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Defining Phenotypes in Diabetic 
Nephropathy: a novel approach 
using a cross-sectional analysis of a 
single centre cohort
Rosa M. Montero   1,2, Athula Herath3, Ashfaq Qureshi1, Ehsanollah Esfandiari1, Charles D. 
Pusey1, Andrew H. Frankel1 & Frederick W. K. Tam   1

The global increase in Diabetes Mellitus (DM) has led to an increase in DM-Chronic Kidney Disease 
(DM-CKD). In this cross-sectional observational study we aimed to define phenotypes for patients 
with DM-CKD that in future may be used to individualise treatment We report 4 DM-CKD phenotypes 
in 220 patients recruited from Imperial College NHS Trust clinics from 2004–2012. A robust principal 
component analysis (PCA) was used to statistically determine clusters with phenotypically different 
patients. 163 patients with complete data sets were analysed: 77 with CKD and 86 with DM-CKD. Four 
different clusters were identified. Phenotypes 1 and 2 are entirely composed of patients with DM-CKD 
and phenotypes 3 and 4 are predominantly CKD (non-DM-CKD). Phenotype 1 depicts a cardiovascular 
phenotype; phenotype 2: microvascular complications with advanced DM-CKD; phenotype 3: advanced 
CKD with less anaemia, lower weight and HbA1c; phenotype 4: hypercholesteraemic, younger, less 
severe CKD. We are the first group to describe different phenotypes in DM-CKD using a PCA approach. 
Identification of phenotypic groups illustrates the differences and similarities that occur under the 
umbrella term of DM-CKD providing an opportunity to study phenotypes within these groups thereby 
facilitating development of precision/personalised targeted medicine.

Diabetes Mellitus (DM) is increasing worldwide and subsequently as people are treated for complications and 
enjoy longevity, it is inevitable that more people will develop Diabetic Nephropathy (DN). DN has been described 
since Egyptian times with the last century providing a classification of DN based on albuminuria1. The intro-
duction of renin-angiotensin-aldosterone system (RAAS) antagonists in the form of ACEi or ARB, has resulted 
in the regression of this surrogate marker and slowing of progression of renal dysfunction2,3. There is increas-
ing appreciation that DN progression to end-stage kidney disease (ESKD) is not always a stepwise progression 
through albuminuria with different subgroups progressing at different rates and some progress in the absence 
of proteinuria, hence the need for us to redefine progression of DN4. Progression of the disease and response to 
the treatment varies in different patients, which may indicate heterogeneity of diabetes chronic kidney disease 
(DM-CKD). DM-CKD may consist of different sub-population and phenotypes which may require different 
treatment approaches. In doing so we should be able to identify personalised targeted therapies for people with 
this potentially devastating disease.

Appreciation of heterogeneous disease subgroups has previously been described in Asthma, with distinct 
subgroups5 with a set of reference clinical endpoints. These subgroups have been shown to have physiologically 
distinct underlying processes that have facilitated the rational use of targeted therapy6,7. Targeted therapy can 
be used to specifically target pathways of the disease thereby avoiding the common clinical endpoint. This has 
led to a revolution in treatment for certain subgroups of this disease8. Clustering methods have been applied to 
the respiratory epidemiological field and perceived as ‘steps in the right direction’9,10 with the discovery of these 
subgroups.
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Porrini, et al.11, recently described non-proteinuric pathways in patients with type 2 DM (T2DM) associated 
with loss in renal function thereby illustrating phenotypic spectrum of DM that is independent of proteinuria. 
Given that patients with and without proteinuria with DM may develop ESKD, a new method looking at the 
spectrum of people with DM-CKD is needed12. The aims of this study were to 1) identify new phenotypes in 
DM-CKD and 2) compare this with CKD caused by other renal diseases using clinical variables and cytokines 
to ascertain whether there are more specific markers than albuminuria to determine who will progress to ESKD.

Objectives
Determine whether clinical variables may identify heterogeneous subgroups within a cohort of patients with 
DM-CKD to facilitate further study of underlying mechanisms leading to progression to ESKD which may lead 
to novel treatment approaches for different sub-groups of DM-CKD.

