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T cell-based immunotherapies including genetically engineered T cells, adoptive transfer
of tumor-infiltrating lymphocytes, and immune checkpoint blockade highlight the
impressive anti-tumor effects of T cells. These successes have provided new hope to
many cancer patients with otherwise poor prognoses. However, only a fraction of patients
demonstrates durable responses to these forms of therapies and many develop
significant immune-mediated toxicity. These heterogeneous clinical responses suggest
that underlying nuances in T cell genetics, phenotypes, and activation states likely
modulate the therapeutic impact of these approaches. To better characterize known
genetic variations that may impact T cell function, we 1) review the function of early T cell
receptor-specific signaling mediators, 2) offer a synopsis of known mutations and genetic
alterations within the associated molecules, 3) discuss the link between these mutations
and human disease and 4) review therapeutic strategies under development or in clinical
testing that target each of these molecules for enhancing anti-tumor T cell activity. Finally,
we discuss novel engineering approaches that could be designed based on our
understanding of the function of these molecules in health and disease.

Keywords: T cell (antigen) receptor, cellular immunotherapy, cytokines, T cell signaling, cellular engineering
INTRODUCTION

T cell activation, differentiation, and effector functions are tightly controlled by highly specialized
and interconnected signaling pathways. Major early mediators of T cell activation include: (1)
activation via the a and b or g and d chains of the T cell receptor (TCR) molecules (1); (2) CD3
signal-transduction molecules (2); (3) CD4 and CD8 co-receptors that help stabilize TCR-peptide-
MHC interactions (3, 4); (4) early signaling mediators such as LCK, FYN, and ZAP70 (5, 6); and (5)
the LAT-signalosome that leads to activation of a myriad of downstream signaling intermediates
and pathways (Figure 1) (7). These proximal signaling prote13ins interact with myriad of
org May 2021 | Volume 12 | Article 6586111
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intermediate molecules to ultimately initiate various multiple
cellular processes including differentiation and effector function
(7). We review the molecules involved in early TCR signaling and
the receptors in T cells and consider how mutations or
alterations in these molecules contribute to human disease,
particularly immunity to cancer. We highlight therapeutic
strategies designed to utilize this fundamental knowledge of
molecular function for cancer treatment, with an emphasis on
Frontiers in Immunology | www.frontiersin.org 2
novel strategies that are showing early clinical potential. A
discussion on T cell based immune therapy would be remiss
without mentioning immune checkpoint inhibitors (ICIs)
including monoclonal antibodies targeting PD-1, PD-L1 and
CTLA4, as well as chimeric antigen receptor (CAR) T cells and
tumor-infiltrating lymphocyte (TIL) therapy. These agents have
revolutionized cancer therapy, but due to the wealth of literature
on these topics, we will not address them directly in this review
FIGURE 1 | TCR complex and downstream signaling pathway – schematic overview. Red circles denote phosphate groups.
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except as they relate to specific molecules discussed in each
section below.

T CELL RECEPTOR COMPLEX

TCR: Structure and Function
Unique from all other cell types, T cells express antigen-specific
TCRs. The TCR complex is a heterodimer composed of either
a/b or g/d chains, defining two major ”flavors” of T cells. In
humans, 95% of T cells are a/b heterodimers while only 5% are
g/d homodimers (Figure 2). Within these heterodimers, each
chain is comprised of extracellular variable and constant
domains, a short linker peptide, and a transmembrane domain
(8). The variable domains undergo somatic rearrangement
during T cell development and contact the antigenic peptide
presented by major-histocompatibility complex (pMHC). The
interaction forms the physical basis by which T cells can
recognize a myriad of targets (9, 10). The linker and
transmembrane domains allow association with additional
molecules such as the CD3 chains as well as CD4 and CD8 in
their respective T cell types.
Frontiers in Immunology | www.frontiersin.org 3
TCR Variable Domain Mutations:
Connection to Human Disease
and Immunotherapy
As briefly stated above, the variable domain of the TCR genes
undergoes somatic recombination early in T cell development,
thereby forming the basis for TCR diversity (11). This highly
controlled process creates an array of T cells each expressing a
unique TCR that can bind varied pMHC complexes. It is estimated
that the human T cell repertoire can target on the order of 10 (12)
unique specifities (13). Upon recognition of a unique pMHC
expressed on target cells, various extracellular and intracellular
accessory molecules are recruited to mediate a massive
transcriptional shift towards T cell effector functions that allow
effective killing of infected, malignant, or altered-self targets (14).
Genetic variations in theseTCRgenes between individuals affect the
clonality and diversity of that individual’s T cell repertoire and can
lead to disease. Numerous studies have linked intratumoral and
peripheral blood TCR clonality and diversity with cancer prognosis
and response to various treatment modalities. In cervical cancer
fewer TCR clonotypes in sentinel lymph nodes correlated with
worse outcomes (15), and in colorectal cancer, patients with
A B

FIGURE 2 | TCR complex structure, mutations and manipulations for immunotherapy. (A) Various domains within the T cell receptor (TCR) including the
complementarity-determining region (CDR), variable domain (V), constant domain (C), disulfide bond (S), membrane-proximal connecting peptides (CP) and
transmembrane (TM). (B) Mutations and modifications used in immunotherapy by region.
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metastatic disease harbored less TCR diversity in tumor draining
lymph nodes (12). Comparing healthy individuals to a variety of
cancer patients, Simnica et al. found that as people age, their TCR
diversity diminishes and that cancer patients have reduced TCR
diversity relative to healthy age-matched controls (16). Additional
studies in melanoma and pancreatic cancer have shown that
increased TCR diversity correlates with improved outcomes after
immune checkpoint inhibition (ICI) (17–19), suggesting this
treatment modality is reliant on an individual’s T cell repertoire
andability to recognize tumorantigens for its beneficial effect.These
data highlight the ability of T cells to recognize and fight cancer and
suggest that therapeutic efficacy relies on a diverse TCR pool.

While most anti-tumor studies have manipulated a/b T cells,
g/d T cells have unique features that could be exploited for cancer
treatment. In pre-clinical studies, mice lacking g/d T cells have
increased incidence of various cancer types (20–23). This anti-
tumor effect is mediated via g/d T cell recognition of stress-
associated molecules often upregulated in cancer such as heat-
shock proteins, non-classical MHC molecules, and various
phospho-antigens, a process encapsulated under the term the
“lymphoid stress-surveillance response.” (24) Furthermore,
unique from a/b T cells, g/d T cells have potent activation
responses prior to expansion, and express various NK cell
receptors such as NKG2D that further enhance their ability to
recognize altered or damaged self-cells (24). The proportion of
g/d T cells infiltrating tumors is predictive of favorable prognosis
(25). Among the various tumor types studied, melanoma tumors
harbored the highest proportion of g/d T cells and the presence of
these cells correlated with a lower risk of metastasis (26).
Interestingly, g/d T cells are often over-represented in the
heterogeneous adoptively transferred cell populations of
successful tumor infiltrating lymphocyte (TIL) therapies, again
suggesting potent anti-tumor activity (27). However, in vivo g/d
T cell stimulating approaches using IL-2 and bisphosphonates
has had underwhelming results (28, 29). Further studies are
needed to define optimal ex vivo expansion strategies of g/d
T cells, and to piece apart the differential benefit of g/d and a/b
T cell subsets in adoptive transfer approaches.

TCR Transmembrane and Constant
Region Mutations: Connection to Human
Disease and Immunotherapy
Aside from the extracellular variable region of the TCR, subtle
changes in the extracellular constant and transmembrane (TM)
domains can affect the ability of the entire TCR complex to
assemble and function (Figure 2). The only in-human mutation
linked to the TCR a constant (TRAC) domain, is a G to A
substitution at the C-terminus of exon 3. This mutation results in
a complete lack of a/b T cells, implicating a key role in TRAC in
regulating development of this cell type (30). No identified
human diseases so far have been linked to mutations in the
TM domain, or the TCR b, g, or d constant domains (TRBC,
TRGC, or TRDC), suggesting they are all highly evolutionarily
conserved. Indeed, numerous mutational and structural studies
have confirmed the essential functions of both the TM and
constant domains in assembly of the TCR complex and signal
transduction largely via CD3 subunit recruitment and activation
Frontiers in Immunology | www.frontiersin.org 4
(31). More recent studies have only just begun to piece apart the
nuanced mechanisms of these interactions (32–34).

