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The present work aimed to investigate the swelling behavior, in vitro digestion, and release

of a hydrophobic bioactive compound, thymoquinone (TQ), loaded in Pickering emulsion

incorporated in alginate-chitosan hydrogel beads using a simulated gastrointestinal

model. In this study, oil-in-water Pickering emulsions of uniform micron droplet sizes

were formulated using 20% red palm olein and 0.5% (w/v) cellulose nanocrystals-soy

protein isolate (CNC/SPI) complex followed by encapsulation within beads. FT-IR was

used to characterize the bonding between the alginate, chitosan, and Pickering emulsion.

2% (w/v) alginate-1% (w/v) chitosan hydrogel beads were found to be spherical with

higher stability against structural deformation. The alginate-chitosan beads displayed

excellent stability in simulated gastric fluid (SGF) with a low water uptake of ∼19%.

The hydrogel beads demonstrated a high swelling degree (85%) with a superior water

uptake capacity of ∼593% during intestinal digestion in simulated intestinal fluid (SIF).

After exposure to SIF, the microstructure transformation was observed, causing erosion

and degradation of alginate/chitosan wall materials. The release profile of TQ up to 83%

was achieved in intestinal digestion, and the release behavior was dominated by diffusion

via the bead swelling process. These results provided useful insight into the design of

food-grade colloidal delivery systems using protein-polysaccharide complex-stabilized

Pickering emulsions incorporated in alginate-chitosan hydrogel beads.
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INTRODUCTION

Thymoquinone (TQ), a major essential oil component of Nigella
sativa seeds, has attracted significant attention in recent years
to be used as an alternative to chemical drugs. TQ has been
known to possess therapeutic benefits such as anti-oxidant,
anti-inflammatory, and anti-cancer with minimal adverse effects
and no severe toxicity (1, 2). Furthermore, several studies
showed that TQ could induce apoptosis in human colorectal
cancer cells by abrogate the stress response pathway sensor
CHEK1 (3) and inhibit the proliferation of human colon cancer
cells by increasing the phosphorylation states of the mitogen-
activated protein kinases (4, 5). These findings suggest that
TQ could be a critical component in formulating nutraceutical
food products for colon cancer prevention. However, the
application of TQ in food systems has been limited because
of its high hydrophobicity due to the low dissolution profile
when delivered orally. Hence, it exhibits low bioavailability at
the target-diseased site (6). In addition, researchers found that
TQ also suffers from chemical decomposition and enzymatic
degradation in the gastrointestinal tract, which further limits
the oral administration of TQ (7). These limitations could be
effectively overcome by physically entrapping TQ in delivery
colloid carrier systems to enhance its bioavailability and
therapeutic ability.

Natural resources such as protein, lipid and polysaccharides

have been used as environmentally sustainable biomaterials

for the active coating of the bioactive agent (8). One of the

prominent carriers for encapsulation, the alginate hydrogel

beads, have been investigated extensively over the last decade
because of their unique properties such as good aqueous
solubility, biocompatibility, biodegradability, and non-toxicity.
These characteristics make them helpful in encapsulating food
ingredients, drugs, or natural extracts in the food industry
and drug delivery system (9–12). The system can encapsulate
small and large molecules at high efficiencies (13). It can
readily form a three-dimensional gel-like structure, known as
the egg-box model, when crosslinking with divalent cations
such as Ca2+ (14). However, mainly hydrophilic molecules are
selected as encapsulants resulting from many free hydroxyl and
carboxyl groups along the alginate backbone (15). To encapsulate
hydrophobic molecules, chemical modification is required by
introducing hydrophobic groups such as lipid into the hydrogel
beads matrix.

Emulsions are a mixture of two or more immiscible
liquids, often stabilized with surfactants or surface-active
particles. They have been widely used in food products
due to their excellent stability and high nutritional value
(16, 17). Due to the lipophilic property of TQ, an oil-in-
water (O/W) emulsion is a perfect carrier system for the
encapsulation of TQ. In particular, Pickering emulsions
(PE) are emulsions stabilized with solid particles in place
of surfactants. PE has shown numerous advantages of
robust stabilization against coalescence with enhanced
phase separation due to a dense layer of solid particles
adsorbed irreversibly around the emulsion droplets (18).
Liu and Tang confirmed that soy protein nanoparticles

(0.5–6.0%, w/w) could formulate Pickering emulsions
with properties tailored by changing the concentration
and emulsification process (19). Yi et al. found that the
combined use of soy protein isolate (20 mg/mL) and gallic
acid (0.5–1.5 mg/mL) as the Pickering stabilizers contributed
to great stability, excellent anti-oxidant, and antimicrobial
abilities (20). Most recently, Wong et al. demonstrated the
preparation of highly stable yet uniform red palm olein-in-water
Pickering emulsions using cellulose nanocrystals-soy protein
isolate (1.0%:1.0%, w/w) nanoconjugates as the food-based
stabilizer (21).

