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Abstract

Application of single-cell genomics technologies has revolutionized our approach to study the immune system. Unravelling
the functional diversity of immune cells and their coordinated response is key to understanding immunity. Single-cell tran-
scriptomics technologies provide high-dimensional assessment of the transcriptional states of immune cells and have been
successfully applied to discover new immune cell types, reveal haematopoietic lineages, identify gene modules dictating
immune responses and investigate lymphocyte antigen receptor diversity. In this review, we discuss the impact and appli-
cations of single-cell RNA sequencing technologies in immunology.
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Introduction

Our understanding of the immune system has been advanced
over many centuries through the use of single-cell technologies,
primarily microscopy and flow cytometry. However, the num-
ber of parameters that can be measured simultaneously with
these methodologies is limited and reliant on a priori know-
ledge of which antigens to measure. The advent of next-
generation sequencing to measure transcriptome at single-cell
level has revolutionized our ability to interrogate the immune
system [1]. This has enabled the field to move beyond the trad-
itional cell-type classification based on limited characteristics,
[2] and the averaged gene expression read out of bulk popula-
tions which may conceal biologically significant cellular hetero-
geneity [3, 4]. The intrinsic variation (due to cell cycle or
transcription burst) and the extrinsic variation (due to exposure
to stimuli or contact with other cells), and the interaction
between these factors that cause heterogeneity may not be
amenable to study at bulk population level (Figure 1). Accurate

classification of cell types is paramount to understanding the
functional configuration of the immune system.

Single-cell genomics

Several genomics technologies such as quantitative reverse
transcription PCR (RT-qPCR) and microarray have been adapted
to study gene expression in individual cells [5, 6] (reviewed in
[7]). While these can be cheaper, and RT-qPCR can be more sen-
sitive for targeted sampling, scRNA-seq aims to capture the
whole transcriptome and does not require preselection of target
genes. Single-cell sequencing is a recent technology, but tech-
niques to sequence genome and epigenome have been de-
veloped, such as single-cell chromatin immunoprecipitation
sequencing [8], single-cell DNA adenine methyltransferase
identification (DamID) [9] or single-cell combinatorial indexed
Hi-C (sciHi-C), which captures chromosome conformation [10,
11]. Epigenome analysis at single-cell resolution is limited to
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bisulphite sequencing for methylation status (scBS-seq) and
sequencing transposase-accessible open chromatin (ATAC-seq)
[12, 13] (reviewed in [14, 15]). Single-cell RNA sequencing
(scRNA-seq) is the most advanced method and has gained
wide popularity in recent years. The general principle behind
bulk and single-cell sequencing is similar with respect to
mRNA extraction from single cells followed by conversion into
complementary DNA libraries. However, scRNA-seq has lim-
ited starting RNA material which results in lower mapping
rates and library complexity [16]. Several cell isolation meth-
ods and protocols have been developed; scRNA-seq can be per-
formed on cells in a suspension state but also on fixed, frozen
or cryo-preserved samples [17, 18]. Following tissue dissoci-
ation to generate cell suspension, individual cells can be cap-
tured and processed by droplet/microfluidics technologies
(e.g. 10x Genomics Chromium, Fluidigm C1), or direct isolation
into 96- or 384-well plates, by fluorescence-activated cells
sorting (FACS), micromanipulation using a glass micropipette
or optical tweezers [19]. Several protocols exist to generate
sequencing libraries, which involves reverse transcription and
polymerase chain reaction amplification of the 30 or 50 end or
the full length of mRNA (reviewed in [20]). Utilization of
unique molecular identifiers provides information on original
mRNA copy number, and RNA spike-ins can be used for nor-
malization. Plate-based approaches collect one cell in each
well and importantly provide index flow cytometry informa-
tion for each sorted cell. Droplet scRNA-seq approaches use
beads to capture mRNA with barcoded primers. This enables
high-throughput gene expression measures from high number
of single cells. However, there may be cell capture bias, and
mRNA-capture rate, thus library complexity, is lower than in
plate-based approaches. This means fewer genes can be de-
tected and also that gene detection saturates at approximately
an order of magnitude fewer reads than in plate-based tech-
niques [21]. Finally, because of the high number of cells
sequenced and cost constraints, sequencing is often per-
formed at lower-than-saturation depth. These factors lead to a
higher gene dropout effect, i.e. non-detection of expressed
genes [22]. The advantages and limitations of the different
approaches present various trade-offs between the number of
cells analysed, ability to capture rare cells, library complexity,
depth of sequencing and cost (total and per cell). The scRNA-
seq protocol of choice is therefore guided by the specific re-
search goals (reviewed in [23]). For example, discovering dis-
tinct new rare populations requires surveying a great number
of cells using droplet methods, while characterization of rare

cells requires prior enriching, which can be based on known
surface marker expression [24].