New strategies are emerging tomanipulate the TMand constant
domains of the TCR for therapeutic benefit. For example, the TCR
constant domain harbors a disulfide bond that promotes
heterodimerization. Adding a second disulfide bond within this
region has been shown to enhance TCR stability, signaling and T
cell mediated tumor killing in cancer models (35). Adding
additional hydrophobic residues to the TM domain enhanced
surface expression and T cell avidity, leading to increased anti-
tumor T cell activity in vitro (36). In mouse and human models,
removal of conservedN-glycosylation sites in the TCR variable and
constant domains improves T cell avidity and tumor cell
recognition (37). Other studies have improved engineered-TCR
technology viamanipulation of constant domains. Exchanging the
human constant-region for the murine equivalent (38), or just a 9
amino acid fragment thereof (39), prevents native-non-native
heterodimerization. This results in improved pairing of TCR
subunits with the desired specificity, enhanced CD3/TCR
stability, and increased anti-tumor activity. Introduction of
additional cysteine residues in the constant region achieved
similar results (40). Finally, new approaches to target
transmembrane domains with novel peptides, such as core
peptide (CP) targeting of the TM domain of the TCR molecules,
has shown early promise in various diseases such as autoimmune
disease (41). Similar strategies could be extrapolated to anti-cancer
applications. These insights highlight that modulation of anti-
tumor immunity should be approached cautiously to maximize
the effect on the malignant cells, while preventing detrimental side
effects on the host.

CD3 Subunits: Structure and Function
Signaling through the TCR requires interaction with several CD3
subunits, as the TCR chains themselves do not contain
intracellular signaling domains (42). There are four CD3 types:
CD3e and CD3d form a heterodimer that binds to TCRa, CD3e
and CD3g form another heterodimer that binds to the TCRb
chain, and two CD3z chains form a homodimer that associates
with both TCR a and b chains (Figure 3) (31). In the case of the
g/d TCR, two CD3e/g homodimers are involved in lieu of CD3d
(43). Despite extensive study, the exact geometry and binding
sites between these CD3 molecules and the TCR have not been
fully elucidated, but likely involve a combination of residues in
the constant regions as well as ionizable and hydrophobic
residues in the transmembrane regions (44). Signaling itself is
mediated through phosphorylation of immunoreceptor tyrosine-
based activation motifs (ITAMs) within the CD3 and z
chains (45).

CD3 Mutations and Connection to
Human Disease
Mutations in the CD3 molecules are associated with an array of
human diseases ranging from severe-combined immunodeficiency
(SCID) (46, 47) to autoimmune disorders (48). Regarding
immunodeficiency, frameshift, nonsense, and splice variant
mutations disrupt the ability of the CD3 molecules to be
expressed or, if successfully translated, to bind to the TCR
May 2021 | Volume 12 | Article 658611
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molecules to form a functional TCR complex (49). Without
functional TCR signaling, T cells fail selection in the thymus,
resulting in a complete lack of T cells and severe disease (46, 47,
50–52). More mild immunodeficiencies result in patients where
TCR/CD3 is expressed but at much lower levels than normal,
impairing T cell activation and function (53–55). The CD3
molecule affected determines the type of deficiency. For
example, the CD3d mutations C202T (that results in a
premature stop codon at residue 68), and G to A substitution at
position +5 of intron 2, were both found to cause a selective lack of
a/b T cells but preserve the g/d T cell pool because the CD3d
molecule is not included within the g/d TCR complex (56–58). In
contrast, CD3g haploinsufficiency had a larger effect on the g/d T
cell pool, suggesting this molecule is more important in g/d T cell
development in humans (59).

At the opposite end of the spectrum are CD3 mutations that
pre-dispose patients to autoimmunity. Of all the CD3 subtypes,
mutations in CD3z and CD3g harbor the strongest link to
autoimmune and inflammatory conditions. Numerous SNPs
and splice variants, affecting primarily the 3’UTR, intron 1, and
exon 7 of CD3z have been associated with pathogenesis in
systemic lupus erythematosus (SLE) (48, 60–64) and rheumatoid
arthritis (RA) (65). A single SNP in intron 1 (rs858554) has a
strong association with both diseases, as well as immune
thrombocytopenia (ITP), suggesting a common underlying
mechanism (48, 66) possibly via down-regulation of CD3z (67).
Frontiers in Immunology | www.frontiersin.org 5
Aside from germline mutations themselves, hypermethylation of
the CD3z gene has been associated with severe SLE phenotypes
and correlates with reduced CD3z expression (60). One might
predict down-regulation of CD3z would decrease T cell activation.
However, decreased CD3z expression in SLE patients’ T cells was
found to result in aberrant recruitment of FcRg to the TCR
complex in lieu of CD3z (68). Aside from mutations in CD3z,
CD3gmutations can also result in a range of phenotypes including
mild immunodeficiency to autoimmunity. For example, Recio et
al. found a common A to T mutation in nucleotide 205 of exon 3
in multiple patients from two different families in Turkey (69).
This mutation results in a premature stop codon at residue 69 of
the CD3g protein. Despite sharing the exact same mutation, the
patients from the first family had severe SCID and died in infancy,
while the second patient was largely asymptomatic despite having
similarly decreased levels of TCR/CD3 expression. A second study
identified a mutation in another Turkish family at position -1 of
exon 3 resulting in a premature stop codon at the protein level.
This mutation disrupted CD3g expression, resulting in a variety of
autoimmune diseases (70). Thus CD3g deficiency results in
disparate phenotypes that may be augmented by the larger
genetic and environmental context of each individual. To
elucidate this further, Rowe et al. studied the function and
clonality of T cells from CD3g deficient patients predisposed to
autoimmunity. They found that these individuals harbor
decreased Treg function, and enrichment of hydrophobic
A B

FIGURE 3 | CD3 structure, mutations and manipulations for immunotherapy. (A) CD3 molecules interact with the TCR in CD3d/ϵ and CD3ϵ/g heterodimers while
CD3z forms a single homodimer. Each CD3 molecule contains one or more ITAM motif that is essential for downstream signaling. (B) Various mutations and genetic
engineering approaches alter or manipulate CD3 function thereby impacting T cell activity. HCC, hepatocellular carcinoma; NSCLC, non-small cell lung cancer.
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residues at positions 6 and 7 of the CDR3 chain within the variable
domain of the TCR, a feature previously linked to auto-reactivity
(71). Another detailed analysis of T cell subsets in CD3g-deficient
patients revealed impairment specifically in CD8 T cell
development, but not CD4 development (72). This shift in the
balance of T cell subsets could be responsible for the concurrent
immunodeficiency and autoimmunity observed. In general, the
heterogeneity of phenotypes resulting from CD3 mutations,
particularly CD3g, suggests complex underlying biology that is
not fully encapsulated within our current mechanistic models. It
will be interesting to apply this foundational knowledge of CD3-
chain function to the improved design of engineered TCR’s and
CAR’s, and their application in cancer treatment.

The number of ITAMmotifs in the signaling domain appears
to be key to regulating signal strength and thereby T cell activity.
For example, Holst et al. conducted preclinical mouse studies
using T cells with different numbers of ITAMs (73). They
reconstituted Rag-/- mice with T cells in which almost every
possible permutation of ITAM expression on all CD3 chains (a
total of 25 recombinant conditions) was tested for its effect on T
cell development and function. Their main conclusions include a
quantitative linear relationship between the cumulative number
of ITAM motifs in the CD3 complex and T cell proliferation
rates. Despite decreased proliferation rates with fewer ITAM’s,
they observed that fewer than 7 total ITAMs results in severe
autoimmune disease (73), thought due to failed negative
selection in the thymus of highly self-reactive T cell clones. An
important qualitative difference was observed in mice harboring
6 total ITAMs: autoimmune disease occurred in those with
mutated CDza, the proximal ITAM motif, and CDzc, the
distal ITAM motif, but not with mutated intermediate CDzb.
No autoimmune disease was observed in mice with wildtype
CDz that lacked ITAMs from CD3d, g, and e. It is not known if
these phenotypes recapitulate human biology but does imply that
individual ITAM’s perform specific roles and that the total
number has important implications for T cell function. These
types of detailed studies of CD3-subtype roles within the TCR
complex will lead to better predictors of disease outcomes and
means to genetically target and intervene for clinical benefit.

Notably, a few germline alterations in the CD3 subunits have
been linked to cancer. An insertion/deletion polymorphism in the
CD3g promoter was linked with increased hepatocellular
carcinoma incidence (74), and another (rs3181259T>C) in CD3d
was linked to recurrence in non-small cell lung cancer (NSCLC)
(75). SNP rs967591G>A in CD3e correlated with lower CD3e
expression and shorter survival in NSCLC suggesting a functional
consequence could be impaired TCR signaling (76). It is surprising
that such little data exists linking CD3 dysfunction with cancer
given its essential role in T cell function and thereby adaptive
immunosurveillance. Other disease factors in the heterogeneity of
human cancers may cloud identification of a CD3 mutation
signature in studies based on genetic analysis alone.