However, protein particles-stabilized PE is often susceptible
to changes in pH, especially during gastric digestion.
Hence, by dissolving TQ in the oil phase of PE, followed
by encapsulating the TQ-loaded PE within the alginate
hydrogel matrix, bioactive compounds can be protected
from the harsh external environment by improving the
bioavailability of orally administered hydrophobic molecules
(22, 23). Several studies have demonstrated the application
of hydrogel in the immobilization of Pickering emulsion. For
instance, Xiao et al. fabricated curcumin-loaded Pickering
emulsion alginate hydrogel with improved processing
stability and controlled digestion profile (24). In addition,
Yan et al. reported the encapsulation of alfacalcidol in
alginate beads using Pickering emulsion as a template,
and the composite beads exhibited sustained release
performance (11). In another study, Lim et al. successfully
prepared chitosan-stabilized Pickering emulsions with
immobilization efficiency exceeding 99% using calcium-alginate
hydrogel (25).

To improve the stability and rigidity of alginate hydrogel
beads, chitosan, a deacetylated product of chitin, which is
the second most abundant polysaccharide after cellulose, can
be employed as a supporting polymer. Chitosan has excellent
biocompatibility, biodegradability, andmucoadhesive properties,
and it is the only polysaccharide exhibiting cationic character,
making it a suitable material in the food and nutraceutical
industry (26, 27). When used together in forming hydrogel
beads, the cationic amine group (-NH+

3 ) of chitosan could
bind to the carboxylate group (-COO−) of alginate, forming
crosslinked alginate-chitosan complexes, providing an enhanced
protective coating for the encapsulated moieties (28, 29). It is
also reported that the stability of the protein-based delivery
system could be benefited from the chitosan coating, where
proteins hydrolysis can be decreased during gastrointestinal
digestion (30).

To date, the encapsulation of Pickering emulsions in alginate-
chitosan beads with a hydrophobic bioactive component is
rarely reported, especially when using a polysaccharide-protein
complex as the Pickering emulsifier. This study combined the
highly efficient encapsulating performance of alginate-chitosan
(Alg-Chi) hydrogel beads with cellulose nanocrystals-soy
protein isolate (CNC/SPI)-stabilized Pickering emulsion to
develop a new delivery formulation for the loading of the
hydrophobic bioactive model, TQ. The CNC/SPI-stabilized
Pickering emulsion (TPE) was prepared by ultrasonication using
a probe based on a previous study (21) and an ionic gelation
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FIGURE 1 | The schematic illustration of the preparation of thymoquinone loaded alginate-chitosan beads by immobilized CNC/SPI-stabilized Pickering emulsion.

method to fabricate Alg-Chi-TPE hydrogel beads, as shown in
Figure 1. The morphology, encapsulation efficiency, in vitro
digestion and release performance of Alg-Chi-TPE hydrogel
beads were investigated. The findings of the current work
could contribute to the practical applications of polysaccharide-
protein-based Pickering emulsions in nutraceutical and
functional food products.

MATERIALS AND METHODS

Materials
Cellulose nanocrystals (CNC) (freeze-dried) were procured from
the University of Maine, United States. Soy protein isolate (SPI)
was provided by Shandong Wonderful Industrial Group Co.,
Ltd. (Shandong, China). Sodium alginate, calcium chloride and
low molecular weight chitosan (50–190 kDa) were purchased
from Sigma Chemicals Co. (St. Louis, MO, USA). Red palm
superolein (275 ppm β-carotene, melting point 19◦C) was
acquired from Sime Darby Jomalina Sdn. Bhd., Malaysia.
Ultrapure water (18.2 MΩ cm−1) was obtained from the Milli-
Q R© Plus apparatus (Millipore, Billerica, USA) and was used in
all the experiments. All other chemicals and reagents used were of
analytical grade.

Preparation of Thymoquinone-Loaded
Oil-in-Water (O/W) Pickering Emulsion
(TPE)
CNC/SPI complex was used as the solid stabilizer in forming
O/W Pickering emulsion with red palm olein (deep orange color)
as the oil phase and deionized water as the continuous aqueous
phase. Thymoquinone (TQ) was firstly dissolved in the oil phase
with magnetic stirring at 500 rpm at room temperature for 1 h.
Next, emulsions with a fixed oil content were prepared by mixing
20% (v/v) palm olein with aqueous suspensions of 0.5% (w/v)
CNC/SPI complex at pH 7, adjusted by 1M HCl and 1M NaOH.
Subsequently, the mixture was emulsified for 5min using the
ultrasonic horn at 60W, and the emulsion was stored in glass
vials for further usage. The measured average droplet size of
formulated TPE was found to be ∼23.5 ± 2.2µm with a zeta
potential of 34.3± 1.4mV (21). Pickering emulsions without TQ
was prepared similarly as control.

