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Abstract: Anticancer peptides (ACPs) have emerged as a new class of therapeutic agent for cancer
treatment due to their lower toxicity as well as greater efficacy, selectivity and specificity when
compared to conventional small molecule drugs. However, the experimental identification of ACPs
still remains a time-consuming and expensive endeavor. Therefore, it is desirable to develop and
improve upon existing computational models for predicting and characterizing ACPs. In this study,
we present a bioinformatics tool called the ACPred, which is an interpretable tool for the prediction
and characterization of the anticancer activities of peptides. ACPred was developed by utilizing
powerful machine learning models (support vector machine and random forest) and various classes
of peptide features. It was observed by a jackknife cross-validation test that ACPred can achieve
an overall accuracy of 95.61% in identifying ACPs. In addition, analysis revealed the following
distinguishing characteristics that ACPs possess: (i) hydrophobic residue enhances the cationic
properties of α-helical ACPs resulting in better cell penetration; (ii) the amphipathic nature of the
α-helical structure plays a crucial role in its mechanism of cytotoxicity; and (iii) the formation of
disulfide bridges on β-sheets is vital for structural maintenance which correlates with its ability to
kill cancer cells. Finally, for the convenience of experimental scientists, the ACPred web server was
established and made freely available online.

Keywords: anticancer peptide; therapeutic peptides; support vector machine; random forest; machine
learning; classification

1. Introduction

Cancer remains one of the leading causes of death worldwide, accounting for an estimated
18.1 million new cases and resulting in 9.6 million deaths in 2018 [1]. Of these, the most common
cancer types causing mortality worldwide include lung, colorectal, stomach, liver and breast cancer,
respectively [1,2]. The global burden of cancer has risen dramatically in the last few decades thereby
making the prevention of cancer the most significant and challenging public health concern of the
21st century [3]. In spite of the many advanced clinical methods available for the treatment of cancer
(e.g., chemotherapy, radiation therapy, hormonal therapy, etc.) their recurrence rate still remains
high. In addition, anti-cancer drugs are known to exert their therapeutic effects by killing off normal
cells and tissues, which exacerbates the immunodeficiency of patients. Thus, the discovery and
development of novel anti-cancer drugs are crucial for decreasing premature death as well as for
increasing the survival of many populations. In this regard, peptide-based therapeutics have gained
much attention as a new drug class since they are considered to be relatively safe, highly selective,
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possess good tolerability, lower production cost, easy to modify and synthesize while also exhibiting
promising pharmacological profiles [4–7]. In the last decade, more than 7000 naturally occurring
peptides have been discovered and they are found to exhibit a wide range of bioactivities including
tumor homing, antihypertensive, antiparasitic, antiviral, antiangiogenic, antibiofilm, antimicrobial and
anticancer [8–10]. Currently, 60 peptide-based drugs have been FDA-approved [11] with preclinical
and clinical studies in the pipeline for another 150 peptides [6].

Anticancer peptides (ACPs) are a subset of antimicrobial peptides (AMPs) that are have been
shown to exhibit anticancer activities. These peptides are typically made up of short (5–30 amino
acids) cationic residues that mostly adopts the -helical structure (e.g., BMAP-27, BMAP-28, Cecropin A
and B, LL-37, Magainins etc.) or folds into a β-sheet (e.g., Defensins, Lactoferricin and Tachylepsin I)
while extended linear forms (e.g., Tritrpticin and Indolicidin) have also been reported [12,13], as shown
in Figure 1.
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In comparison to normal cells, the cancer cell membrane exhibits different properties
(i.e., larger surface area due to the higher number of microvili, high negative charge of the cell
membrane, higher membrane fluidity, etc.) [14–17]. Thus, the inherent cationic property of ACPs is
responsible for the electrostatic interactions between ACPs and the anionic cell membrane of cancer
cells, and hence allow the selective killing of cancer cells [18]. Previously, many studies have reported
that ACPs display several advantages over small molecule drugs. For instance, they exhibit a shorter
half-life that consequently leads to decreased probability of resistance, lowered toxicity (not harming
normal cells as much), higher specificity, good solubility as well as good tumor penetration capabilities
thereby indicating their great potential in cancer therapy [19–22].