CD3: Connections to Immunotherapy
A variety of therapies have been designed to exploit CD3 subtype
functions for cancer treatment. Non-specific stimulation of T cell
Frontiers in Immunology | www.frontiersin.org 6
pools with anti-CD3 antibodies has been used to enhance anti-
tumor T cell responses. In TIL therapy, ex vivo culture with
activating anti-CD3 antibodies along with IL-2 is the preferred
method for activation and expansion (77). Compared to a/b T
cell activation, CD3 conformational changes do not play as
prominent a role in conventional g/d T cell activation.
Nevertheless, binding of anti-CD3 antibodies (78) or Fab
fragments (79) to g/d T cells enhanced tumor killing in vitro,
suggesting exploiting the CD3 signaling pathway could augment
novel anti-tumor properties of this unique cell type.

In CAR-T engineering, derivatives of CD3z chains are the
favored intracellular signaling moieties incorporated into most
CARs (80). Next generation CARs also include intracellular
signaling components of costimulatory molecules such as 41BB
orCD28 fused to theCD3z ITAMdomains to further enhanceCAR
T activation (81). Engineered CAR proteins have been shown to
interact with and signal via endogenously expressed TCR
components (82). Therefore, fine-tuning the intracellular and
transmembrane components may result in varied and potentially
desirable enhancements of CAR T function. For instance the
number and type of ITAM’s impacts the risk of autoimmune
disease development in mice (73). With this knowledge in mind,
Feucht et al. selectivelymutated 1 or 2 ITAM’s of the CD3zwithin a
CD19-CD28-CD3z CAR and tested the resultant impact on T cell
function (83). CAR’s with mutations (X) in the second and third
ITAMs (denoted1XX),were themost efficacious and induced long-
term remission in a pre-B acute lymphoblastic leukemia mouse
model. Based on the identification of aberrant FcRg recruitment in
autoimmune disease when CD3z was mutationally defective (84),
one might predict that incorporation of the intracellular portion of
FcRg into CARs in lieu of CD3z domains would result in increased
CAR T activation. However, FcRg ITAM domains showed no
benefit over CD3z when utilized in CAR technology (85, 86),
suggesting this synthetic biology does not fully mimic mutation-
driven phenotypes observed in nature. Other strategies to enhance
CAR T signaling could be inspired by the hyper-activated T cell
states observed in autoimmune diseases caused by mutations in
otherCD3 subunits, and by experimentingwith ITAMnumber and
CD3 subunit of origin. However, consideration into the potential
risk of chronic activation would have to be investigated.

Another approach that exploits CD3 activity in T cell
signaling is to use bi-specific T cell engagers (BITEs). These
constructs are comprised of one antibody moiety binding to an
antigen of choice and an opposing antibody moiety binding CD3
subunits on T cells (87). The BiTE could be thought of as a
soluble CAR, bridging a T cell and target tumor cell. However, in
contrast to CARs, BiTEs are still reliant on endogenous CD3
expression in the T cells they recruit. BiTEs have been shown to
induce responses in polyclonal populations of CD4 and CD8 T
cells (88), and do not have to be custom made for each patient.
Currently most bind to the extracellular component of CD3e
(88). Based on our above appreciation for the heterogenous
involvement of various CD3 subunits in T cell function and
disease, targeting other CD3 subunits could be used to fine-tune
desired T cell recruitment with BiTEs. BiTE efficacy is in part
limited by specific tumor cell phenotypes, such as the expression
May 2021 | Volume 12 | Article 658611
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of sialophorin which limits T cell to tumor cell adhesion (89),
and by similar side effects of CRS and neurotoxicity observed in
CAR Therapy (90, 91). One study also identified a
polymorphism in the CD3z chain (SNP rs2949655) that
correlated with reduced cytotoxicity in response to BiTE
treatment (92), demonstrating how CD3 mutational profiling
could be used to help guide personalized treatment approaches
targeting this pathway. Further improving our understanding of
CD3 subunit function and signaling will help elucidate additional
strategies for therapeutic intervention.

CD4 and CD8: Structure and Function
The co-receptors CD4 and CD8 are essential to T cell
development and formation of a functional TCR-MHC
synapse (93). They are considered co-receptors because they
stabilize MHC-antigen-TCR complexes and contribute to the
functions of CD4+ helper T cells and CD8+ cytotoxic T cells
without direct antigen binding (94, 95). CD4 is comprised of four
extracellular Ig domains that bind to MHC-II. CD8 is a dimer
comprised of either a CD8a homodimer or a CD8a and CD8b
heterodimer (96, 97). These extracellular domains are attached to
a long extracellular stalk domain that, by means of differential
sialylation/glycosylation, helps regulate CD8-MHC-I binding
affinity (98). CD8aa is found on gdT cells, intestinal and
dermal intra-epithelial T cells, as well as NK cells (99). CD8ab,
on the other hand, is primarily expressed on conventional
cytotoxic CD8 T cells (100). Crystal structures have shown
CD4 binds at membrane-proximal a2 and b2 domains of the
MHC-II molecules at residues conserved between the different
MHC-II types (101), while CD8 binds mainly at the a3 domain
of MHC-I (102). MHC-II/CD4 or MHC-I/CD8 binding occurs
at much lower affinity than MHC/TCR, presumably to help
calibrate appropriate T cell selection during thymic development
and avoid autoimmunity (100). Both CD4 and CD8 have
transmembrane domains that contribute to the formation of
their respective TCR complexes, as well as intracellular domains
that associate with LCK to facilitate intracellular signaling.

CD4 and CD8 Mutations: Connections to
Human Disease and Immunotherapy
The only known polymorphisms in CD8a (p.Gly111Ser)
associated with human disease affect functional expression of
the CD8a molecule, resulting in compete lack of CD8 T cells
(103). No other mutations or even polymorphisms in the CD4
molecule or CD8b have thus far been linked to human disease,
likely because each has such refined and essential functional
requirements for T cell function. In mice, studies have shown
that missense or non-functional mutations of CD4 and CD8
result in lack of either CD4 or CD8 T cell subtypes due to failure
of thymic selection (104, 105).

The use of CD4 and CD8 as markers for specific T cell subsets
and their functions has profound implications to tumor
immunology and immunotherapy. Within the tumor
microenvironment, increased T cell infiltration, specifically of
CD8 cytotoxic T cells, and high CD8/FoxP3 ratios correlate with
better overall survival in multiple cancer types (106). Th1
Frontiers in Immunology | www.frontiersin.org 7
phenotypes of TILs correlate with improved outcomes (107). In
adoptive cell therapy, it was thought that the CD8 component of
TILs was the most important due to the known cytotoxic capability
of CD8 T cells, with CD4 T cells playing a merely supportive role
(108, 109). Indeed, in melanoma patients a higher frequency of
CD8 T cells amongst the infused cells correlated with better
responses (110). However, CD4 T cells have been shown to exert
anti-tumor effects through largely unknown and likely multivalent
mechanisms (111). Additionally, recent evidence has shown CD4 T
cells can acquire cytotoxic capabilities in the presence of IL-2 and
mediate direct tumor cell killing (112). For CAR T cell therapy, a
combination of CD4 and CD8 T cells in a defined 1:1 ratio appears
to be most efficacious (113). Current TIL therapy regimens use ex
vivo IL-2 expansion, but do not select for T cell subsets prior to re-
infusion (77). More detailed studies of CD4 and CD8 TIL subsets
and means to expand and enhance their function ex vivo, as well as
the optimal balance of CD4 and CD8 cell types in adoptive cell
therapies, are required.

Various approaches to target CD4 have been applied or are in
development for immunotherapy. CARs targeting CD4 have
shown promise in pre-clinical models of peripheral T cell
lymphomas (PTCLs) (114). Anti-CD4 antibodies have been
used in patients with PTCLs as well as cutaneous T cell
lymphomas with some early clinical benefit (115–118). Anti-
CD4 antibodies have also shown benefit in non-hematologic
malignancies via depletion of anti-inflammatory CD4 T cell
subsets including Tregs, thereby allowing for enhanced
proliferation of anti-tumor CD8 cytotoxic T cells (119). This
approach is further bolstered with the addition of immune-
checkpoint blockade (120) and is now being applied in early
clinical trials (121).