Preparation of Alginate-Chitosan (Alg-Chi)
Beads Immobilized TPE
According to a previously described method (31), alginate-
chitosan beads immobilized Pickering emulsions (Alg-Chi-TPE)
were produced using the ionic gelation method with
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modification. Firstly, sodium alginate was dissolved in
ultrapure water to give sodium alginate solutions of different
concentrations (1%, 2%, 3%, 4% w/v). These sodium alginate
solutions were degassed for 30min to discharge air bubbles
before being utilized. Next, freshly prepared Pickering emulsions
were added in alginate solutions at a 1:1 (v/v) ratio and mixed
homogeneously under magnetic stirring for 10min to produce
Pickering emulsion-alginate solutions with final alginate
concentrations (0.5%, 1%, 1.5%, 2% w/v). Then, Pickering
emulsion-alginate solution was added dropwise into a mixed
solution of 2% (w/v) calcium chloride solution in ultrapure water
and 1% (w/v) chitosan solution in 1% (v/v) acetic acid solution
under gentle stirring through a 21-gauge needle syringe. The
formed beads were hardened in the mixed solution for 30min
before collection and washed with ultrapure water. The mixed
and washing solutions were kept to measure the encapsulation
efficiency of thymoquinone in the Pickering emulsion-filled
alginate-chitosan beads.

Characterization of Alginate-Chitosan
(Alg-Chi) Beads Immobilized TPE
Shape and Size of Hydrogel Beads
The shape and average size of freshly formed Alg-Chi-
TPE hydrogel beads and dried Alg-Chi-TPE hydrogel beads
were investigated using a Stemi microscope (Stemi2000, Zeiss,
Germany). The size of the beads was measured using the
ZEN2012 Blue software and was averaged based on eight
replicates. The shrinking ratio of freshly prepared and dried
alginate-chitosan beads was calculated using the following
Equation (1).

Shrinking ratio (%) =
Sf − Sd

Sf
x 100% (1)

Where Sf is the average size of freshly prepared beads and Sd is
the average size of dried beads.

FT-IR Spectroscopy
Alg-Chi-TPE hydrogel beads were crushed using mortar and
pestle before analysis. The FTIR spectra over the wavelength
range of 400–4,000 cm−1 were recorded using the attenuated
total reflectance Fourier transform infrared (ATR-FT-IR)
spectrometer (Nicolet iS10, Thermo Fisher Scientific, USA).

Measurement of Encapsulation Efficiency (EE)
According to the previously described method for O/W
emulsions (32), the encapsulation efficiency was analyzed by
centrifugation withmodification. In brief, 1mL of O/W emulsion
was added dropwise into a mixture of isopropanol and hexane
(1:1 v/v, 10mL) and subjected to vortex for 20 s to break the
emulsion. Then, the mixture was centrifuged at 4,500 rpm
for 10min. The amount of thymoquinone in the supernatant
was measured at the wavelength of 290 nm by a UV-Vis
spectrophotometer (Genesys 10s UV, Thermo Fisher Scientific,
USA). O/W emulsion without thymoquinone was prepared
similarly and used as a blank. The encapsulation efficiency of
thymoquinone in O/W emulsions (EEe) was calculated based

on a standard calibrated curve of thymoquinone based on the
following Equation (2).

EEe (%) =

(

Amount of thymoquinone in the supernatant

Amount of total thymoquinone

)

× 100% (2)

According to the previously described method for O/W
emulsion-filled alginate-chitosan (Alg-Chi-TPE) hydrogel beads,
the encapsulation efficiency was calculated by measuring the
leakage during the crosslinking process (30). After the hardening
process of beads, the absorbance of the mixed solution (CaCl2
and chitosan) and the washing solution was measured at the
wavelength of 290 nm by a UV-Vis spectrophotometer (Genesys
10s UV, Thermo Fisher Scientific, USA). The encapsulation
efficiency of thymoquinone in Alg-Chi-TPE hydrogel beads
(EEb) was calculated using the following Equation (3).

EEb (%) =

(

1−
Amount of thymoquinone in the mixed solution

Amount of total thymoquinone

)

× 100% (3)

In vitro Digestion
Simulated digestion of Alg-Chi-TPE hydrogel beads in gastric
and intestinal phases was performed according to a previously
described method (32) with modification. Simulated gastric fluid
(SGF) and simulated intestinal fluid (SIF) were prepared as
described below. SGF was prepared by dissolving 2 g of NaCl,
3.2 g of pepsin and 7ml of 12M HCl in 1 L of ultrapure water.
SIF was prepared by adding pancreatic lipase (4 mg/mL), bile salt
(4.3 mg/mL), and 0.6mM CaCl2 in phosphate buffer solution
(pH 7.5). The mixture was stirred until homogenized for 1 h
before use. Pepsin is responsible for breaking down protein
during gastric digestion, while pancreatic lipase is important in
the dietary triacylglycerol breakdown during intestinal digestion.

Water Uptake Study
The water uptake of the Alg-Chi-TPE hydrogel beads was
performed in two different digestive media: SGF and SIF.
Accurately weighed beads were immersed in 20mL of respective
medium in a sealed conical flask and placed in an incubator
shaker (100 rpm) at 37◦C. The beads were separated from the
medium at specific time intervals, wiped gently with filter paper
and weighed. The weight change of the beads to time was
determined using the following Equation (4).