Accurate prediction of ACPs is of great importance for the exploration of their mechanism of action
and for the development of therapeutic ACPs. As the experimental identification and development
of novel ACPs is a very time-consuming and labor-intensive process, therefore bioinformatics tools
are needed for effective analysis of the available big data on existing peptides so as to allow the
identification of novel ACPs while also shedding light about their mechanism of action.

Recently, many sequence-based computational methods, for example, AntiCP [23],
Hajisharifi et al.’s method [24], ACPP [25], iACP [26], Li and Wang’s method [27], iACP-GAEnsC [28],
MLACP [29], SAP [30] and TargetACP [31], have been developed using a wide range of machine
learning methods and peptide features as summarized in Table 1. In 2014, Hajisharifi et al. [24]
established a benchmark dataset spanning 138 experimentally confirmed ACPs (positive dataset)
and 227 non-AMPs (negative dataset). In their method, support vector machine (SVM) with pseudo
amino acid composition were used for model building and an accuracy of 92.68% were attained.
As noticed in Table 1, iACP [26] was the first computational method based on informative features.
In this method, Chen et al. utilized a feature selection technique for obtaining an informative
feature set subsequently followed by encoding them for constructing an ACP predictor known as
iACP [26] via the use of SVM. This method yielded better prediction accuracy (95.06%) than the two
previous methods [23,24]. Thusfar, state-of-the-art ACP predictors includes iACP-GAEnsC [28] and
TargetACP [31] in which both afforded high prediction accuracies of 96.45% and 98.78%, respectively.
The iACP-GAEnsC [28] method follows the concept of evolutionary intelligent genetic algorithm-based
ensemble model for improving the true classification rate. iACP-GAEnsC was developed using
various classification algorithms (e.g., random forest, k-nearest neighbor, support vector machine,
generalized neural network and probabilistic neural network) and three types of peptide features
(e.g., pseudo g-gap dipeptide composition, amphiphilic pseudo amino acid composition and reduced
amino acid alphabet). More recently, Kabir et al. developed the TargetACP [31] for solving the
problem of class imbalance presented in the previously described benchmark dataset [24] by integrating
sequential and evolutionary-profile information as input features and using SVM as the classifier.
In addition, the authors utilized the synthetic minority oversampling technique (SMOTE) to solve the
imbalance phenomenon between minority (ACPs) and majority (non-ACPs) samples.
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Table 1. Summary of existing methods for predicting anticancer peptides.

Method (Year) Classifier a Sequence Features b Interpretable Web Server

AntiCP (2013) SVM AAC, DPC, BP No X
Hajisharifi et al. (2014) SVM PseACC, LAK No

ACPP (2015) SVM PRM No Xc

iACP (2016) SVM g-gap DPC Yes X
Li and Wang (2016) SVM AAC, RACC, acACS No

iACP-GAEnsC (2017) Ensemble method Pse-g-gap DPC,
Am-PseAAC, RACC No

MLACP (2017) RF AAC, ATC, DPC, PCP Yes X
SAP (2018) SVM g-gap DPC No

TargetACP (2018) SVM CPSR, SAAC, PsePSSM No

ACPred (this study) SVM AAC, DPC, PCP,
PseAAC, Am-PseAAC Yes X

a RF: random forest, SVM: support vector machine. b AAC: amino acid composition, ATC: atomic composition,
acACS: auto covariance of the average chemical shift, Am-PseAAC: amphiphilic pseudo amino acid composition, BP:
binary profile, CPDR: composite protein sequence representation, DPC: dipeptide composition, g-gap DPC: G-Gap
dipeptide composition, LAK: local alignment kernel, PCP: Physicochemical properties, PseACC: Pseudo amino acid
composition, Pse-g-gap DPC: Pseudo G-Gap dipeptide composition, PRM: protein relatedness measure, RACC:
reduce amino acid composition, SAAC: split amino acid composition. c The web server is not accessible.