Aside from using CD4 and CD8 as cell-specific markers,
genetic manipulation of these molecules offers therapeutic
potential. In our lab, a synthetic construct that fused the CD8a
extracellular domain to a MyD88 intracellular domain, normally
downstream of innate immune receptors, resulted in enhanced
anti-tumor CD8 T cell function in mouse models (122). Another
group demonstrated increased MHC-I binding affinity when
sialylation of core 1 O-glycans on the CD8 stalk region was
reduced either through neuraminidase treatment or mutation of
ST3Gal-I sialyltransferase mutation (123). Through a phage
display approach, Wang et al. found the substitutions
Gln40Tyr and Thr45Trp in CD4 resulted in almost 500 fold
increase in MHC-II binding affinity (101). Future studies are
need to determine if other alterations in CD8 or CD4
extracellular domains could be used to further stabilize the
TCR’s interaction with low affinity tumor antigens and thereby
improve anti-tumor CD8 and CD4 effects respectively.
Furthermore, docking topology of self-reactive TCR-MHC-II
complexes in autoimmune T cell types is different than that in
non-self-reactive T cells, and is likely influenced by CD4
molecule binding (13). One could envision that modulating
CD4-TCR-MHC topologies could in a similar manner enhance
T cell responses to rare self-like tumor-associated antigens
(TAA). In conclusion, the CD4 and CD8 molecules are well-
established markers for T cell subsets, their potential as
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therapeutic targets show early promise, and alteration in their
function and/or binding activity warrants continued exploration.
EARLY DOWNSTREAM SIGNALING
INTERMEDIATES: LCK, FYN, ZAP70

LCK: Structure and Function
Besides the molecules within the TCR signaling complex, many
additional proximal signaling molecules also contribute to
overall T cell function and hold potential as therapeutic
targets. The precise events that occur following TCR activation
remain controversial, but current data suggests that early
proximal signaling events are largely mediated by the Src
family kinases LCK and FYN (124). Upon antigenic
stimulation of a T cell, pre-activated LCK is recruited first to
the TCR, initiating phosphorylation of ITAMs within the CD3
intracellular domains (Figure 4). Subsequently, additional LCK
bound to the CD8 and CD4 co-receptors localizes to the immune
synapse, enhancing TCR-pMHC binding and enabling ZAP70
recruitment and activation (125–128). Additionally, LCK
deficient mice have severely impaired T cell development
(129–132) and LCK contributes to a T cells’ ability to titrate its
activation level based upon the affinity of the TCR-pMHC
interaction. This graded signaling response is largely regulated
via distinct patterns of ITAM phosphorylation executed
predominantly by LCK (133). LCK activity also modulates T
cell differentiation (134, 135), CD28 costimulatory signaling
(136), and even cell death (137). Given its critical role in a
variety of T cell functions, it is not surprising that LCK activity is
tightly regulated to maintain immune homeostasis .
Consequently, genetic variations and mutations that alter the
function of LCK have profound implications for the
development of cancer and immune-based therapies.

LCK Mutations and Connections to
Human Disease
A homozygous missense mutation in a hydrophobic region of
the catalytic domain (c.T1022C) has been identified in children
presenting with severe recurrent infections, autoimmune
manifestations and panniculitis. This mutation is associated
with reduced CD4 and CD8 expression, impaired TCR
activation, decreased Treg levels and expansion of an
oligoclonal g/d T cell population (138). Additional splice
mutation variants of LCK have been reported and correlate
with impaired LCK function and immune dysregulation.
Patients with these variants present with a range of clinical
syndromes including epidermodysplasia verruciformis and
recurrent bacterial infections (mutation: c.188-2A>G) (139),
common variable immunodeficiency (CVID, mutation: lack of
exon 7) (140), and severe combined immunodeficiency (SCID,
mutation: lack of exon 7) (141). Mutations that delete a C-
terminal regulatory tyrosine within LCK increase LCK activity
resulting in sustained T cell activation and oncogenesis in mice
(142), as well as increased IL-2 production independent of
antigenic signaling in humans (143). In addition, a
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chromosomal translocation t(1;7)(p34;q34) has been identified
in patients with T cell acute lymphoblastic leukemia (ALL) (144).
This translocation also increases LCK activity and the degree of
elevated activity is correlated with breakpoint location and
disease severity (144). These findings are intriguing from a T
cell engineering perspective given that modulating LCK function,
even via changes in single residues, has significant impact on T
cell function. However, based upon the stark clinical phenotypes
observed among patients, it is clear that extreme caution is
warranted when considering genetic manipulation of this
crucial protein.

LCK: Connections to Immunotherapy
Understanding LCK activity and genetically altering this gene
still holds promise for several therapeutic approaches in
oncology. In particular, LCK modulation is an important area
of study for CAR T cell treatment of solid tumors. For example,
CAR T cells have been engineered with a deleted LCK-binding
motif within CD28 (DCD28). In mice, these second generation
DCD28/CD3z (145) and third generation DCD28-4-1BBz CAR
T cells (146) show reduced IL-2 production and improved tumor
control in the presence of Tregs. Clinically, a patient with
malignant pleural mesothelioma was treated with anti-FAP
DCD28/CD3z CAR T cells and experienced stable disease for 1
year, suggesting that DCD28/CD3z CAR T cells may have
contributed in controlling his disease (147). However, this
finding is currently anecdotal and other studies suggest that
the effect of DCD28/CD3z on CAR T cell function may depend
upon the immunosuppressive mechanism within the tumor
microenvironment (TME) (148). For instance, tumor models
with high TGFb within tumor tissue require an intact LCK motif
within the CD28/CD3z CAR receptor in order to overcome
TGFb-mediated suppression (148). Therefore, patient
stratification by TME immune profiles could identify patients
who would benefit from DCD28/CD3z CAR T cells. Synthetic
LCK modulation in CAR T cells has other therapeutic
implications as well given that LCK deficient cells are resistant
to activation induced cell death (149) and LCK is involved in PD-
1 induced inhibition (150).

It is also important to consider the impact of LCK mutations
in the context of immune checkpoint inhibition (ICI). For
example, the LCK SNP rs10914542 G allele impairs TCR
activation (151), suggesting that patients harboring this allele
may be less likely to mount a robust response following ICI
therapy. Conversely, a single amino acid variant in LCK
(p.G85W of exon 4) was associated with autoimmune diseases
including Sjogren syndrome, SLE and RA, suggesting that
patients with this variant could be at increased risk of
developing autoimmune complications in the setting of ICI
(152). All together, these data suggest that artificial regulation
of LCK or screening for LCK variants could inform immune-
based therapeutic strategies for cancer.

FYN: Structure and Function
FYN is another Src family tyrosine kinase involved in proximal
TCR signaling, however, the precise roles of this protein are less
understood than LCK. FYN also associates with the TCR and is
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involved in phosphorylation of CD3z ITAMs. However, LCK
deficiency causes a much more dramatic phenotype than FYN
deficiency, suggesting that FYN is not required for T cell
activation (126). FYN interacts with many additional binding
partners including PI3K (153, 154), lymphocyte-specific scaffold
protein adhesion and degranulation-promoting adaptor protein
(ADAP) (155), phosphoprotein associated with glycolipid-
enriched membranes (PAG) (156), signaling lymphocyte
activation molecule (SLAM) and others (157). These
interactions collectively enable a diverse breadth of functions
ranging from T cell activation to anergy (158). It is therefore
reasonable to hypothesize that alterations in FYN function could
modulate T cell activity in a variety of ways that could be
exploited for therapeutic purposes.

FYN: Mutations and Connections
to Immunotherapy
To date, no naturally occurring mutations in FYN have been
linked to disease, suggesting that either existing genetic variants
are relatively benign, or they cause lethality. Despite this
ambiguity, modulating FYN activity remains an active area of
interest in T cell engineering. For example, in a recent review by
Thakar et al., the authors propose that inhibition of the FYN-
ADAP pathway using CRISPR-CAS9 could provide a unique
means of selectively downregulating cytokine production by
CAR T cells without impairing cytotoxicity (159). This
approach could be used to reduce the severity of cytokine
Frontiers in Immunology | www.frontiersin.org 9
release syndrome, a dangerous complication of CAR T cell
therapy (159). Inhibiting FYN activity may also enhance T cell
migration. A study by Schaeuble et al. reported that inhibition of
FYN with the small molecule SU6656 promoted enhanced
CCR7-driven migratory function of nonactivated T cells in
vitro (160). CCR7 is expressed by both central memory T cells
(TCM) and T memory stem cells (TSCM), both of which are
promising substrates for both CAR T cell (161, 162), and
transgenic T cell therapy (163). Therefore, inhibiting FYN
activity in genetically engineered T cells could enhance their
migratory capacity prior to activation within either a tumor-
draining lymph node or the TME.