Define and characterise subgroups within the diabetic nephropathy cohort to act as a template for further studies.

Research Design and Methods.  All methods were performed in accordance with current study guidance 
and regulations. Following ethics and research and development study approval (NRES Committee London-West 
London & GTAC 04/Q0406/25) participants with diabetic nephropathy or renal disease without diabetes mellitus 
were recruited prospectively from renal clinics at Imperial College Healthcare NHS Trust Hospitals London UK, 
between 2004 to 2012. In this study CKD is used to describe patients with renal disease without DM. Because of 
the risk/benefit balance, only a limited proportion of patients with DM-CKD had a kidney biopsy (5 patients) 
with CKD controls having 62 biopsy proven diagnosis. The remainder of the CKD group was diagnosed with 
imaging or ultrasound showing small kidneys not amenable to renal biopsy. The diagnosis of DN was made by an 
elevated uACR on at least two occasions or reduction in eGFR and the exclusion of other aetiologies for CKD by 
history, clinical, and laboratory examinations, including autoantibody screening, urine sediment and renal imag-
ing. Patients with CKD without DM were classified as the control CKD group. The diagnoses of the non-diabetic 
CKD group are shown in Supplementary Table 2. Some of these renal diseases had patients on immunosuppres-
sive treatments and the details of this were recorded to determine whether immunosuppression had an effect 
within the CKD groupings. CKD controls were used to determine whether there were any differences specific to 
DM-CKD in the cytokines tested in this study.

Informed consent was obtained prior to any participants entering the study. Participants consenting to enter 
the prospective cohort study had their clinical and biochemistry data captured using questionnaires at baseline. 
Biochemistry data included MDRD GFR, serum albumin, urea, creatinine, haemoglobin, HbA1C, total choles-
terol and C-reactive protein (CRP). Plasma and urinary samples were collected, processed and stored for cytokine 
analysis at baseline. Cytokines previously described in DN and studied by our group were analysed; monocyte 
chemoattractant protein-1 (MCP-1)13, C-Chemokine ligand-18 (CCL18)14 and macrophage migration inhibitory 
factor (MIF)15. All of these cytokines have been reported to be raised in DN and may play an important role in 
pathogenesis of the disease, hence they were chosen to determine whether these change in the different pheno-
types and whether they are more specific to DM-CKD than CKD. These cytokines are immunomodulatory and 
may provide further insight as to whether there are specific changes in different phenotype. Exclusion criteria 
included: those receiving dialysis therapy or with kidney, pancreas or kidney pancreas transplants, those under 
18 years old; and those unable to consent. See supplementary for details of ELISA protocols.

Data Availability.  All data analysed during this study are included in this published article and the 
Supplementary Information files.

Participant selection was unbiased and reflects the widespread presentations of diabetic nephropathy to the 
renal clinic. However selection bias exists as these patients were already diagnosed with CKD or DM-CKD and 
hence referred to the specialist renal clinics.

Quantitative variables.  MCP-1, CCL18 and MIF levels were measured in plasma and urinary samples by 
ELISA. Details of antibodies used in Table S2 of the Supplementary.

Statistical methods.  We report cross-sectional analysis of baseline data in CKD and DM-CKD. We 
collected 43 variables to begin with and these were reduced to 30 in order to optimize the utility and exclude 
variables with predominantly missing data in the total dataset for principal component analysis (See Table S3 
Supplementary for Variables used). Principal component analysis (PCA) was performed on these variables as a 
method for reducing interaction between variables. Then, cluster analysis based on the main components of the 
PCA was performed to search for DM-CKD phenotypes (Tables 1 and 2).

We normalised variables with BOX-COX transformation and scaled and centred the variables using the caret 
package16 of statistical system R17. We then applied robust principal components analysis as described in18 using 
package pcAPP19 of R statistical system. This captured the total variation of the dataset with three principal com-
ponents (Fig. 1- Cumulative plot) by reducing the dimensions from 30 to 3. We then applied k-means clustering 
using package cluster20 of R statistical system on the principal components (PCs) and derived four clusters or 
Phenotypes. The spatial distribution of patients across the PCs, are described in PCA plots (PC1 vs PC2, PC1 vs 
PC3 and PC2 vs PC3) (see Fig. 2). The characteristics of the PCs in terms of the weights of individual variables 
are shown in the plots (Fig. 3). Then cluster analysis based on the main components of the PCA was performed 
to search for DN phenotypes.