Water uptake (%) =
Ws −Wi

Wi
x 100% (4)

Where Ws is the weight of the beads in swollen state and Wi is
the initial weight of the untreated beads.

Swelling and Erosion Study
The swelling and erosion of the Alg-Chi-TPE hydrogel beads
were performed in two different digestive media: SGF and SIF.
Beads were immersed in 20mL of respective medium in a sealed
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FIGURE 2 | Digital images of wet and dry alginate-chitosan hydrogel beads immobilized Pickering emulsion obtained with different alginate concentrations.

conical flask and placed in an incubator shaker (100 rpm) at
37◦C. The beads were removed from the medium at specific time
intervals, wiped gently with filter paper, and the diameter was
measured. The swelling degree and erosion degree of the beads
to time were determined using the following Equations (5) and
(6), respectively.

Swelling (%) =
Ds − Di

Di
x 100% (5)

Erosion (%) =
Wi −We

Wi
x 100% (6)

Where Ds is the diameter of the beads in the swollen state, Di is
the initial diameter of the untreated beads, We is the weight of
the dried beads in the swollen state, and Wi is the initial weight
of the untreated beads.

Microstructures of Beads After Digestion
The microstructures of Alg-Chi-TPE hydrogel beads after
gastric digestion and intestinal digestion were observed through
a variable pressure scanning electron microscope (VP-SEM,
Hitachi s3400N-II, Japan) and an upright fluorescent microscope
(Nikon Eclipse 90i, Nikon Instrument Inc., USA). For VP-SEM
preparation, the samples were air-dried, sputter-coated with gold
under a vacuum before analysis. The samples were observed at
an accelerating voltage of 10 kV. For the fluorescent microscope,
the lipid phase of the emulsions was stained with Nile red (0.01%
w/v) during the preparation process. A bead was placed on a
microscopic slide and gently covered with a coverslip. The edge
of beads was observed.

Release Study of Thymoquinone During Digestion
The release of thymoquinone (TQ) from Alg-Chi-TPE hydrogel
beads in gastric digestion and intestinal digestion were evaluated
according to the method described in section Measurement of
Encapsulation Efficiency (EE). In brief, the hydrogel beads were
immersed in 20mL of respective medium in a sealed conical
flask and placed in an incubator shaker (100 rpm) at 37◦C. The
hydrogel beads were treated with SGF for 120min followed by
SIF for another 240min. Then, at specific time intervals, 2mL of
the medium was withdrawn from the conical flask and topped up
with the fresh medium. The release profiles of TQ were fitted to
the Peppas model by the following Equation (7) (33).

Mt

Mi
= ktn (7)

Where Mt/Mi is the cumulative release ratio at time t, k is the
kinetic constant, and n is the diffusional exponent.

RESULTS AND DISCUSSION

Fabrication and Characterization of
Alginate-Chitosan Beads Immobilized
Thymoquinone-Loaded Pickering Emulsion
Thymoquinone (TQ) was first dissolved in the red palm olein
phase before the emulsification process. Next, the cellulose
nanocrystals-soy protein isolate (CNC/SPI) complex was used
as the Pickering stabilizer and dispersed in the aqueous phase.
The alginate-chitosan (Alg-Chi) hydrogel beads were then
prepared by external gelation method through dripping a
mixture of TQ-loaded CNC/SPI-stabilized Pickering emulsion
(TPE) with different alginate concentrations into a pre-mixed
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TABLE 1 | The mean sizes and the shrinking ratio of Alg-Chi hydrogel beads were determined by ZEN2012 Blue software.

Wet (mm) Dry (mm) Shrinking ratio (%)

0.5% Alg-1.0% Chi 1.598 ± 0.106a 1.138 ± 0.077a 28.65 ± 0.10

1.0% Alg-1.0% Chi 1.987 ± 0.118b 1.383 ± 0.052b 31.84 ± 1.47

1.5% Alg-1.0% Chi 2.339 ± 0.155c 1.554 ± 0.068c 34.96 ± 1.39

2% Alg-1.0% Chi 2.699 ± 0.097d 1.613 ± 0.061c,d 40.13 ± 0.11

2% Alg 2.651 ± 0.102d,e 1.583 ± 0.044c,d,e 40.94 ± 0.63

Values expressed as the mean ± standard deviation. Different letters in the same column indicate significant differences (p < 0.05).

CaCl2/chitosan solution (Figure 1). The digital images of the wet
and dry Alg-Chi-TPE hydrogel beads are shown in Figure 2.
Both wet and dry beads exhibited uniformly spherical shapes
when 2% (w/v) alginate was used. However, when lower alginate
concentrations were used, the shape of the beads was deformed,
resulting in rough and collapsed surface morphology. This
deformation is inevitable when water was evaporated from the
wet hydrogel beads during the drying process, causing volume
shrinkage of hydrogel beads (34).