Alternatively, activating some functions of FYN could
improve cellular based immunotherapy. One study found that
deletion of FYN in a mouse model promotes differentiation of
CD4+ T cells towards a Treg phenotype and away from a Th17
phenotype (164). While speculative, this suggests that activating
Fyn could promote a Th17 phenotype. Some data suggest that
Th17 CD4+ T cells have superior anti-tumor function and
improved persistence as compared to Th1 cells in adoptive cell
therapy settings (165–167). Therefore, FYNmodulation in CD4+
T cell engineering approaches may not only reduce Treg
induction but could also promote a Th17 phenotype.
Increasing FYN activity has other potential beneficial
implications. The SH2 domain of FYN binds Tim-3,
promoting T cell activation and increasing cytokine production
(168), a surprising finding as Tim-3 is classically associated with
A B

FIGURE 4 | LCK, FYN and Zap70 structure, mutations and manipulations for immunotherapy. (A) Following antigen/MHC binding, LCK is recruited first to the TCR,
initiating phosphorylation of ITAMs within the CD3 intracellular domains. Subsequently FYN is recruited and assists in phosphorylation of CD3z ITAMs. LCK then
phosphorylates the linker sequence of ZAP70 causing a conformational change that actives the kinase activity of ZAP70 permitting additional downstream signaling.
(B) The impact of mutations and genetic manipulation of LCK, FYN and ZAP70 are detailed. Red circles denote phosphate groups.
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T cell exhaustion. Increased FYN-Tim-3 binding via genetic
modification could shift the balance of Tim-3 activity towards T
cell activation and away from exhaustion (168). In contrast to the
T cell activating function of FYN, FYN association with PAG and
c-cbl can disrupt canonical TCR signaling and promote T cell
anergy under certain conditions (156, 169–173). These findings
indicate that FYN has highly varied and even paradoxical effects
on T cell activity depending upon its binding partners.
Importantly, the binding site for these various partners are not
all known. Therefore, further characterization of the specific
binding locations could enable genetic alterations to precisely
tailor FYN activity and improve active immunotherapeutic
approaches. Regarding passive immunotherapeutic strategies
such as ICI, FYN-activating signatures have been associated
with lupus nephritis, an autoimmune condition (174), loosely
suggesting that increased FYN activity might increase the risk of
autoimmune complications following ICI. However, no
polymorphisms or genetic variants have been associated with
autoimmunity thus it is unlikely that mutational profiling of
FYN would predict development of immune related Adverse
Events (irAE). Overall, further characterization of FYN function,
binding sites and binding partners is warranted and may provide
opportunities for various T cell engineering strategies in
the future.

ZAP70: Structure and Function
Once LCK and FYN phosphorylate ITAMs on the CD3
molecules, the next step in TCR signal transduction involves
binding of z-chain-associated protein kinase of 70 kDa (ZAP70)
(45). Distinct from the Src family kinases described above,
ZAP70 along with SYK are the two prominent members of the
Syk family of kinases (175). ZAP70 is comprised of an auto-
inhibited kinase domain and two amino-terminal SH2 domains
that bind doubly-phosphorylated ITAMs (176) Upon ITAM
binding, ZAP70 undergoes a conformational change that
results in additional phosphorylation of residues in the second
linker sequence by LCK. This relieves inhibition of the kinase
domain and results in downstream signal propagation (177).

ZAP70 Mutations and Connections to
Human Disease
Various ZAP70 mutations have been shown to cause a severe
form of immunodeficiency characterized by complete lack of
functional T cells (178). Most of these mutations affect the kinase
domain (179–182), or lead to loss or destabilization of the
protein transcript altogether (183–185). Syc can take the place
of ZAP70 in T cell signaling when the latter is impaired, allowing
for some CD4 cells to survive thymic selection, but these
Syc+ZAP70- T cells are defective in IL-2 production and
proliferation and provide aberrant help to B cells for antibody
class switching (182, 185). In contrast, polymorphisms in the
ZAP70 coding region or 3’-UTR have conversely been associated
with autoimmune disorders including psoriasis and type 1
diabetes (rs17695937) (186, 187), inflammatory bowel disease
(IBD, rs13420683) (188), and RA (rs2278699) (189). Finally, an
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intron variant of ZAP70 (rs7425883) is associated with a
decreased risk of developing non-Hodgkin lymphoma (190),
and aberrant elevated expression of ZAP70 in B cell CLL cells
correlates with enhanced BCR signaling in the leukemic cells and
poorer prognosis (191, 192). Mouse studies recapitulating some
of these autoimmune or immunodeficient phenotypes have
demonstrated point-mutations in the second SH2 domain,
interdomain B, or paired mutations in the kinase region lead
to aberrant thymic selection more permissive of higher affinity
self-reactive clones, and quantitative differences in TCR signaling
(193–195). Of particular interest, the tyrosine residues at
positions 292, 315, and 492 have been shown to play a
negative regulatory role when phosphorylated, and their
mutation to phenyalanine (which prevents phosphorylation),
allowed for T cell hyperactivation (196). These findings suggest
that ZAP70 could be used not only as a prognostic marker of
disease but also a therapeutic target.

ZAP70: Connections to Immunotherapy
Due to its upstream role in TCR signaling, ZAP70 has been
gaining interest in the world of cancer-immunotherapy. Of
greatest potential, engineered ZAP70 constructs have been
designed to function as on/off switches to control T cell
responses. In one approach, a larger analog of the kinase
inhibitor PP1 was used to selectively inhibit an engineered
ZAP70 with altered inhibitor binding affinity, resulting in
impaired catalytic activity (197). Interestingly, Treg function
was not affected by this approach, suggesting unique non-
catalytic activity of ZAP70 is functioning in Tregs (198), and
that therapeutic application of this design would not affect
tolerance and protective roles of adaptive immune cell types.
This analog sensitive ZAP70 could be employed to turn off
unwarranted activation of adoptively transferred T cell
therapies. Other investigators have developed a tetracycline-
inducible ZAP70 gene promoter allowing for selective turning
on of ZAP70 transcription (199). This has so far only been used
in studies designed to assess the role of ZAP70 in thymic
selection, and clinical application may be impaired by the need
for tetracycline infusion and difficulty regulating expression
levels once turned on. More recently, a dual small-molecule
gated ZAP70 has been created via fusion of the analog-sensitive
ZAP70 to the ligand binding domain of the estrogen receptor
(200), allowing for both on and off signals. In vitro, this new
ZAP70 construct could be controlled on a minute-by-minute
timeframe and regulated calcium flux and CD69 expression
levels. However, cytokine production was impaired in the “on”
configuration, thus more refinement is required before clinical
application (200). Future studies could examine the role of
specific ZAP70 point mutants, such as those identified above
that result in autoimmune phenotypes, in regulating adoptive T
cell therapy efficacy. Additionally, the differential role of Syk and
ZAP70 with regards to TCR signaling is still an area of inquiry
with some conflicting evidence regarding the potency of the two
molecules for T cell activation (182, 185, 201, 202). Although
early studies of CAR design have favored CD3z and ZAP70
dependent designs, recruiting the Syk tyrosine kinase in lieu of
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ZAP70 may have some benefit in specific contexts. Finally,
CXCR3-mediated T cell chemotaxis was shown to be
dependent on ZAP70 and was impaired by TCR signaling
(203). Modulating ZAP70 crosstalk between these two
important pathways could affect the ability of T cells to
infiltrate the tumor microenvironment and maintain TCR
signals and resultant activation states. Collectively, this early
evidence demonstrates artificially controlling ZAP70, or variants
of ZAP70 with different signaling thresholds, could be powerful
tools for cancer immunotherapy.
THE LAT SIGNALOSOME: LAT,
BINDING PARTNERS AND
DOWNSTREAM PATHWAYS

LAT: Structure and Function
LAT serves as a major junction point in TCR signaling, forming a
nexus between the early antigen-recognition machinery and a
multitude of downstream pathways (Figures 1 and 5) (204).
Phosphorylation of LAT at multiple intracellular tyrosine
residues by ZAP70 is a key link between TCR antigen
recognition and the transcriptional paradigm shift of T cell
activation (205). Due to its assembly of numerous signaling
molecules, LAT has been referred to as the central platform for
the “LAT signalosome.” (206) LAT is comprised of minimal
extracellular and transmembrane domains, and an extensive
cytoplasmic region with numerous phosphorylation and
protein binding sites (207).

LAT Mutations and Connections to
Human Disease
Mutational mapping has allowed identification of tyrosine-
phosphorylation residues required for LAT to associate with
individual signaling partners. For example, mutation of tyrosine
132 in human T cells results in defective binding to PLCg-1
(208), tyrosine 171 was essential for PI3K activation (209),
tyrosines 110 and 226 are required for ERK activation (208),
171 and 191 required for Gads binding, and 171, 191, and 226
together are required for Grb2 binding (Figure 5) (210). Aside
from tyrosine residues, study of the human Jurkat T cell line
identified 11 serine residues in the cytoplasmic domain that may
be key to signal propagation. Cells expressing LAT with S->A
mutations at serines 38, 40, 106, 164, and 180 exhibited
decreased PLCg-1 and SLP-76 binding, reduced IL-2
production, but increased ZAP70 phosphorylation (211). The
impact of each individual serine residue has yet to be elucidated.
A recent study identified as many as 90 putative binding partners
for LAT, suggesting the myriad of established roles for residues
in this molecule may yet underestimate the importance of LAT in
T cell activation (212).