Sequenced reads from single cells are analysed in a similar
manner to bulk-population RNA sequencing data. Reads are
mapped to the reference genome or transcriptome, for which a
variety of programs have been developed, such as STAR, kallisto
or salmon [25–27], but a reference can also be built based on the
data itself. Kallisto and salmon also provide estimation of tran-
script abundance, but several tools, such as HTSeq [28] or
featureCounts [29], provide normalized units, such as TPM,
FPKM/RPKM or raw counts. This step is followed by data normal-
ization, i.e. a correction of unwanted biological and technical ef-
fects, such as sequencing depth, cell cycle stage, gene number
or batch effect, using spike-ins or other statistical techniques
[30]. Quality checks can be performed at several stages, both at
read level, where adapter sequences are trimmed and low-qual-
ity reads are removed, and at the cell level, where cells with low
number of reads, genes or alignment percentage are removed
[31]. Analysis of the prepared transcriptome profiles of thou-
sands of single cells allows detailed investigations of cell diver-
sity and heterogeneity, leading to better characterization of cell
types, decomposition of tissues and even organs [32]. This het-
erogeneity can be explored in multiple ways. First, the data can
be visualized to understand the overall structure. Single-cell
RNA-seq data is multidimensional, therefore visualization
requires using a dimensionality-reduction technique, such as
principal component analysis (PCA), t-distributed stochastic
neighbour embedding (t-SNE) [33], or a diffusion map [34]. This
is followed by clustering cells according to their gene expression
profiles, using data mining techniques, which include K-means
[35], hierarchical [36], density-based or graph clustering (re-
viewed in [23]). It is important to minimize artefacts at the nor-
malization stage, such as the effect of cell cycle stage, which
can confound clustering analysis, and also to ensure that rare
cells are clustered separately to other populations or discovered
with bespoke tools such as RaceID [35] or GiniClust [37]. Finally,
‘marker’ genes can be identified for each cluster, i.e. genes that
are significantly differently expressed in the cluster. These
genes can be used to identify these cells for subsequent valid-
ation and functional characterization, which is performed to
confirm their identity (Figure 2). Analysis of gene sets also
allows to computationally characterize the cells through differ-
ential gene correlation analysis (DGCA) [38] and pathway ana-
lysis (e.g. pathway and gene set overdispersion analysis [39]), or
to infer gene regulatory networks (e.g. PIDC [40], SCENIC [41]).
Additionally, lineage relationships and differentiation

Figure 1. Heterogeneity of single cells within bulk populations. Cells isolated based on limited number of markers using FACS, by micropipette, optical tweezers or

microfluidics, may contain multiple different cell types and cell states (left panel). If these cells are subjected to bulk analysis (squares), their heterogeneity and unique

functions are masked by an average of gene expression signals. If studied individually (single cells), then their distinct activation responses to stimuli, such as cyto-

kines, lipopolysaccharide or bacteria, can be uncovered (right panel). A specific stimulus can have variable effect on cells and leads to different outcome readout for the

population in total. For instance, the rare cells may be early responders, which differentiate and activate other cells via paracrine signalling, or the cell types may re-

spond differently, by cytokine production (cell type 2/round cells) or differentiation.
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trajectories can be reconstructed using bifurcation analysis
tools, such as SCUBA [42] or Wishbone [43], diffusion maps,
pseudo-time ordering of cells based on transcriptome similarity,
with tools such as Wanderlust [44] or Monocle [45], or using
single-cell topological data analysis (scTDA) [46]. Future
approaches, such as the recently published approximate graph
abstraction (AGA), will reconcile clustering and trajectory ana-
lysis to explain both discrete and continuous cell-to-cell vari-
ation [47]. Several toolkits facilitate scRNA-seq data analysis,
such as Scater [48], Seurat [49] or Sincera [50]; however, the
abovementioned software and statistical approaches are still
currently under development and in the exploratory phase, in
contrast to bulk RNA sequencing, where there is a consensus on
analytical approaches.