Results.  220 patients were recruited for the study with 163 patients with full clinical and biomarker data-
sets. There were 99 males and 64 females. The ethnic mix was reflective of the local population with 73 white, 
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35 black, 46 South Asian, 2 Chinese and 7 Other. 77 patients had CKD alone and 86 had DM-CKD. The 
DM-CKD group had 6 T1DM patients and 80 T2DM patients.

Disease domains of CKD and DM-CKD
The process of deriving principal components (PCs), reducing the original 30 variables into 3 high level variables 
(PC1, PC2 and PC3), simultaneously creates equivalents of major traits or dimensions of the underlying dataset, 
in our case CKD and DM-CKD. The PC1, PC2 and PC3 establish a new coordinate system to describe the CKD 
and DM-CKD patients; the PCs can be considered as disease ‘forces’ that act on individual CKD and DM-CKD 
patients. In Agusti et al.21 terminology these form the treatable traits of the DM-CKD. Each trait/PC can be 
explained by the weights of the original variables within the PC. The weights of each PC, are shown in the Fig. 3. 
The outer circle depicts the positive weights while the inner circle depicts the negative weights.

Closer examination of these diagrams reveals three traits in CKD and DM-CKD. The first trait/PC is aligned 
to traditional complications seen with long term diabetes such as insulin use, retinopathy, duration of diabetes, 
and peripheral vascular disease, with ethnicity also being one of the major variables in this domain. The second 
trait/PC has major variables determining the severity of CKD including: baseline GFR, Urea, Urine Albumin/
Creatinine ratios. The third trait/PC with major variables of diastolic and systolic blood pressure may suggest a 
disease domain of a cardiovascular renal CKD type.

Disease Phenotypes of CKD and DM-CKD
As described in the methods section, the principal components were subjected to K-Means cluster analysis. The 
cluster analysis resulted in four clusters (Fig. 2) with the predominant variables seen in Table 1. Each such cluster 
may form a phenotype. Differences between the clusters are illustrated in the Supplementary graphs. The overlaps 
between the clusters are visualised in Fig. 2. Cluster 1 and 2 comprise DM-CKD patients, with clusters 3 and 4 
being predominantly CKD without DM, with few DM-CKD. DM-CKD patients are seen in all four clusters, with 
each cluster providing a different phenotype (Table 2).

Phenotype 1 – Cardiovascular phenotype.  Phenotype 1 consists of 34 patients all of whom have 
DM-CKD. This phenotype has a significantly higher systolic and diastolic blood pressure than the other pheno-
types. The total cholesterol is high in this group compared with those in phenotype 2 despite a high use of statins. 
HbA1c levels were comparable to phenotype 2 and therefore cannot be the differentiating factor for the different 
phenotypes: 8.31% (67.3 mmol/mol) phenotype 1 and 8.06% (64.6 mmol/mol) phenotype 2. Albuminuria or pro-
teinuria did not significantly affect the phenotyping of DM-CKD (Table 1b). The mean GFR in this phenotype 
was 64.4mls/min/1.73 m2 compared with phenotype 2, whose GFR was 29.3mls/min/1.73 m2. Phenotypes 3 and 4 
were predominantly CKD patients that showed a similar grouping of renal function as that seen in phenotypes 1 

Phenotype (MEAN/SD) 1 2 3 4 p

Number of patients per Phenotype 34 40 43 46

Urine CCL18 Creatinine ratio ng/mmol 1.15 (3.20) 4.89 (11.36) 10.86 (33.01) 4.00 (6.89) 0.145

Serum CCL18 ng/ml 140.16 (108.66) 138.50 (79.05) 154.06 (92.64) 137.43 (77.36) 0.86