Studies in mice have allowedmechanistic elucidation of the key
function of LAT and its structure in T cell development andmature
T cell functions (213–215). Completely blockingLATexpression or
function inmice led to impairment inT cell development.Mutation
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of the distal 4 tyrosine residues of LAT to phenylalanine mimicked
the phenotype of LAT-/- mice, in which T cell development is
completely blocked at the double-negative 3 (DN3) stage (215).
Selectively knocking-out LAT expression after the DN3 stage led to
impaired development of single positive T cells in the thymus and
periphery (216). Conversely, mutations or deletions of LAT in
mature post-thymic T cells altered but did not completely impair T
cell functions, and even led to autoimmunity and aberrant
lymphoproliferation, implicating LAT in not only T cell
activation but also regulation (217, 218). In one study, a mutation
in tyrosine 136 and impaired PLCg binding led to MHC-
independent constitutive Th2 T cell activation and T cell
dependent B cell hyperproliferation and antibody production,
ultimately resulting in systemic autoimmune disease (219).
Others showed that the same mutation resulted in disruption of
thymic positive andnegative selection (220). Similarly, a third study
showed that mutation of tyrosine 136 blocked PLCg dependent
functions, but allowed for continued ERK signaling, first causing
impairedTcelldevelopmentbut later causinga lymphoproliferative
disorder (221). The mechanism of negative regulation via LAT
could be mediated via association with Grb2, a known inhibitory
signal mediator (222), or through binding and inhibiting the active
form of LCK (223). Together these results implicate LAT in both T
cell thymic selection as well as subsequent immune regulation, and
that complex interactions between LAT and its multiple binding
partners maintains a balance between T cell activation
and inhibition.

In humans, mutations or polymorphisms in LAT recapitulate
the range of mouse phenotypes ranging from autoimmunity to
immunodeficiency (224). Higher expression levels of LAT (as
assessed by qRT-PCR and flow cytometry) were correlated with
severity of aplastic anemia, however it was unclear how this over-
expression was regulated or if this was a cause or consequence of
disease (225). Loss of the cytoplasmic tail of LAT due to amutation
in exon 5 resulted in immunodeficiency characterized by a decrease
in circulating T cells, but simultaneous severe autoimmunity (226).
T cells in these patients were still able to induce calcium influx and
NF-kB activation, but had aberrant ERK signaling (226). The
heterogeneity of disease resulting from LAT-deficiency has led
some to distinguish LAT-dependent pathology due to immune
hyper-activation fromtrue autoimmunity (227). Themouse studies
abovedo suggest LATalsoplays a role in regulating thymic selection
and can lead to true autoimmune T cells. A similar role in humans
has not been entirely ruled out. These studies underscore the fine
balance between pro and anti-inflammatory processes that evolved
to maintain homeostasis within the immune system, and that LAT
is a key regulator of this balance in T cells.

LAT: Connections to Immunotherapy
As of now, no immunotherapies have modulated LAT to
enhance anti-cancer T cell responses. Based on our above
understanding, it is possible that changes in LAT would lead to
too many off target effects of T cell-based therapies, or persistent
non-specific inflammation that would be detrimental to the host.
However, careful alterations could also increase T cell activation
in response to weak or rare neo-antigens or help adoptively
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transferred T cells maintain activation states in solid tumors.
These varied effects could be achieved by selectively mutating key
tyrosine or serine residues within the cytoplasmic tail. Additional
modulations could include replacing lysine with arginine
residues, which was shown to decrease ubiquitylation and
enhance T cell signaling (228), or mutating residues
neighboring key tyrosines to alter phosphorylation kinetics
(229). Furthermore, the use of LAT instead of CD3z as the
intracellular signaling component of CARs could be considered.
Extensive pre-clinical testing would be required to ensure any
increased T cell activation caused by LAT modulation would not
result in intolerable or dangerous side effects and means to kill or
turn off such cells should be incorporated as a safety mechanism.
Frontiers in Immunology | www.frontiersin.org 12
LAT Binding Partners and
Downstream Signaling
LAT serves as a major hub after which TCR signaling networks
with many other pathways in T cells, such as those downstream
of chemokine and cytokine receptors and costimulatory
molecules (204). As a consequence, many highly complex, and
tightly regulated interactions take place including activation of
canonical MAPK, NF-kB, Ca++-mediated signaling pathways
that ultimately regulate the nuanced transcriptional profiles
characteristic of each T cell phenotype (Figure 5) (217, 230).
Abnormalities in any one of the many proteins involved in these
processes can lead to aberrant T cell phenotypes. Some of the
best described interactions between LAT occur with ITK, PLC-
FIGURE 5 | LAT signalosome structure and function. LAT signalosome schematic structure with function of key tyrosine residues depicted by their respective
numbers, as well as mutations and respective phenotypes. Several key LAT signaling partners are depicted. Red circles denote phosphate groups. Tyr, Tyrosine;
Gly, glycine; Ser, serine; Lys, Lysine.
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TABLE 1 | Mutations and molecular alterations in the TCR pathways.

Gene Mutation/Alteration Structural Outcome Immunological
Outcome

Clinical Outcome Therapeutic Relevance Reference

TCRa G>A at the C-terminus of exon 3
(TRAC domain), chromosomal
region 14q11.2

Partial loss of the
connecting peptide domain
and abolition of the
transmembrane and
cytoplasmic domains of the
TCRa chain - impaired
TCR complex assembly

Complete lack of
a/b T cells

Patients would be
excluded from allo-
ACT therapies due
to lack of
endogenous T cells

Patients lacking T cells could
more likely benefit from allo-ACT
strategies by demonstrating
reduced host v. engrafted T cell
responses

(30)

TCR^ p.T48C on a chain and p.S57C
on b chain

Creation of second
disulfide bond within
constant domain

Enhance TCR
stability and
signaling and T cell
mediated tumor
killing in cancer
models
Possibility of
expedited T cell
exhaustion due to
increased TCR
strength

Enhanced
recognition of lowly
expressed or
weakly
immunogenic tumor
antigens

Enhance T cell mediated
immunotherapy
Engineering this mutation into
tumor-reactive TCR to improve
antitumor responses

(35)

TCR^ Substitution of leucine/isoleucine
residues for 7 hydrophilic residues
in TCRa and 10 hydrophilic
residues in TCRb

Increased hydrophobic
interactions in the
transmembrane domain

Enhanced TCR
surface expression
and T cell avidity;
increased anti-
tumor T cell activity
in vitro
Possibility of
expedited T cell
exhaustion due to
increased TCR
strength

Enhanced
recognition of lowly
expressed or
weakly
immunogenic tumor
antigens

Enhance T cell mediated
immunotherapy
Engineering this mutation into
tumor-reactive TCR to improve
antitumor responses

(36)

TCR^ Mutating N of the N-glycosylation
motif (N-X-S/T) to a glutamine.
TCRa: position 84C, 90 and 113
on va3. TCRb: position 1.3, 84.5
and 113 on vb3.

Decreased N-glycosylation
of extracellular constant
domain

Increased TCR
avidity

Enhanced
recognition of rare
tumor antigens by
TCR-pMHC and
improved anti-
tumor immunity

Enhance T cell mediated
immunotherapy
Engineering this mutation into
tumor-reactive TCR to improve
antitumor responses

(37)

TCR^ Exchange human constant region
with murine equivalent or 9 amino
acids from murine constant region

Prevents native-non-native
heterodimerization

Improved pairing of
TCR subunits,
enhanced CD3/
TCR stability,
increased anti-
tumor activity

Improved outcomes
in adoptive transfer
approaches using
engineered TCRs

Improved outcomes in adoptive
transfer approaches using
engineered TCRs

(38–39)

TCR^ p.T48C on a chain and p.S57C
on b chain

Improved engineered TCR
chain pairing, decreased
pairing with native TCR
chains

Improved
engineered TCR T
cell tumor antigen
recognition and
thereby anti-tumor
activity

Improved outcomes
in adoptive transfer
approaches using
engineered TCRs

Improved outcomes in adoptive
transfer approaches using
engineered TCRs

(40)

TCR^ Core peptide targeting of TM
domain

Interrupt cohesive
interactions between
proteins and with TM lipids

Blocks T-cell
mediated killing

Prevent
autoimmunity

Treatment of autoimmune
diseases, could be extrapolated
to cancer therapies
Use as a strategy to inhibit
unwanted activity of TCR-
engineered or TIL therapies

(41)

CD3D
and
CD3E

c.279C>A, c.202C>T leading to
p.C93X and p.R68X nonsense
codons of CD3D respectively. 2-
bp deletion at nucleotide 128 of
exon 5 of CD3E leading to
frameshift and nonsense codon at
residue 56.