Table 1 summarizes the percentage of weight change after the
drying process. It could be observed that 2% (w/v) alginate beads
exhibit the highest difference in shrinking ratio compared to the
rest due to the higher concentration available to form larger wet
beads with more water content. Generally, increasing the alginate
ratio in beads formulation causes the beads’ amplification
and weight change. However, hydrogel beads obtained with
2.0% (w/v) alginate concentration displayed the least structural
deformation after the drying process and demonstrated better
stability than the other hydrogel beads. It is worth noting that the
colors of the beads became darker when the beads shrink, which
could be due to the increase in the concentration of immobilized
TPE within the beads after the water has evaporated.

FTIR spectra of thymoquinone-loaded Pickering emulsion
(TPE), Alg, Alg-TPE, Chi, and Alg-Chi-TPE hydrogel beads
are shown in Figure 3A. The typical bands for the fatty acid
hydrocarbon chains of palm olein in TPE could be observed at
2,921, 2,852, and 1,743 cm−1 for the asymmetric and symmetric
stretching vibrations of C-H (-CH2) and carbonyl group (C=O)
from ester (35). The FTIR spectrum of Alg-Chi-TPE beads
revealed similar profiles as the TPE with the additional strong
peaks at 1,592 and 1,416 cm−1, attributed to the asymmetric
and symmetric stretching vibrations of the -CO bond in the
carboxylate (-COO−) group of alginate (36). The shift observed
from 1,603 to 1,592 cm−1 and 1,427 to 1,416 cm−1 in the
spectra could be due to ion-induced alginate gelation by Ca2+

and cationic chitosan. The similarities of the palm olein bands
revealed no interaction between the Pickering emulsion and wall
materials, indicating that the Pickering emulsion is physically
entrapped within the Alg-Chi beads system. Chitosan spectrum
shows characteristic bands at 1,651 and 1,583 cm−1 due to
the C=O vibration of the acetylated units (-CONH2 groups)
(37). The C=O vibration in the Alg-Chi-TPE spectrum shifted
to a lower wavelength (1,651 to 1,592 cm−1), denoting the
electrostatic interaction of chitosan with alginate in the hydrogel
beads. On the other hand, the FTIR spectra (Figure 3B) of

Alg-Chi-TPE hydrogel beads with different Alg concentrations
displayed similar profiles suggesting that Alg concentration
does not affect the physicochemical interactions between the
immobilized TPE and the wall materials.

According to Equation (2), the encapsulation efficiency
(EEe) of thymoquinone (TQ) in the freshly prepared Pickering
emulsion system was determined to be >99%. This is reasonable
since TQ first fully dissolves in the oil phase before turning
into an O/W emulsion. Alternatively, based on the hydrogel
shells formed by external gelation that immobilized the O/W
emulsion loaded with TQ, the TQ’s encapsulation efficiency
(EEb) according to Equation (3) of the Alg-Chi-TPE beads was
determined to be 89.18 ± 3.63%, revealing an excellent loading
efficiency using hydrogel beads. A decrease in the encapsulation
efficiency could be due to the release of TQ during the ionic
gelation and the hardening process.

Effects of Digestion on Alginate-Chitosan
Beads Immobilized Thymoquinone-Loaded
Pickering Emulsions
Figure 4 illustrates the water uptake of Alg-Chi-TPE hydrogel
beads with different Alg concentrations in simulated gastric fluid
(SGF) and simulated intestinal fluid (SIF). All hydrogel beads
exhibited a weight increase of ∼15% after 30min of gastric
digestion. The increase in weight can be justified where the void
regions within the hydrogel beads get filled up by water due
to osmotic pressure asserting on the hydrogel beads. The water
uptake ratio of all the beads continued to rise to a maximum of
23% for beads formed with 2.0% (w/v) Alg. The water uptake
is minimal at the low pH of gastric fluid because alginate
precipitates to form alginic molecules in the form of aggregates
linked by hydrogen bonding leading to higher stability (38).
When the hydrogel beads were introduced to the gastric digestive
fluid, denser alginate structures were believed to be due to the
weakened electrostatic repulsion among the alginate molecules.
The pH of the SGF was maintained at pH 1.5, and the pKa

of alginate was at about 3.5, causing the alginate to reduce its
negative charges (39).

The water uptake of beads was accelerated during intestinal
digestion, which is ideal for digesting oils. Hydrogel beads
obtained with 0.5% and 1.0% (w/v) alginate were disintegrated
and deformed, where the weight measurement of the swollen
beads could not proceed (Figure 4B). Generally, the water uptake
ability of all beads during intestinal digestion improved with
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FIGURE 3 | FTIR spectra of (A) TPE, Alg, Chi, and Alg-Chi-TPE beads (B) different alginate concentrations (0.5–2.0% w/v).

increasing alginate concentration. The water uptake ratios of
2.0% (w/v) alginate and 2.0% (w/v) alginate-chitosan beads were
significantly different at 120min (P < 0.05) and continued to
achieve 643 and 593%, respectively at 240min, demonstrating
substantial intestinal digestion of hydrogel beads in SIF. The
destabilization of the alginate polymer network at intestinal pH
is due to the ion exchange between Na+ ions in the intestinal
digestion fluid and Ca2+ ions in the hydrogel beads (40).