Urine MCP 1 Creatinine ratio ng/mmol 12.38 (13.78) 26.76 (36.27) 23.32 (26.64) 25.54 (41.45) 0.231

Serum MCP 1 ng/ml 0.26 (0.11) 0.35 (0.63) 0.25 (0.10) 0.25 (0.16) 0.474

Urine MIF Creatinine ratio ng/mmol 266.29 (574.23) 353.94 (701.88) 596.99 (656.69) 476.48 (725.60) 0.165

Serum MIF ng/ml 1921.37 (1960.24) 5629.28 (9664.91) 4593.94 (3307.73) 3853.52 (4098.75) 0.077

Age 60.97 (11.04) 64.55 (12.20) 61.86 (15.64) 50.87 (13.17) <0.001

Weight Kg 88.80 (24.13) 89.18 (17.40) 80.28 (19.49) 78.54 (18.34) 0.023

Height cm 168.54 (9.22) 169.22 (9.98) 167.11 (7.24) 167.76 (9.64) 0.851

Body mass index (BMI) 31.10 (7.45) 31.32 (5.06) 30.24 (6.01) 28.10 (5.68) 0.154

Duration of Diabetes 17.59 (11.86) 21.76 (8.35) 2.16 (5.87) 0.28 (1.28) <0.001

HbA1C 8.06 (1.20) 8.31 (1.67) 6.36 (1.14) 6.57 (2.46) <0.001

Haemoglobin (Hb) g dL 13.25 (1.43) 11.97 (1.80) 12.62 (1.79) 13.15 (1.63) 0.007

C-reactive protein (CRP) mg L 4.91 (5.52) 4.65 (8.77) 3.16 (5.78) 2.76 (5.04) 0.344

Total Cholesterol mmol/L 4.95 (1.56) 4.25 (1.09) 4.56 (0.76) 5.49 (1.36) <0.001

Albumin g/L 38.00 (3.29) 36.23 (4.23) 38.56 (3.20) 38.93 (6.32) 0.037

Urea mmol/L 6.84 (2.12) 16.26 (6.51) 17.42 (7.32) 5.83 (1.98) <0.001

Serum Creatinine umol/L 112.59 (34.21) 222.10 (84.62) 226.58 (102.99) 100.74 (21.13) <0.001

Baseline GFR MDRD ml min 1 73sq m 64.39 (22.17) 29.25 (10.49) 27.29 (9.73) 67.75 (15.89) <0.001

Systolic BP 152.94 (24.67) 133.97 (18.05) 133.95 (16.91) 132.89 (17.76) <0.001

Diastolic BP 82.94 (11.52) 69.92 (9.83) 76.21 (12.55) 81.35 (14.30) <0.001

Urinary Albumin Creatinine ratio mg/mmol 47.56 (70.83) 67.94 (74.48) 45.76 (64.17) 33.60 (76.11) 0.176

Urinary Protein Creatinine ratio mg/mmol 88.65 (111.53) 104.60 (112.08) 59.66 (69.71) 53.26 (96.01) 0.324

Table 1.  The characteristics of the individual variables studies within the phenotypes 1 to 4 - Continuous 
variables.
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and 2. GFR for phenotype 3 and 4 was 27.3mls/min/1.73 m2 and 67.8mls/min/1.73 m2, respectively. The different 
phenotypes of patients with DM-CKD are evident as there were also DM-CKD patients in phenotypes 3 and 4. 
Urinary and serum MCP-1, CCL18 and MIF data did not reach significant differences between the phenotypes 
yet each group had a different cytokine profile that requires larger numbers to confirm these preliminary findings 
(see supplementary for cytokine profile graphs for the different DM-CKD phenotypes).