Truncation of the
extracellular domains of
CD3D and CD3E
respectively

Total lack of CD3+
thymocytes

SCID Patients lacking T cells could
more likely benefit from allo-ACT
strategies by demonstrating
reduced host v. engrafted T cell
responses

(46)

(Continued)
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TABLE 1 | Continued

Gene Mutation/Alteration Structural Outcome Immunological
Outcome

Clinical Outcome Therapeutic Relevance Reference

CD3Z 38 SNPs in intron 1 Disrupt CD3
expression or
ability of CD3 to
bind TCR

Association with
SLE

Potential use as clinical marker to
predict efficacy or development
of autoimmunity of ACT T cell
therapies

(48)

CD3E Deletion of 173T in exon 6 Premature stop codon Lack of T cells SCID (50)

CD3G A>G mutation in initiator codon
and G>C mutation at intron 2-
exon 3 splice site

Severe truncation or lack of
CD3G translation

Low level
expression of TCR
on T cells

Spectrum from
SCID to mild
immunodeficiency

Engineering these mutations into
T cells or using T cells from
individuals harboring these
mutations could be an approach
to replace the need to knock out
endogenous TCRs for allo-ACT
strategies

(51)

CD3D c.202C>T premature stop codon at
residue 68

Selective lack of a/
b T cells but
preservation of the
g/d T cell pool

Identify varied necessity of CD3D
in a/b vs g/d T cell development.

(52, 56–58)

CD3D G>A at position +5 of intron 2 Selective lack of a/
b T cells but
preservation of the
g/d T cell pool

(57, 58)

CD3G Haploinsufficiency Effects g/d T cell
pool

(59)

CD3Z SNPs and splice variants in
3’UTR, intron 1 (eg rs858554),
exon 7

Associated with
SLE, RA, and ITP

(48, 60–64)

CD3Z Hypermethylation Associated with
severe SLE
phenotypes;
correlates with
reduced CD3z

Use as clinical marker to predict
efficacy of checkpoint, CAR, TIL,
or TCR-engineered therapies or
potential for developing
immunotherapy-mediated
autoimmunity

(60)

CD3G c.205A>T of exon 3 Premature stop codon at
residue 69 of CD3g

Decreased levels
of TCR/CD3
expression

Range of disease
from asymptomatic
immunodeficiency
to severe and fatal
SCID

Reduced efficacy of TIL and
checkpoint-based therapies

(69)

CD3G Mutation at position -1 of exon 3 Premature stop codon Disrupted CD3g
expression

Various
autoimmune
diseases

(70)

CD3G c.1A>G and
c.80G>C

Enrichment of hydrophobic
residues at positions 6 and
7 of CDR3 chain

Decreased Treg
function;
impairment of CD8
T cell development
only

Predisposed to
autoimmunity

Increased potential for enhanced
antitumor efficacy of
immunotherapies but also
increased risk of developing
autoimmunity

(71)

CD3:
ITAMS*^

Selective mutagenesis of CD3
ITAMS

Linear relationship
between
cumulative number
of ITAM motifs and
T cell proliferation
rates

Mouse model with
increased
propensity for
autoimmune
disease

Precise regulation of engineered
T cell activation

(73)

CD3G Insertion/deletion in CD3g
promoter (rs66465034)

Increased HCC
incidence

Clinical marker for disease, use
as marker to predict efficacy of
immunotherapies or potential for
developing immunotherapy-
mediated autoimmunity

(74)

CD3D rs3181259 Increased
recurrence in
NSCLC

Clinical marker for disease, use
as marker to predict efficacy of
immunotherapies or potential for

(75)
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TABLE 1 | Continued

Gene Mutation/Alteration Structural Outcome Immunological
Outcome

Clinical Outcome Therapeutic Relevance Reference

developing immunotherapy-
mediated autoimmunity

CD3E rs967591 Correlated with
lower CD3ϵ
expression

Shorter survival in
NSCLC

Clinical marker for disease, use
as marker to predict efficacy of
immunotherapies or potential for
developing immunotherapy-
mediated autoimmunity

(76)

CD3Z:
ITAMS*^

Selective mutation of one
or two ITAMS of CD3z in
CD19-CD28-CD3z CAR

Induction of long-
term remission in
pre-B acute
lymphoblastic
leukemia mouse
model

Improved CAR or TCR-
engineered therapies

(83)

CD3Z^ CAR with FcRg instead of
CD3z intracellular domain

Greater anti-tumor
efficacy with CDz

Improved CAR therapies (85, 86)

CD3Z rs2949655 Reduced
cytotoxicity in
response to BiTE
treatment

Clinical marker of response to
treatment or potential
development of autoimmunity

(92)

CD8A p.G111S Complete lack of
CD8 T cells

Recurrent infections (103)

CD4/
CD8*^

Missense, non-functional
mutations - numerous

Lack of CD4 or
CD8 T cell
subtypes

Would not respond to checkpoint
therapies and would be excluded
from autologous ACT strategies

(104, 105)

CD8*^ Decreased sialylation of CD8 stalk
region

Increased MHC-I
binding affinity

Potential use to increase CD8 T
cell activation

(123)

CD4^ p.Q40Y and p.T45W Increased MHC-II
binding affinity

Potential use to increase CD4 T
cell activation

(101)

CD8A*^ Fused CD8a to MyD88 Enhanced CD8 T
cell function

Improve ACT approaches (120)

LCK* Genetic knockout LCK deficiency Impaired T cell
development,
impaired activation
induced T cell
death

Patients would not benefit from T
cell based immunotherapies

(129–132,
149)

LCK c.1022T>C Reduced CD4 and CD8
expression

Impaired TCR
activation,
decreased Treg
levels and
expansion of an
oligoclonal g/d T
cell population

Severe recurrent
infections,
autoimmune
manifestations and
panniculitis;

(138)

LCK c.188-2A>G Splice variant Impaired LCK
function and
immune
dysregulation

Epidermodysplasia
verruciformis,
recurrent bacterial
infections

Patients would not benefit from T
cell based immunotherapies

(139)

LCK Loss of exon 7 Impaired LCK
function and
immune
dysregulation

CVID, SCID Patients would not benefit from T
cell based immunotherapies

(140, 141)

LCK* Deletion of C-terminal regulatory
tyrosine

Truncated Lck lacking Tyr
505

Increase LCK
activity, sustained
T cell activation,
increase IL-2
production

Sustained
oncogenesis in
thymoma cell line
Possibility of
expedited T cell
exhaustion due to
increased TCR and
cytokine signaling

Target for therapy in T cell
malignancies
Engineering this mutation into
tumor-reactive CAR- or TCR-
engineered T cells could improve
antitumor responses.

(142)

(Continued)
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TABLE 1 | Continued

Gene Mutation/Alteration Structural Outcome Immunological
Outcome

Clinical Outcome Therapeutic Relevance Reference

LCK t(1;7)(p34;q34) Chromosomal translocation Increased LCK
activity that is
correlated with
breakpoint location
and disease
severity

T cell acute
lymphoblastic
leukemia

Target for therapy in T cell
malignancies
Engineering this translocation into
tumor-reactive TCR-, CAR-
-TCR-engineered T cells or TILs
could improve antitumor
responses.

(144)

LCK
binding
partner^

Mutation of PYAP motif within
CD28

Deleted LCK-binding motif
in CD28 (DCD28) in CARs

Reduced IL-2
production,
improved tumor
control

Stable disease with
pleural
mesothelioma

Enhancement of CAR T cell
efficacy

(145–147)

LCK rs10914542 Impairs TCR
activation and
proliferation

Increase risk of T1D Predict efficacy of ICI therapy (151)

LCK p.G85W of exon 4 Associated with
Sjogren syndrome,
SLE, RA

Possible increased risk of
developing autoimmune
complications

(152)

FYN*^ Genetic knockout Loss of Fyn expression Promotes
differentiation of
CD4+ T cells
towards Treg
(away from Th17)

Activating FYN could promote
Th17 phenotype

(163)

ZAP70 Mutations in SH2 and kinase
domains: c.169G>A, c.448C>T,
c.1602C>T, c.1603G>A,
c.1729C>T, c.1763C>A,
c.1833G>A, c.1923A>T

Loss or destabilization of
protein transcript

Complete lack of
functional T cells

Severe
immunodeficiency

Patients would not benefit from T
cell based immunotherapies

(175–182)

ZAP70 Polymorphisms in coding region
(rs17695937, rs13420683) or
3’UTR (rs2278699)

Associated with
psoriasis, T1DM,
IBD, RA

(183–186)

ZAP70 Intron variant (rs7425883) Aberrant
expression of
ZAP70 and
enhanced BCR
signaling in B cell
CLL

Associated with
decreased risk of
developing non-
Hodgkin lymphoma

ZAP70 as prognostic marker of
disease
Clinical marker for disease, use
as marker to predict efficacy of
immunotherapies or potential for
developing immunotherapy-
mediated autoimmunity

(187)

ZAP70*^ Point mutations in second SH2
interdomain, or paired mutations
in kinase region

Aberrant thymic
selection
permissive to
higher affinity self-
reactive clones

Engineering this mutation into
CAR- or TCR-engineered T cells
could improve antitumor
responses.