The calcium ions dissociate and form calcium phosphate salts
which no longer crosslink with the alginate matrix, leading
to the structural degradation of the hydrogel matrix. On the
other hand, the ionization of alginate at intestinal pH produces
electrostatic repulsion forces between alginate chains, increasing
weight gain (32).

Table 2 shows the swelling and erosion degrees of Alg-
TPE and Alg-Chi-TPE hydrogel beads after 120min of gastric

Frontiers in Nutrition | www.frontiersin.org 7 October 2021 | Volume 8 | Article 752207

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Wong et al. Thymoquinone-Encapsulated Pickering Emulsion Hydrogel

digestion and up to 240min of intestinal digestion. The swelling
degree measures the diameter of the swollen beads after
treatment. The swelling degree for both hydrogel beads reduced
after 120min of gastric digestion, demonstrating the shrinking

of beads. The shrinking occurs due to the dissociation of Ca2+

ions at low pH, the COO− groups become protonated, resulting
in the formation of hydrogen bonds within the alginate chains
(41). In contrast, the swelling degree increased tremendously

FIGURE 4 | The water uptake of alginate-chitosan hydrogel beads immobilized Pickering emulsion obtained with different alginate concentrations during (A) gastric

digestion (B) intestinal digestion. (C) The visual appearance of beads before and after gastric and intestinal digestion. Error bars represent the standard deviation of

three replicates. *Marks significant differences (p < 0.05). A comparison was made between 2.0% Alg and 2.0–1.0% Chi.
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TABLE 2 | The swelling and erosion degrees of alginate hydrogel beads and alginate-chitosan hydrogel beads during gastric digestion and intestinal digestion.

2.0% Alg 2.0% Alg-1.0% Chi

Time (min) Swelling (%) Erosion (%) Swelling (%) Erosion (%)

SGF-120 −3.38 ± 3.76a 8.24 ± 0.48c −9.12 ± 3.32b 6.56 ± 0.84d

SIF-30 27.51 ± 4.92a 4.49 ± 0.45c 18.64 ± 4.03b 3.83 ± 1.04d

SIF-60 56.27 ± 6.74a 6.23 ± 0.61c 48.55 ± 5.29a 4.66 ± 0.56d

SIF-120 75.06 ± 7.92a 7.81 ± 0.23c 54.75 ± 5.47b 5.76 ± 0.79d

SIF-180 90.13 ± 7.02a 12.18 ± 0.90c 68.72 ± 6.82b 7.66 ± 0.85d

SIF-240 100.23 ± 8.83a 15.13 ± 0.77c 85.22 ± 6.01b 13.83 ± 1.01c

Values expressed as the mean ± standard deviation. Different letters in the same row indicate significant differences (p < 0.05). A comparison was made between 2.0% Alg and

2.0–1.0% Chi. SGF—gastric digestion, and SIF—intestinal digestion.

FIGURE 5 | SEM images of (a,b) 2.0% Alg hydrogel beads, (c,d) 2.0% Alg-1.0% Chi hydrogel beads, (e,f) 2.0% Alg- 1.0% Chi hydrogel beads after 120 min gastric

digestion, (g–n) 2.0%- 1.0% Chi hydrogel beads after 30-240 min intestinal digestion at ×47 magnification (left) and ×300 magnification (right).

to around 100 and 85% after 240min of intestinal digestion
for Alg-TPE and Alg-Chi-TPE hydrogel beads, respectively.
This observation is in line with other studies where alginate-
based hydrogel beads shrunk during gastric digestion and
swell during intestinal digestion, possibly due to the changes
in electrostatic forces of the wall matrix at different pH
(31, 40). It is worth noting that the hydrogel beads with
chitosan illustrated a lower swelling degree than the hydrogel
beads without chitosan. The addition of chitosan onto alginate
leads to the formation of a more entangled system developed
by the blending of both polymers forming polyelectrolyte
complexes between the amino groups of chitosan and carboxylate
groups of alginate (31). These factors improved the stability of
Alg-Chi-TPE hydrogel beads and exhibited increased resistance
to osmotic pressure.

On the other hand, the erosion degree measures the weight
loss of the dried hydrogel beads after treatment. From Table 2,
the erosion degrees for both Alg-TPE and Alg-Chi-TPE hydrogel
beads after gastric digestion were 8.24 and 6.56%, respectively (P
< 0.05). A significant reduction in the weight of hydrogel beads
can be related to the syneresis effect in an acidic environment
where shrinkage is favored (42). Nevertheless, the erosion degree
of the hydrogel beads in an alkaline environment begins to
rise with time, with the maximum erosion degree of 13.83% at
240min for hydrogel beads coated with chitosan and 15.13%
for hydrogel beads without chitosan. The erosion degree for
hydrogel beads coated with chitosan was lower than hydrogel
beads without chitosan, demonstrating enhanced stability of the
hydrogel beads when chitosan was introduced. As the treatment
continues, the degradation, and dissolution of the bead matrix
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were enhanced over time. As a result, the final weight of the
dried and treated hydrogel beads became lower, displaying time-
dependent erosion properties.