Phenotype 2 – Advanced CKD with traditional microvascular complications phenotype.  
Phenotype 2 was entirely composed of DM-CKD patients, 40 in total with significantly worse GFR than pheno-
type 1. This group had a longer duration of diabetes compared with phenotype 1, mean 21.76 years compared to 

Phenotype 1 2 3 4 p

Number of patients per Phenotype 34 40 43 46

Diabetes Type (%) <0.001

     No Diabetes 0 (0.0) 0 (0.0) 34 (79.1) 43 (93.5)

      Type 1 2 (5.9) 4 (10.0) 0 (0.0) 0 (0.0)

      Type 2 32 (94.1) 36 (90.0) 9 (20.9) 3 (6.5)

Gender = Female (%) 9 (26.5) 9 (22.5) 20 (46.5) 26 (56.5) 0.003

Ethnicity (%) 0.004

       White 5 (14.7) 15 (37.5) 28 (65.1) 25 (54.3)

       Black 8 (23.5) 10 (25.0) 7 (16.3) 10 (21.7)

       Asian 18 (52.9) 13 (32.5) 7 (16.3) 8 (17.4)

       Chinese 1 (2.9) 1 (2.5) 0 (0.0) 0 (0.0)

       Other 2 (5.9) 1 (2.5) 1 (2.3) 3 (6.5)

Smoking Habits (%) 0.173

       Non-smoker 20 (58.8) 19 (48.7) 12 (54.5) 28 (73.7)

       Ex-smoker 4 (11.8) 2 (5.1) 2 (9.1) 4 (10.5)

       Current Smoker 10 (29.4) 18 (46.2) 8 (36.4) 6 (15.8)

Retinopathy (%) <0.001

       None 20 (58.8) 10 (25.0) 42 (97.7) 46 (100.0)

       Background 1 (2.9) 2 (5.0) 0 (0.0) 0 (0.0)

       Pre-proliferative 2 (5.9) 3 (7.5) 0 (0.0) 0 (0.0)

       Proliferative 10 (29.4) 24 (60.0) 1 (2.3) 0 (0.0)

    End-stage diabetic eye disease 1 (2.9) 1 (2.5) 0 (0.0) 0 (0.0)

Neuropathy (%) <0.001

       None 34 (100.0) 27 (67.5) 43 (100.0) 46 (100.0)

       Autonomic 0 (0.0) 6 (15.0) 0 (0.0) 0 (0.0)

       Peripheral 0 (0.0) 7 (17.5) 0 (0.0) 0 (0.0)

Cerebrovascular accident (CVA) (%) 4 (11.8) 3 (7.5) 0 (0.0) 0 (0.0) 0.022

Ischaemic heart disease (IHD) (%) 13 (38.2) 13 (32.5) 8 (18.6) 6 (13.0) 0.03

Peripheral vascular disease (PVD) (%) 1 (2.9) 14 (35.0) 0 (0.0) 1 (2.2) <0.001

History of Renovascular Disease (%) 0.565

       0 34 (100.0) 38 (95.0) 41 (95.3) 45 (97.8)

     Single kidney 0 (0.0) 1 (2.5) 2 (4.7) 1 (2.2)

     Both kidneys 0 (0.0) 1 (2.5) 0 (0.0) 0 (0.0)

Urine infection (%) 3 (8.8) 3 (7.5) 4 (9.3) 2 (4.3) 0.811

Medications

Insulin (%) 21 (61.8) 34 (85.0) 1 (2.3) 0 (0.0) <0.001

Metformin (%) 13 (38.2) 1 (2.5) 0 (0.0) 2 (4.3) <0.001

Sulphonylurea (%) 7 (20.6) 7 (17.5) 6 (14.0) 0 (0.0) 0.021

PPAR.agonist (%) 6 (17.6) 2 (5.0) 1 (2.3) 1 (2.2) 0.017

ACE inhibitor (ACEi) (%) 18 (52.9) 26 (65.0) 15 (34.9) 16 (34.8) 0.012

Angiotensin 2 Receptor blocker (ARB) (%) 18 (52.9) 16 (40.0) 22 (51.2) 14 (30.4) 0.13

Statin (%) 24 (70.6) 35 (87.5) 24 (55.8) 20 (43.5) <0.001

Vitamin D supplementation (%) 0 (0.0) 9 (22.5) 10 (23.3) 3 (6.5) 0.004

On immunosuppression (%) 0 (0.0) 0 (0.0) 6 (14.0) 15 (32.6) <0.001

Table 2.  The characteristics of the individual variables studies within the phenotypes 1 to 4 - Categorical 
variables.
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17.59 years, respectively; however this was not significant and was not a determinant of the clustering. Those in 
phenotype 2 were more anaemic compared with those in phenotype 3, who had similar renal function (Table 1a).