(189–191)

ZAP70^ p.Y292F, p.Y315F, p.Y492F Lack of phosphorylation at
key inhibitory residues

De-inhibited
ZAP70 signaling

Increased T cell
activation

Could be used to enhance T cell
activation for immunotherapy

(192)

ZAP70^ p.M414A, p.M414A/p.C405V Selective inhibition of
engineered ZAP70 with
PPI-derived inhibitor

Impaired catalytic
activity (not
observed in Tregs)

Can selectively turn
“off” ZAP70 in
engineered T cells

Similar approaches could be
used to turn off adoptively
transferred T cells

(193, 194)

ZAP70^ Tetracycline-inducible ZAP70
promoter

Selectively turn on ZAP70
transcription

Selective over-expression and
activation of T cells

(195)

ZAP70^ Fusion of analog-sensitive ZAP70
to the ligand binding domain of
the estrogen receptor

Selectively turn on and off
ZAP70

Turn on and off
ZAP70 in minute-
by-minute
timeframe

Tight real-time control of
engineered T cell activation
states

(196)

LAT^ p.Y132F Defective binding with
PLCg-1

Could be used to fine-tune T cell
activation states

(204)

LAT^ p.Y110F and p.Y226F Required for ERK activation Could be used to fine-tune T cell
activation states

(204)

(Continued)
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TABLE 1 | Continued

Gene Mutation/Alteration Structural Outcome Immunological
Outcome

Clinical Outcome Therapeutic Relevance Reference

LAT^ p.Y171F Essential for PI3K activation Could be used to fine-tune T cell
activation states

(205)

LAT^ p.Y171F p.Y191F Required for Gads binding Could be used to fine-tune T cell
activation states

(206)

LAT^ p.Y171F, p.Y191F, p.Y225F Required for Grb2 binding Could be used to fine-tune T cell
activation states

(206)

LAT^ p.S38A, p.S40A, p.S106A,
p.S164A, p.S108A

Decreased PLCg-1 and
SLP-76 binding, increased
ZAP70 phosphorylation

Reduced IL-2
production

Could be used to fine-tune T cell
activation states

(207)

LAT*^ Mutation of distal 4 Tyr residues to
Phe

Mimics LAT-/- in
mice; T cell
development
blocked at DN3
stage

Patients likely to demonstrate
weakened responses to T cell
based immunotherapies

(209)

LAT*^ p.Y136F Impaired PLCg binding MHC-independent
constitutive TH2
activation; T cell
dependent B cell
hyperproliferation
and antibody
production

Systemic
autoimmune
disease

Increase T cell activation (215)

LAT*^ p.Y136F Disrupted thymic
positive and
negative selection

(216)

LAT*^ p.Y136F Blocked PLCg dependent
functions, ERK signaling
maintained

Impaired T cell
development

Lymphoproliferative
disorder

Increase T cell proliferation (217)

LAT*^ c.268_269del Loss of the cytoplasmic tail
of LAT and phosphorylation
sites

Decreased
circulating T cells,
aberrant ERK
signaling

immunodeficiency
with simultaneous
autoimmunity

Patients likely to demonstrate
weakened responses to T cell
based immunotherapies

(222)

LAT^ p.K52R and p.K204R Decreased ubiquitylation Enhanced T cell
signaling

Enhance T cell activation (224)

LAT^ p.G131D or p.G131E Increased phosphorylation
kinetics of Y132, increased
speed and magnitude of
PLCg activation

Increased
sensitivity of T cells
to weak antigen
stimulation

Enhance T cell activation (225)

ITK Gain of function (t(5;9)(q33;q22)) T cell lymphomas Target for therapy (227)

ITK Two patients: 1) p.R29H; 2)
p.D500T, p.F501L, and p.M503X

ITK loss of function Loss of T cell
regulation

Lymphoproliferative
diseases

Increase expansion of engineered
T cells

(228)

ITK p.Q17X ITK deficiency Idiopathic CD4+ T
cell lymphopenia

(229)

ITK c.196C>T in promoter region Increased ITK transcription Associated with
asthma

Could be used to lower the
threshold for T cell activation

(230)

FYB rs6863066
rs358501

Low levels of LAT-
PLCg-1
interactions;
skewing towards
aberrant Th2
phenotype

Susceptibility to
asthma

Patients likely to demonstrate
weakened responses to T cell
based immunotherapies

(231)

VAV1^ Deletion of nucleotides 1-67 Creates “oncogenic VAV1” Decreased calcium
mobilization

Linked to
oncogenesis

Patients likely to demonstrate
suboptimal T cell responses to
immunotherapies

(236)

VAV1 p.E59K, p.D517E Constitutively active or
highly stable and
overexpressed VAV1

Oncogenesis Driver mutations in
human lung
adenocarcinoma

Potential target for therapy (237)
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g1, Grb2, SLP-76, VAV1, and FYB1 (230). Most of these are
activating, but the interaction with Grb2 is generally inhibitory to
T cell activation, as briefly mentioned above (222). As an
example of the spectrum of diseases caused by these
downstream proteins, gain of function of ITK is common in T
cell lymphomas (231), loss-of-function mutations are associated
with lymphoproliferative diseases (232), full ITK deficiency has
been linked to idiopathic CD4+ T cell lymphopenia (233), and
SNPs in ITK have been associated with asthma (234).
Polymorphisms in FYB as well as low levels of LAT-PLC-g1
interactions have also been implicated in susceptibility to
asthma, perhaps due to skewing of T cell polarization towards
an aberrant Th2 phenotype (235, 236). VAV1 has strong links to
oncogenesis in various tissues (237–239), with mutations causing
disruptions in multiple pathways including Ca++ signaling (240,
241). It is important to note that many of these downstream
mediators are involved in signaling in other immune cell types
besides T cells, and receptor driven pathways other than the TCR
pathway even within T cells. For example, PLC-g1 is involved in
FceRI-mediated mast cell degranulation, thus its association with
asthma maybe more due to effects on mast cells as opposed to T
cells (242). FYB is also expressed in many other immune cell
types of both the innate and adaptive system with diverse
functions, making cell-type or pathway specific conclusions
difficult (243). Any targeting of these molecules to alter T cell
function must take into account that not only T cells or the TCR
pathway may be affected.

Given the complexity of this stage of T cell activation,
no therapies targeting these downstream networks have yet been
approved in cancer immunotherapy. However, a few groups have
begun to explore distal TCR signaling modulation to benefit
immunotherapy. For instance, knocking out ADAP
in adoptively transferred T cells reduced PD-1 expression and
increased anti-tumor efficacy in mice (244). Other pre-clinical
studies have shown that Cis-mediated inhibition of CD8 T cells
functions by down-regulating PLC-g, and targeting this pathway
could increase potency of CARs and other adoptive therapies
(245). Outside the context of immunotherapy, directly targeting
some of these molecules could also have direct anti-neoplastic
effects. Much more cell-type specific, and pathway specific studies
Frontiers in Immunology | www.frontiersin.org 18
are needed before targeting these downstream mediators can be
used safely and effectively in treatment of human cancers.
CONCLUSIONS

The TCR proximal signaling pathway that regulate T cell
function comprise a complex cascade of interactions involving
numerous extracellular and intracellular proteins with unique
functions. Perturbations such as polymorphisms and mutations
in each contribute to a myriad of human diseases ranging
from immunodeficiency to autoimmunity, and some even have
significant contributions to various malignancies. Understanding
the nuanced role of each molecule has allowed for the design
of immunotherapies to take advantage of the significant
involvement of TCR signaling and cytokine activation of
T cells in cancer. The genetic alterations described throughout
this review are summarized in Table 1.
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Clinical Outcome Therapeutic Relevance Reference

ADAP*^ ADAP KO in adoptively
transferred T cells

Reduced PD-1
expression,
increased anti-
tumor efficacy

Improve adoptive T cell therapy (240)
May 2021 | Volume 12 | Art
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