The hydrogel beads prepared by 2.0% alginate were used to
study the effects of digestion on themicrostructures and bioactive
release profile based on the swelling performance reported above.
Scanning electron micrographs of dry alginate hydrogel (Alg-
TPE) beads, chitosan-coated alginate (Alg-Chi-TPE) beads and
Alg-Chi-TPE beads after specific digestion in SGF or SIF are
illustrated in Figure 5. The Alg-TPE and Alg-Chi-TPE hydrogel
beads exhibited spherical shape after air drying, and a detailed
examination of the surface structure revealed a rough and folded
appearance. There was not much difference between alginate and
alginate-chitosan beads in terms of surface structure. However,
a closer observation on SEM images with higher magnification
(x300) illustrated the presence of more rough surfaces with
irregular dents on the crosslinked alginate-chitosan hydrogel
beads (Figures 5b,d). This could be attributed to the effect of
chitosan polymer coating onto the surface of the alginate matrix,
creating patchy-like textures associated with a shielding effect by
the insoluble chitosan layer. The results can be correlated to the
lower swelling profile of chitosan-coated alginate beads than the
uncoated beads [swelling degree of 85 vs. 100% at 2.0% (w/v)
alginate concentration].

As shown in Figures 5d,f, there is no significant variation
in the microstructure of beads after gastric digestion with
similar roughness and compact surfaces. This observation agrees
with the swelling behaviors of hydrogel beads, where alginate
displayed excellent stability in a medium of low pH. The stability
of the alginate-chitosan beads or capsules depends strongly on

the differences in their assembly (43) and the amount of chitosan
bound to the capsules (44). The present study employed a one-
step preparative procedure by dropping the emulsion-alginate
mixture into a chitosan solution containing calcium chloride.
Hydrogel bead formation was achieved by the ionic gelation
effect, and chitosan formed the outer layer of the beads. An earlier

FIGURE 7 | In vitro release profiles of thymoquinone from alginate-chitosan

hydrogel beads immobilized Pickering emulsion in SGF, SIF, and 2 h in SGF

followed by SIF. Error bars represent the standard deviation of three replicates.

*Marks significant differences (p < 0.05). A comparison was made between

2 h in SGF followed by SIF and SGF/SIF.

FIGURE 6 | Fluorescent images of alginate-chitosan hydrogel beads immobilized Pickering emulsion surface after gastric and intestinal digestion (scale bar, 100µm).
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TABLE 3 | Diffusional exponent (n), correlation coefficient (R2), and the transport mechanism of thymoquinone release profile.

n R2 Transport mechanism

During gastric digestion 1.147 0.947 Case-II transport

During intestinal digestion 0.311 0.991 Fickian diffusion

After gastric digestion and during intestinal digestion 0.298 0.999 Fickian diffusion

study reported that the chitosan molecules could diffuse into the
alginate matrix, creating a 3D hydrogel network interconnected
by alginate molecules, chitosan polymer bridges, and cationic
calcium ions (45). The SEM micrographs revealed minimal
changes in the surface morphology of alginate-chitosan beads
upon 120min exposure to SGF. A similar observation was also
made in a previous work conducted by Li et al. (46). In addition,
Chew et al. concluded that the chitosan-alginate coacervated
beads appear to resist in an acidic medium where the structure
remains intact because of the ionic bonds of calcium-alginate-
chitosan complexation through electrostatic interactions (47).

Themicrographs of Alg-Chi-TPE hydrogel beads at a different
time point of intestinal digestion are illustrated in Figures 5g–n.
After 30min of intestinal digestion, the microstructure of
hydrogel beads displayed a smoother surface, indicating the
degradation of the hydrogel bead wall materials (Figures 5g,h).
The compact structure gradually transforms into a heterogeneous
structure with disorderly folded and significant dents when the
intestinal digestion time increased to 120min. The change in the
microstructures of hydrogel beads could be due to the swelling
process, which coincides with the erosion and dissolution of
swollen beads (32). A slight deformation on the morphology
of hydrogel beads (spherical to oval) after 60min of intestinal
digestion (Figures 5i,j) could be related to the swelling process
and erosion of beads where the degradation of chitosan-coated
alginate matrix as the wall materials of the beads has begun.
At 240min of intestinal digestion, micrographs of hydrogel
beads (Figures 5m,n) with severe cleavages and uneven surfaces
could be observed in the later stage. As shown in Figure 6,
the fluorescent micrographs showed a similar microstructure of
beads after gastric digestion without any substantial difference.
However, the micrographs of beads displayed significant changes
at different time points of intestinal digestion. The original
compact surface has gradually transformed into a loose structure,
indicating the loss of lipid phase from the beads. These results
suggest that the digestion could start from the surface toward
the center of the beads (48), causing the release of immobilized
Pickering emulsion within the beads into the external medium.

