of Section 3.1 mentioned above. Flown (n = 1, 2, 3) is the low-
frequency feature in the feature map, and Fhighn (n = 1, 2, 3, 4) is the high-frequency feature.
By keeping the high-frequency features directly, we think that the high-frequency features
contain rich details such as the contours and edges of the foreground in the image. In
addition, Flown , which is sent to the recursive distillation process again, is the low-frequency
feature. We believe that in the low-frequency feature, the gradient changes slowly. The
low-frequency mainly contains information such as the color, lighting, and blur features of
the image. Of course, it does not completely rule out the existence of some useful details, so
through the next distillation, purification is retained. The operation after this is to complete
the operation of FDB through feature fusion with the saved Fhighn (n = 1, 2, 3, 4). Subsequent
operations merge the saved Fhighn (n = 1, 2, 3, 4) to get the output feature Fout. The detail of
FDB is show in Equations (6)–(11).

Fhigh1, Flow1 = FSB1(L1(Fin)) (6)

Fhigh2, Flow2 = FSB2(L2(Flow1)) (7)
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Fhigh3, Flow3 = FSB3(L3(Flow2)) (8)

Fhigh4 = L4(Flow3) (9)

F = CAT(Fhigh4, Fhigh2, Fhigh3, Fhigh4) (10)

Fout = CCA(F) (11)

3.4. Loss Function
3.4.1. Mse Loss

When training the generative adversarial network, it is necessary to compare the
reconstructed image with ground truth by appropriate measurement. Usually, people use
a pixel-by-pixel comparison loss function to measure the difference between the recon-
structed image and the ground truth. However, using the pixel-by-pixel comparison loss
function alone will produce artifacts. For example, consider two identical images that
are offset from each other by one pixel; although they are very similar in perception, the
results will be very different. In this case, the network will use the average of all possible
solutions as the convergence value, which will cause artifacts. However, the pixel-by-pixel
loss can still retain the detailed information of the picture to a certain extent. Therefore, we
choose MSE as the pixel-by-pixel loss function, but we give it a relatively small weight. See
Equation (12) for specific details.

LMSE =
1

wh

w

∑
x=1

h

∑
y=1

((li)x,y − GθG(Bi)x,y)
2 (12)

Among them, Bi represents the input blurred picture, GθG represents the generation
network, and li is the standard clear image. The w and h are the length and width of the
input/output image, respectively.

3.4.2. Perception Loss

At the same time, research [29] shows that perception loss can make the generation
network improve the image quality. It maps the real picture and the generated picture to
the feature map of the deep network and then calculates the least square method based
on the feature map. This solves the disadvantage of pixel-by-pixel loss and performs
pixel-by-pixel difference on the mapped feature map so that even if there is a certain degree
of displacement, it will not have much impact. The process is shown in Equation (13),
where w, h is the length and width of the feature map, and the parameters of the feature
map are obtained by the VGG-16 network in the ReLU 3_3 layer.

Lpercep =
1

wh

w

∑
x=1

h

∑
y=1

(ϕ(li)x,y − ϕ(GθG(Bi))x,y)
2 (13)

The total loss function is shown in Equation (14).

LTotal = LMSE + λLPercep (14)

4. Experiments
4.1. Dataset

In order to prove the effectiveness of the frequency disentangle distillation image
deblurring network (FDDN) more convincingly, and to avoid the situation that the network
has excellent performance only on a specific dataset due to over-fitting. We will conduct
comparative experiments on three different datasets.

GoPro [2] dataset uses GoPro Hero 4 camera to capture video sequences at 240 frames
per second (fps). This dataset consists of 3214 pairs of blurry and sharp images with a
resolution of 1280 × 720. Among them, 1111 pairs are used as the testset. Different from
using the blur kernel to convolve on a sharp image to obtain a blurred image, GoPro [2]
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follows the approximate camera imaging process during the image generation process in
the blur and integrates consecutive frames within a certain exposure time to highlight the
exposure time. The movement of the object inside is caused by the artifacts caused by the
displacement, thereby generating a blurred image, rather than assuming a specific move-
ment and designing a complex blur kernel. Therefore, there are only pairs of sharp/blurred
image pairs in the dataset, and with no blur kernel. This kind of deblurring dataset without
kernel estimation, compared with the traditional synthetic deblurring dataset with uniform
blur kernel, is in the foreground, and the static background shows more realistic spatial
blur changes.