Immunology in the single-cell sequencing age

The key applications of scRNA-seq in immunology have been to
unravel cellular heterogeneity, cell development and differenti-
ation, haematopoiesis and gene regulatory networks to predict
immune functions.

Cellular heterogeneity

A seminal early study analysing>4000 cells from mouse
spleen to dissect immune cell heterogeneity demonstrated an
scRNA-seq-based classification of CD11c expressing cells [32].
scRNA-seq has since been used to study immune populations
in many species, including human [51]. There are several
general considerations for interpreting and validating findings
from scRNA-seq analysis, in addition to specific considerations
in the context of immune cells. One general consideration is
resolution, i.e. number of genes per cell provided by the differ-
ent scRNA-seq protocols to cluster cells by mRNA expression.
Secondly, whether a transcriptionally unique cluster of cells is a
distinct cell type, a transitory/intermediate cell type or cell
state. Immune cells, even within distinct lineages, e.g. myeloid
or lymphoid, may share expression of many gene modules,
which may not necessarily be because of these cells being
developmentally related. Thirdly, how to verify, isolate and

functionally characterize transcriptionally distinct cell clus-
ters. Fourth, how many individuals need to be profiled using
scRNA-seq to validate cell clusters or are there alternative
strategies that can be deployed to extend the findings reliably
to a bigger population cohort. A recent scRNA-seq analysis
using Smart-seq2 protocol of human blood lineage-MHCIIþ

cells consisting of known blood dendritic cells (DCs) and
monocytes identified several new populations of DCs,
monocytes and a DC progenitor. In this study, transcriptionally
distinct cell clusters were found within what was previously
thought to be a homogenous population. The identity of new
cell clusters was validated by isolating cells based on surface
markers predicted by mRNA expression, followed by scRNA-
seq of isolated cells to validate their transcriptional identity.
This enabled a cost-effective and scalable means of isolating
newly identified cell types for functional characterization and
demonstrating their presence as a stable cell type in a wider study
population. Furthermore, by adaptively sampling peripheral
blood mononuclear cells (PBMCs) using legacy knowledge of sur-
face markers known to identify DCs and monocytes, the authors
could use FACS to enrich for rare populations [52]. In contrast,
scRNA-seq analysis of unselected PBMCs would require high cell
numbers to be analysed to identify rare cell types because of a
higher representation of abundant cell types. In the case of
PBMCs, approximately 90% of profiled cells will be lymphocytes,
10% monocytes and 1% DCs. The study of 68 000 unselected
PBMCs was able to identify several populations of immune cells
but was more challenging for cells found at a frequency<1% [51].

In addition to exploring the overall cell census and dis-
covering new cell types, scRNA-seq analysis can be focused on
small and well-defined subsets. For example, a study of mouse
Th17 cells identified heterogeneity within this population and
uncovered molecular mechanisms regulating their pathogen-
icity [4].

Development and differentiation

scRNA-seq has been applied to study the developmental pro-
gramme undergone by haematopoietic stem cells and down-
stream progenitors into differentiated immune cells [53, 54]

Figure 2. Integrated analysis of the immune system using single-cell RNA-seq. Cells from immune compartments of interest are isolated and analysed by scRNA-seq.

During analysis, cells are grouped (clustered) by transcriptome profile. New and known cell clusters can be further investigated. The identity of clusters and authenti-

city of new cell types can be validated by flow cytometry, RT-qPCR or sequencing of isolated cells. Morphological and functional studies of new cell types or molecules

provide additional biological insights. The new knowledge is integrated into subsequent experimental models.
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(reviewed in [55, 56]). Trajectory analysis has been applied to
this continuous heterogeneity to uncover DC development and
differentiation in mouse [57] and human [58–60]. Trajectory
analysis can be technically challenging, as most models rely on
the researcher identifying the initial progenitor/precursor popu-
lation and adequate representation of cells at all stages of dif-
ferentiation to define the developmental trajectory. Recent
scRNA-seq-based trajectory analysis of haematopoiesis re-
vealed a less hierarchical model of differentiation and early
commitment into distinct lineages [61, 62]. In embryonic haem-
atopoiesis, scRNA-seq revealed the early tissue colonization of
precursors, which subsequently acquire a macrophage tran-
scriptional program and differentiate into tissue-specific
macrophages during organogenesis [63]. The development and
heterogeneity of innate lymphoid cells (ILCs) have also been
investigated [64], providing a new framework for studying these
cells [65, 66]. Trajectory analysis and modelling also recon-
structed the differentiation pathways of naı̈ve CD4þ cells into T
follicular helper (Tfh) and Th1 cells [67].