Phenotype 1 and 2 had more ischaemic heart disease (IHD) and stroke (CVA) than phenotypes 3 and 4 that 
were predominantly CKD. Angiotensin converting enzyme inhibitors and statins were used more in phenotypes 
1 and 2 compared with 3 and 4.

Phenotype 3 – Advanced CKD with inflammatory cytokine profiling phenotype.  Phenotype 3 
is predominantly CKD alone with 9 DM-CKD that all had T2DM with a single individual on insulin and the 
remaining 8 on oral hypoglycaemics. This phenotype had a mean GFR of 27.3mls/min/1.73 m2, similar to phe-
notype 2 but without microvascular complications. The DM-CKD patients have a shorter duration of diabetes 
in phenotype 3 and anaemia was less prominent compared to phenotype 1 and 2. Patients in phenotypes 3 and 4 

Figure 1.  Cumulative plot of 3 Principal components Principal components (PC) PC1 is aligned to traditional 
complications of diabetes with ethnicity being one of the major variables in this domain. PC2 major variables 
include; Baseline GFR, Urea, Urinary Albumin/Creatinine Ratios. PC3 major variables of diastolic and systolic 
blood pressure suggesting a cardiovascular domain.

Figure 2.  Phenotypes arising from Principal components The four phenotypes are illustrated by the 
different clusters illustrated. Cluster 1 -Cardiovascular phenotype, Cluster 2 -Advanced CKD with traditional 
microvascular complications phenotype, Cluster 3 -Advanced CKD with inflammatory cytokine profiling 
phenotype and Cluster 4 -Younger hypercholesterolaemic phenotype. The clusters Fig (A), (C) and (D) are 
illustrating their movement according to the PC. (B) Illustrates the clusters 3-dimensionally.
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with CKD alone are also on immunosuppression unlike phenotypes 1 and 2. Urinary MIF and serum and urinary 
CCL18 were higher in this phenotype however this was not significantly different and a larger study is required to 
determine whether this profile is specific to this phenotype (Table 1a).

Phenotype 4 – Younger hypercholesteraemic phenotype.  Phenotype 4 has 3 patients with DM-CKD 
all of whom have T2DM with the shortest duration of DM in this cohort. GFRs in this cohort have a mean of 
67.75mls/min/1.73 m2 that is similar to phenotype 1. The mean age is significantly younger at 50.9 years and the 
cardiovascular phenotype is limited to hypercholesterolemia. Urinary MIF levels are higher than phenotype 1 
and 2 (Table 1a).

Conclusions.  This study illustrates a novel approach to characterise DM-CKD patients in two ways. First, we 
introduce novel thinking on the variability of the disease using high level disease traits (PC1, PC2 and PC3) and 
these alone may form a basis for treatable traits in DM-CKD21. Second, we derive four phenotypes of DM-CKD 
patients (Phenotype 1 to 4) in a well characterised population. To our knowledge this is the first time this 
approach has been used to establish the treatable traits and phenotypes in adults with DM-CKD. We are report-
ing preliminary results and suggest further exploration of both the treatable traits and the phenotypes to derive 
effective and high precision treatment modalities in DM-CKD.

This was a predominantly male cohort with phenotypes 3 and 4 having more females than phenotypes 1 and 
2. Phenotype 1 appears to have predominantly South Asian patients with phenotype 2 including a wide ethnic 
variety. Phenotypes 3 and 4 had predominantly more white people however this cohort had larger numbers of 
white people and thus with a larger cohort an ethnic and gender effect may be determined.