Although, iACP-GAEnsC and TargetACP yielded encouraging performances with reasonably
high prediction accuracies, the overall utility of these two methods is limited in terms of interpretability
and practical utility thereby warranting further improvements [32]. One of the major limitations of
iACP-GAEnsC and TargetACP was that there was no web server provided for these two methods.
Therefore, their utility is limited to researchers with informatics background who can develop in-house
prediction models. In addition, the underlying mechanisms of the investigated bioactivity for these
two methods affords limited interpretability for experimental scientists. Owing to the heterogeneous
computational architecture and design of the study as well as differences in the benchmark dataset used,
it is not easy to identify and assess which methods and features provided the greatest contribution to
good prediction. Motivated by aforementioned issues presented in previous models [32–36], in order to
establish an interpretable ACP predictor we propose a systematic effort for the prediction and analysis
of anticancer activities of peptides called the ACPred. Firstly, ACPred was built using various types of
peptide features and two powerful machine learning algorithms including random forest (RF) and
support vector machine (SVM). Secondly, insights into the ACP mechanism of action were attained
via the identified important interpretable features and subsequent in-depth analysis pertaining to the
underlying biophysical and biochemical properties of anticancer activities of peptides [33,34,36–38].
Thirdly, if-then interpretable rules were extracted using the RF model (IR-ACP). Our prediction results
on the benchmark dataset showed that the proposed ACPred achieved an accuracy and MCC of 95.61%
and 0.91, respectively, which outperforms most of the existing sequence-based computational methods
including Hajisharifi et al.’s method [24], iACP [26], Li and Wang’s method [27], iACP-GAEnsC [28],
MLACP [29] and SAP [30]. As previously noted, although iACP-GAEnsC and TargetACP boasts good
predictive performances but their interpretability and practical utility prompted the development
of ACPred. Thus, ACPred is a user-friendly and publicly accessible web server that allow robust
predictions to be made without the need to develop in-house prediction models.

2. Materials and Methods

The overall framework of ACPred is illustrated in Figure 2. It can be seen that four major steps are
involved in the development of this method as follows: (i) data preparation, (ii) model construction
(feature extraction and feature combination), (iii) feature importance analysis and (iv) web server
construction. The first step prepares the benchmark dataset, the second step extracts and combines
peptide features and the third step analyzes the important features governing ACP prediction via the
RF model. Finally, the fourth step involves the construction of a publicly accessible web server using
the best model.
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2.1. Benchmark Dataset

A high-quality benchmark dataset can ensure the reliability of the proposed method.
Therefore, the investigated dataset was retrieved from the work of Hajisharifi et al. [24], which contains
192 ACPs and 215 non-ACP. As to guarantee the quality of the benchmark dataset, the following
steps were considered. Firstly, in order to avoid a dataset containing redundant peptides, the CD-HIT
program was used to eliminate ACPs and non-ACPs with >90% identity. Secondly, ACPs and non-ACP
containing special characters, such as X and U, were removed. After such screening procedures, a set
of 138 ACPs and 205 non-ACPs was attained for prediction and analysis of ACPs.

2.2. Feature Representation

In order to build an effective prediction model, it is necessary to represent each peptide as numerical
vectors that can encompass the perspective of its biophysical and biochemical properties. For peptide
or protein sequences, the most classical and interpretable features are amino acid composition (AAC),
dipeptide composition (DPC) and physicochemical property (PCP).

According to the classical definition, AAC and DPC are the proportions of each amino acid and
dipeptide in a peptide sequence P that are expressed as fixed lengths of 20 and 400, respectively.
Thus, in terms of AAC and DPC features, a peptide P can be expressed by vectors with 20D and 400D
(dimension) spaces, respectively, as formulated by the following two equations:

P = [aa1, aa2, . . . , aa20]
T (1)

P = [dp1, dp2, . . . , dp400]
T (2)
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where T is the transpose operator, while aa1, aa2, . . . , aa20 and dp1, dp2, . . . , dp400 are occurrence
frequencies of the 20 and 400 native amino acids and dipeptides, respectively, in a peptide sequence
P. PCP is one of the most intuitive features associated with biophysical and biochemical reactions.
In fact, there are 544 PCPs of amino acids extracted from the amino acid index database (AAindex) [39],
which is a collection of published literature as well as different biochemical and biophysical properties
of amino acids. Each physicochemical property consists of a set of 20 numerical values for amino acids.
After removing 13 PCPs with not applicable (NA) as their amino acid indices, a total of 531 PCPs were
further used in this study.