Immune cell function

Single-cell sequencing, which provides V(D)J transcript data, has
been used to study lymphocyte antigen receptors e.g. T cell recep-
tor (TCR) and B-cell receptor (BCR) sequences. A computational
method, TraCeR, was developed to reconstruct TCR sequences
and reveal clonal relationships between cells. TCR reconstruction
combined with T-cell transcriptional analysis was used to map
T cell activation dynamics in a mouse Salmonella infection model
[68]. Two more recent studies on TCR repertoires developed a
method that can predict epitope-specificity of TCR sequences [69]
and an algorithm, GLIPH (grouping of lymphocyte interactions by
paratope hotspots), that groups T cells by TCR specificity [70].
Carmona et al. analysed evolutionary conservation of genes in
human and mouse immune cell types, which enabled the identifi-
cation of three T cell populations within zebrafish. Using TCR
locus reconstruction, new immune-specific genes, such as novel
immunoglobulin-like receptors, were discovered [71]. Similarly, a
software tool, BASIC (BCR assembly from single cells), was de-
veloped for reconstructing and studying B cell repertoire [72].
Other studies focused on the lymphocyte repertoire have been re-
viewed elsewhere [24, 73–75].

The application of clustered regularly interspaced short pal-
indromic repeat (CRISPR) technology-based perturbations of
genes combined with scRNA-seq (Perturb-seq) has provided a
new way to study transcriptional programs and gene expression
networks, and was used to identify gene targets and cell states
affected by individual perturbations of transcription factors in
bone marrow-derived DCs in response to lipopolysaccharide
[76]. Another similar combined CRISPR-based gene editing with
scRNA-seq study assessed the effect of transcription factors in
mouse haematopoiesis, which revealed a critical role for the
Cebpb gene in monocyte and DC development [77]. Complex
host–pathogen interactions at single-cell level have revealed
new biological insights. Shalek et al. [78, 79] found heterogeneity
in the response of bone marrow-derived DCs to the bacterial
cell wall component, lipopolysaccharide, and showed bimodal
gene expression across cells. Variation in host macrophage re-
sponse to Salmonella was shown to be determined by transcrip-
tional heterogeneity within the infecting bacteria [80, 81]. In
addition, Salmonella growth rate was also discovered to be de-
pendent on macrophage state [82]. Bacterial challenge of macro-
phages was also used in a demonstration of a new massively
parallel scRNA-seq technique termed Seq-Well. In this method,

cells are confined together with beads in subnanoliter wells,
where cell lysis and mRNA capture to beads take place. After es-
tablishing its ability to distinguish between PBMC populations,
the macrophage response to Mycobacterium tuberculosis was
interrogated, and three macrophage sub-phenotypes were iden-
tified in the culture system [83]. A new microfluidic lab-on-a-
chip method, Polaris, enabled investigation of the influence of
the micromilieu on gene expression dynamics using CRISPR-
edited macrophages, and implicated critical roles of SAMHD1 in
tissue-resident macrophages [84].

Several other studies investigated specific aspects of im-
mune cell function. Characterization of mouse Treg heterogen-
eity uncovered their composition and identified a rare subset of
CD43þCCR5þCXCR3� Tregs that express Il10 and Gzmb, which are
responsible for dampening cutaneous immune responses [85].
Ageing was shown to be associated with a diminished ability to
upregulate core transcription modules for effective immune re-
sponses in naive and effector memory CD4þ T cells in mice [54],
and a role for microbiota on epigenetic regulation and gene
expression of ILCs was also recently shown by scRNA-seq
analysis [86].