Microvascular complications were more commonly seen in phenotype 2, where a longer duration of diabetes 
was reported. A prospective study is needed to determine whether individuals stay in these phenotypes or move 
from one phenotype to another with the progression of their disease. This will be established in the following 
study that will allow identification and recruitment of patients into these phenotypes with genetic and molecular 

Figure 3.  The weights of the variables in Principal Component 1, 2 and 3. The outer circle depicts the positive 
weights while the inner circle depicts the negative weights.
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mapping further characterising patients in these phenotypes. The follow-up will elucidate whether these pheno-
types are fixed or whether people move between phenotypes allowing further mapping of the disease. The phe-
notypes, however, show that despite the similar GFRs in the DM-CKD and CKD population there are differences 
that arise in people with diabetes that are specific and individual to the person.

The variability in the phenotype of patients with DM-CKD is illustrated by patients with DM-CKD found 
in all four phenotypes, albeit a predominance in phenotypes 1 and 2. The spectrum of phenotypes within this 
disease has been captured using the principal component analysis and as a concept this may explain the overlap 
we see between the traditional T1DM and T2DM classification, whilst also providing a possible explanation for 
people responding well to intensive glycaemic and blood pressure control whilst others with DM-CKD continue 
to progress to ESKD despite this. Access to increasing genome, molecular, cellular and tissue data will further 
allow specific pathways to be identified in different subgroups of patients with DM-CKD, similar to those seen 
in asthma. Further large cohorts are required to determine whether these phenotypes, based on predominantly 
clinical variables, are conceptually robust with a further overlay of genomic, molecular and proteomic data. This 
may lead to further elucidation of predominant signalling pathways that may subsequently be targeted more 
effectively in the right population.

This study’s phenotypes were derived from 3 PCs/traits from the PCA that included the long term complica-
tions of diabetes (Trait 1), the severity of CKD (Trait 2) and the cardiovascular burden in CKD (Trait 3). Further 
clarification of these traits may reveal treatable traits (18) in CKD and DM-CKD that may lead the way in chang-
ing how we treat these patients.

The limitations to this study include: the small number of T1DM patients (6 patients) recruited to the cohort 
and lack of long term follow up to determine whether these phenotypes are predictive of outcome or whether 
the phenotype changes with duration of the disease. The small proportion of T1DM in comparison to T2DM is 
a reflection of the common pattern in general nephrology clinics. Therefore, the main driver for identification 
of DM-CKD phenotypes were data from T2DM patients (80/86). T1DM patients have been included to suggest 
that a similar model and statistical approach can be used for a larger T1DM data set in future studies. At present 
no conclusion can be made to compare T1DM and T2DM patients because of the small size of T1DM patients 
A further study recruiting more T1DM will determine how similar or different the DM-CKD entity is between 
T1DM and T2DM and whether a common pathway really exists between the two or whether there is a T1DM 
DM-CKD and T2DM DM-CKD that do not share phenotypes. More patients are also needed in each phenotype 
to determine whether the high urinary MIF levels seen in phenotype 4 remains in view of the small sample size of 
DM-CKD in this group. A further limitation to this study is the lack of histopathology renal biopsies in patients 
within the different DM-CKD phenotypic groups which is limited by current clinical practice and concern on the 
risk/benefit ratio in patients with DM. DM-CKD has traditionally been a kidney disease that has been clinically 
diagnosed in view of the risk of renal biopsy however there is an increasing appreciation amongst the renal com-
munity of the important role of renal biopsy in further understanding the disease process and facilitating a more 
personalised medical treatment approach.

In addition, many CKD patients are on immunosuppression that may have influenced the clusters and the 
cytokine biomarkers assessed in this study. The follow-up of this study is in progress and we hope to report our 
findings soon. A longer study is planned to increase number of patients with these characteristics to confirm these 
phenotypes.

We believe that we are the first group to describe different phenotypes in DN using a PCA approach. Our 
results may form a platform to use a combination of clinical variables and cytokines to group patients with pre-
dominant phenotypes. This approach allows a structure to combine more clinical data and biological results to 
determine different endotypes within the phenotypes identified. A similar approach has been used in Asthma and 
has led to the discovery of specific phenotypes that have subsequently been amenable to more effective targeted 
personalised therapy. We hope this approach will help map further understanding of DN in a structured way 
whereby biomarkers may reflect disease progression within these groups.
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