HIDE [30] dataset is carefully constructed for human-aware image deblurring, cover-
ing a wide range of scenes, motions. HIDE dataset has 8422 sharp and blurry image pairs,
extensively annotated with 65,784 human bounding boxes. For evaluation purposes, the
images are split into separate training and test sets. Following random selection, we arrive
at a unique split containing 6397 training and 2025 test images.

In this paper, we set a new Karate dataset in real scenes. It is difficult to get a
sharp image completely corresponding to the blurred image after obtaining the blurred
image. Even if certain conditions are deliberately created, slight deviations are unavoidable.
Therefore, most of the benchmark datasets are obtained by the synthesis to obtain the
paired images at this stage. There is no way to verify the ability of the algorithm to deblur
the blurred image directly obtained in the real world. Therefore, we built a blurted dataset
of the real scene. The main scene of the dataset is a karate match, and it is unpaired, with
only blurred images and no corresponding ground truth.

4.2. Training Details

The experience environment parameters were as follows: Intel Core i5 9400F CPU@2.9GHz;
memory: 32.00 GB; operating system: Ubuntu18.04; GPU: Nvidia RTX2080Ti. We obtained
the following fixed parameters through repeated experiments and adjustments: ratio = 0.5;
λ = 0.1. The training uses 2500 epochs. The learning rate is 0.001, and each iteration attenu-
ates 0.0000001 after 500 epochs; the optimizer uses adam; it was trained on a RTX2080Ti
for about 14 days. Since it is a fully convolutional network, images of any size can be
accepted. Data enhancement options such as horizontal flip, quality compression, rotation,
optical transformation, color change, cropping, hue saturation transformation, motion blur,
median blur, snow scene and grayscale image conversion, are shown in Figure 6.

4.3. Quantitative and Qualitative Evaluation on Gopro Dataset

We evaluate the performance and efficiency of our model in the GoPro [2] dataset.
We make comparisons with the state-of-the-art deblurring methods [2,16,17,27–29] in
Pre-Processing, in terms of PSNR, SSIM, model size and inference time for images. The
quantitative results are shown in Table 3. Visual comparisons are shown in Figure 7.

4.4. Quantitative and Qualitative Evaluation on Hide Dataset

To verify the validity of our method, we further evaluate our approach on the HIDE
testing set [28]. In Table 4, we show a comparison with some of the methods. Visual
comparisons are shown in Figure 8. From the data, we can see that our proposed method
performs very well on this database.



Sensors 2021, 21, 4702 10 of 15

Figure 6. The visual represent of data enhancement.

Figure 7. Visual comparison example on the GoPro dataset. (a) DMPHN [16]; (b) Gao et al. [17];
(c) Tao et al. [31]; (d) Ours.
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Table 3. Performance and efficiency comparison on the GoPro dataset.

Methods PSNR SSIM Model Size (MB) Time (s)

DeepDeblur [2] 29.08 0.841 303.6 15
Zhang et al. [3] 29.19 0.9306 37.1 1.4
Gao et al. [17] 30.92 0.9421 2.84 1.6

DeblurGAN [5] 28.70 0.927 37.1 0.85
Tao et al. [31] 30.10 0.9323 33.6 1.6

DeblurGANv2 [9] 29.55 0.934 15 0.35
DMPHN [16] 30.21 0.9345 21.7 0.03

SIS [32] 30.28 0.912 36.54 0.303
Yuan et al. [33] 29.81 0.936 3.1 0.01
Pan et al. [20] 31.40 0.947 - -
Wu et al. [21] 30.75 0.913 29.1 3.2

SharpGAN. [22] 29.62 0.897 - 0.17
Ours 31.42 0.923 8.08 0.019

Figure 8. Visual comparison example on the HIDE dataset. (a) DMPHN [16]; (b) Tao et al. [31];
(c) Kupyn et al. [5]; (d) Ours.

Table 4. Performance comparison on the HIDE dataset.