Release of Thymoquinone From
Alginate-Chitosan Beads Immobilized
Thymoquinone-Loaded Pickering Emulsion
The release of encapsulated thymoquinone (TQ) from the
hydrogel beads was achieved during gastrointestinal digestion.
The TQ release profiles from Alg-Chi-TPE hydrogel beads
in three different digestion systems [SGF, SIF, and SIF after
pre-soaked in SGF for 2 h (SGF/SIF)] are presented in Figure 7.

The release curves in SIF and SGF/SIF media showed a burst
release in the initial stage (0–30min) and then a slow release in
the following stage (30–240min). In the first 30min, hydrogel
beads in SGF/SIF medium demonstrated a faster release of TQ
than in the SIF medium (37 vs. 23%, P < 0.05), while TQ releases
in the SGF medium is undetected. Only about 4% of TQ was
detected after the end of gastric digestion (240min). The total
TQ release in SIFmedium and SGF/SIFmediumwas 48 and 83%,
respectively (P< 0.05), showing the extensive release of TQwhen
the hydrogel beads were pre-soaked in the SGF medium before
introducing to the SIF medium. The introduction of intestinal
fluid at an alkaline pH and the extensive water uptake properties
of the hydrogel beads could account for the initial rapid release
(11). In addition, the presence of lipase in SIF could initiate the
lipolysis process, breaking down lipid droplets into triacylglycerol
molecules, mixed micelles, non-digested fat droplets, or smaller
fractions of free fatty acids (49, 50), thus releasing TQ in short-
chain fatty acids that could be absorbed in the small intestine.

By comparing the TQ release in the SIF medium alone
and SGF/SIF medium, it can be denoted that two possible
mechanisms regulate the bioactive release out of the hydrogel
beads: the swelling process and the diffusion process (31). When
the hydrogel beads were soaked in the SGF medium, a syneresis
process occurs, resulting in the shrinking of beads. These shrunk
beads with lesser volume were later transferred into the SIF
medium to initiate intestinal digestion. Following the changes in
different pH, the external gelation network structure of hydrogel
beads was affected, producing more enormous pores/cleavages,
accelerating the swelling process. Then, the encapsulated TQ
can be released by diffusion process through the increasingly
large openings. During the later stage (60–240min), the rate
of swelling of the beads decreased, and the diffusion process
determines the amount of bioactive release.

The results were analyzed using the Peppas model to
distinguish the release mechanisms of TQ from the alginate
beads. For hydrogel beads, the diffusional exponent (n) specifies
the mechanism of release. The calculation of the n value was
measured up to the initial 60% release of the bioactive. If the
values of n are equal or <0.43, the release is associated with
Fickian diffusion. If n values are within 0.43 to 0.85, the release
is indicated with Fickian diffusion and Case-II transport (caused
by the swelling process). If the values of n are more than 0.85,
the release is solely contributed by Case-II transport (32, 51). The
results shown in Table 3 indicate that the TQ release from Alg-
Chi-TPE hydrogel beads in gastric digestion is associated with
Case-II transport since the n value is more significant than 0.85.
Thus, the swelling of hydrogel beads only controlled the bioactive
release in the gastric stage. In contrast, the n values for TQ release
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in intestinal digestion, with and without gastric treatment, were
lesser than 0.43, indicating that the Fickian diffusion governs
the release. The n values in both cases are relatively similar,
suggesting that the diffusion of bioactive molecules mainly
dominates the releasemechanism out of the beads as the digestive
medium hydrates the beads.

CONCLUSION

This work demonstrates in vitro digestion and hydrophobic
thymoquinone (TQ) release from alginate-chitosan hydrogel
beads immobilized Pickering emulsion (Alg-Chi-TPE). 2.0%
(w/v) alginate hydrogel beads with spherical shape demonstrated
the highest stability against structural deformation during the
drying process. The presence of chitosan in beads formation
improved the wall materials properties, providing a lower
swelling degree and a rougher microstructure. Alg-Chi-TPE
hydrogel beads demonstrated good stability during gastric
digestion, and the release of encapsulated TQ was observed
during intestinal digestion. Up to 83% of total TQ was
released from the hydrogel beads after 2 h gastric digestion
followed by 4 h treatment in the simulated intestinal fluid.
The bioactive release mechanisms were incorporated with the
Peppas model, which exhibited a Case-II transport caused
by the swelling process during gastric digestion and Fickian
diffusion during intestinal digestion. This study contributes
to a better understanding of the swelling and digestion
behaviors of alginate-chitosan hydrogel beads immobilized
with food-grade Pickering emulsions to release a hydrophobic
bioactive compound. This provides valuable information about
its potential application in developing the colloids-based
nutraceutical delivery system.
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