Cancer immunology

In addition to infectious disease, scRNA-seq has provided new
insights in cancer immunology through comprehensive tumour
and immune cell profiling. Studies that combined single-cell
profiling with tumour spatial heterogeneity analysis have iden-
tified multiple mechanisms of cancer-associated immunosup-
pression, including tumour-infiltrating T cell dysfunction [87]
and immunosuppressive tumoural T cells and macrophages
[88]. Similarly, a study of gene expression diversity in microglia
and macrophages in glioma showed a continuum of microglia-
specific versus macrophage-specific genes, and suggested that
tumour microenvironments alter the gene expression profile of
microglia/macrophages, so that it is dominant over cell origin
[89]. Comparison of tumour with healthy tissue from the same
patient offers insights into the immune landscape during tu-
mour development. In one such study of lung adenocarcinoma,
altered T, natural killer and myeloid cell compartments were
identified, which possibly compromise tumour immunity [90].
Enrichment of tissue homeostatic modules in human melan-
oma DCs and monocytes was another mechanism of cancer
immunomodulation, which was illustrated by single-cell profil-
ing [91]. scRNA-seq analysis of 15 melanomas and additional
2068 tumour-infiltrating T cells revealed spatial and functional
heterogeneity in the tumour and T cells within and between in-
dividuals, and uncovered the range of T cell activation and ex-
haustion programs [92]. Finally, a study involving CD4þ T cells
found that myeloid cell expansion is critical for the control of
malaria parasite (Plasmodium chabaudi) replication and host re-
covery. It established that CD4þ T cells produce macrophage
colony-stimulating factor and that myeloid cell expansion is de-
pendent on these cells [93].

Complementing single-cell sequencing
analysis

Single-cell RNA-seq relies primarily on a deconstructionist
approach, where the analysed cells are dissociated from tis-
sue into suspension format resulting in loss of micro-
anatomical positional information. Combining scRNA-seq
with spatial high-dimensional transcriptomics, imaging and
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single-molecule FISH (fluorescent in situ hybridization), such as
RNA-scope, will aid dissection of functional niches and immune
organisation within tissues (reviewed in [94]). The feasibility of
the spatial transcriptomics approach was demonstrated on the
adult mouse olfactory bulb brain region [95]. Combined strat-
egies have been illuminating in development [96] and cancer
immunology studies [90, 92]. In addition, integrating scRNA-seq
with parallel lncRNA, miRNA and other omics measurements,
such as epigenome, proteome or metabolome, will provide fur-
ther biological and mechanistic insights [97]. Several methods
have been published that measure RNA and protein from the
same cells. These use oligonucleotide probes, which hybridize
to target transcripts and are detected by cytometry (proximity
ligation assay for RNA, PLAYR) [98], or label proteins using
antibody-conjugated oligonucleotides, which are sequenced to-
gether with the transcriptome, providing a readout for a select
number of target proteins (proximity extension assay, PEA [99],
RNA expression and protein sequencing assay, REAP-seq [100]
and cellular indexing of transcriptome and epitopes by
sequencing, CITE-seq [101]). Microfluidics assays have also been
developed to measure secreted proteins and transcriptome sim-
ultaneously [102].

Future perspective

High-dimensional single-cell technologies present a radical de-
parture from classical top-down hypothesis-based research. They
enable a bottom-up unbiased approach with big data generation
followed by hypothesis generation and testing. While high-
dimensional single-cell methods have provided unprecedented
resolution to observe and model biological phenomena, it is crit-
ical to extend the observations made with functional validation
and experimentation to unravel mechanistic biological insights.
This requires a multidisciplinary research team effort to over-
come the convention of using genomics just as a tool, computa-
tion as an analytical means and immunology as a model system,
as the combined expertise will have a greater impact than the
sum of the individual components. This integrated approach will
facilitate biological validation and meaningful experimentation
and analysis of big scRNA-seq data sets. With time, costs associ-
ated with cell preparation and sequencing will decline and will be
accompanied by progress in protocol automation and improve-
ments in technical shortcomings of scRNA-seq, such as the small
number of sequencing reads or the sparsity of data, which cur-
rently pose analytical challenges [103]. These advancements will
increase cell throughput and number of genes that are detected
per cell. With automation and decrease in sequencing cost, an
important experiment design question to be solved is the number
of biological replicates or individuals needed for reliable and gen-
eralizable conclusions.

Multi-omics approaches will provide comprehensive profiles
of epigenome, transcriptome and proteome, and promise to
solve some questions, such as our understanding of cell types,
and the links between the genome and epigenome (reviewed in
[104]). Finally, the integration of omics and screening technolo-
gies, such as Perturb-seq, will facilitate high-throughput experi-
mentation. However, these present considerable experimental
and data analysis challenges [105]. These promising approaches
applied to human experimental model systems and disease set-
tings will facilitate mechanistic rather than descriptive under-
standing. Such mechanistic insights can be used to identify
robust molecular targets for drug and personalized immuno-
therapy strategies.

Key Points

• Single-cell sequencing technologies have revolutionized
our approach to study the immune system.

• Enables high-dimensional dissection of cellular het-
erogeneity and establishes developmental relationships
and functional predictions.

• Future integration with other types of omics data will
expand our understanding of the immune system.
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