Methods Sun et al. [34] DMPHN [16] Nah et al. [2] Tao et al. [31] Kupyn et al. [5] GCResNet [19] FDDN (Ours)

PSNR 23.21 29.09 27.43 28.60 26.44 30.04 30.07
SSIM 0.797 0.930 0.902 0.928 0.890 0.924 0.923
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4.5. Qualitative Evaluation of the Real-World Dataset

In this section, we have collected a set of datasets about karate competitions. The
dataset is unpaired, with only blurred images and no ground. Therefore, PSNR and
SSIM cannot be calculated without ground truth. Only in Figure 9 is the deblurring
effect visualized.

Figure 9. Visual comparison example on the karate dataset. (a) DeepDeblur [2]; (b) Deblur [5];
(c) Zhang et al. [3]; (d) Ours.

4.6. Ablation Study

In this part, we verify the effectiveness of the method proposed in this paper through
3 sets of comparative experiments. The verified modules are frequency split block, distil-
lation block, and frequency distillation block. In the first set of ablation experiments, we
replaced the distillation block with resnet [35]. In order to preserve the frequency split
block, we added the frequency split block to the feature pixel level to achieve feature
fusion. We found that the absence of the distillation block will also greatly affect the model
effect. In the second set of ablation experiments, to eliminate the frequency split block, we
used RFDB [27] to replace the frequency distillation block. The channel segmentation of
RFDB [27] uses a single convolution operation. Because a simple structure is used to replace
a complex structure, there will be a slight advantage in the model size. However, through
experimental results, it is found that the deblurring effect of the model will be affected. In
the third set of ablation experiments, we used resnet [35] instead of the complete frequency
distillation block. It was found that the deblurring ability of the model dropped the most
in all ablation experiments, indicating that no matter the distillation block, the frequency
split block, or the frequency distillation block composed of them, they all played a key role
in the model. The specific quantitative data can be seen in Table 5.

Table 5. Quantitative comparison of different ablations of our network on the GroPro dataset.

Distillation Block Frequency Split Block Frequency Distillation Block PSNR SSIM Model Size (MB)

7 X X 29.65 0.892 9.05
X 7 X 29.80 0.901 7.96
X X 7 29.21 0.863 7.89
X X X 31.42 0.923 8.08

4.7. Analysis of the FDDN

Practical advantages: FDDN has achieved convincing results in the three parameters
of PSNR, SSIM and model size, which means that this model has certain advantages in
running speed and running effect. Due to the design of the FDB, the FDDN has a very deep
model structure, which means every pixel of feature map have a very large receptive field.
This property allows the image restoration process can make better use of the surrounding
pixel information to restore the image details. The details can be see in Figure 8. In addition,
according to Experiment 4.6, it can be seen that FDDN can not only recover image blur
well on public datasets, but also generalize to specific application scenarios, such as motion
blur in karate.
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Disadvantages: FDDN cannot directly solve the entanglement of the blur and content
information, but indirectly realizes the entanglement of blur information and content
information through distillation operation in the two dimensions of high and low frequency.
High-frequency information is retained as far as possible, and the redundancy of low-
frequency information is eliminated.

5. Conclusions

Image deblurring is an important technical means to ensure the quality of the image.
In this paper, we hope to realize the disentanglement of blur information and content
information from the perspective of frequency. Therefore, we proposed the frequency
disentanglement distillation image deblurring network (FDDN), which have three contri-
bution: first, we proposed the frequency split block (FSB), which can distill high-frequency
and low-frequency in defferent channels. Second, frequency distillation Block (FDB), which
is a combination of frequency split block (FSB) and distillation block. FDB can be regarded
as a frequency-based disentanglement. By keeping the high-frequency features directly
and sending the low-frequency feature to the recursive distillation process, FDB distillate
the useful feature step by step. Third, we perform extensive experiments on the tasks of
motion deblurring using both synthetic datasets and real images and achieve an efficient
result. We find that the FDDN have a good ability of generalization, and it can restore the
details of blurry area effectively.

In the following work, we will further explore and improve the image restore ability of
FDDN, which is not only used for image blurring, but also can be extended to image derain,
super resolution, image inpainting and other joint tasks. In addition, the transformer
mechanism will be introduced to further improve the quality of image restore. Finally,
we will reduce the parameters of the model, so that FDDN can complete the real-time
deblurring task.
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