As mentioned in the study of [40–42], the sequence order information of AAC and DPC would be
lost. To deal with such a dilemma, the pseudo amino acid composition (PseAAC) and amphiphilic
pseudo amino acid composition (Am-PseAAC) approaches were proposed. According to Chou’s
PseAAC [41], the general form of PseAAC for a peptide P is formulated by: where the subscript Ω is an
integer to reflect the feature’s dimension. The value of Ω and the component of Ψu, where u = 1, 2, . . . , Ω
depends on the protein or peptide sequences. In this study, the parameters of PseAAC, i.e., the discrete
correlation factor λ and weight of the sequence information $, were set by default in the protr R
package [43]. The dimension of PseAAC feature is 20 + λ×$. Since the hydrophobic and hydrophilic
properties of proteins play an important role in its folding and interaction of proteins, Am-PseAAC
was introduced by Chou [40]. The dimension of Am-PseAAC feature is 20 + 2λ whereby, the first 20
components are the 20 basic AAC (p1, p2, . . . , p20) and the next 2λ ones are a set of correlation factors
that reveal the physicochemical properties such as hydrophobicity and hydrophilicity along a protein
or peptide sequence as formulated by:

P = [Ψ1, Ψ2, . . . , Ψu, . . . , ΨΩ]T (3)

where the subscript Ω is an integer to reflect the feature’s dimension. The value of Ω and the
component of Ψu, where u = 1, 2, . . . , Ω depend on the protein or peptide sequences. In this study,
the parameters of PseAAC, i.e., the discrete correlation factor λ and weight of the sequence information
$, were set by defaults using the protr R package [43]. The dimension of PseAAC feature is 20 + λ×$.
Since hydrophobic and hydrophilic properties play an important role in the folding and interaction of
proteins, Am-PseAAC was introduced by Chou [40] for representing such features. The dimension of
Am-PseAAC feature is 20 + 2λ whereby the first 20 components are the 20 basic AAC (p1, p2, . . . , p20)
while the next 2λ ones are a set of correlation factors that pertains to physicochemical properties
namely hydrophobicity and hydrophilicity along a protein or peptide sequence as formulated by:

P = [p1, p2, . . . , p20, p20+λ, p20+λ+1, . . . p20+2λ]
T (4)

In this study, the five aforementioned features of peptide sequences were calculated using the
protr package in the R software [43].

2.3. Dataset Modelability

The prediction performances of QSAR models are directly influenced by the dataset and
the types of feature used. Recently, the concept of dataset modelability has been proposed by
Golbraikh et al. [32,35,44,45] for evaluating the feasibility of developing a robust and predictive model
for a given dataset of interest. In this study, the MODI score for each type of peptide features and
their combinations were calculated using an in-house developed R code. Prediction models are
recommended for further analysis if the MODI score is greater than 0.65; otherwise, prediction models
are not recommended. Further details pertaining to the calculation of the MODI score can be found
elsewhere [44].
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2.4. Classifier Selection

In this study, we employed two successful machine learning algorithms namely random forest
(RF) and support vector machine (SVM). Previously, these approaches have been successfully used in
the prediction of various functions and properties of peptides and proteins [33,36,38,46–51] as well as
other biological or chemical entities [35,45,52–55]. Herein, the basic concepts and associated parameter
optimizations for the two classifiers are briefly described hereafter.

RF models were constructed according to the described original RF algorithm [56]. These models
were developed by growing many weak classification and regression tree (CART) classifiers where
each classifier is generated using a random vector sampled independently from the input vector as
to enhance the prediction performance of CART [56,57]. In the RF method, the out-of-bag (OOB)
approach is used for evaluating the feature importance as follows: (1) two-thirds of the training
data was utilized to construct the predictive classifier while the remaining was used for evaluating
the performance of such classifier and (2) the feature importance of each feature can be evaluated
by measuring the decrease in the prediction performance. It should be noted that the performance
evaluation of the model can be either accuracy or Gini index. Herein, the RF classifier was established
using the randomForest package in the R software [58]. To enhance the performance of the RF model,
two parameters namely, ntree (i.e., the number of trees used for constructing the RF classifier) and
mtry (i.e., the number of random candidate features) were determined using the caret package in the R
software [59] via a 5-fold cross-validation (5-fold CV) approach. The search space of ntree and mtry
were [100, 500] and [1, 10] using steps of 100 and 1, respectively.

SVM is a supervised learning model based on the principles of structure risk minimization and
kernel method as proposed by Vapnik [60–62]. SVM model can deal with the problem of over-fitting
arising with the use of a small training dataset by mapping the input samples to a higher dimension
space and then searching for the maximum-margin hyperplane for constructing the classifier [63,64].
Previously, SVM models were used in many applications because of their predictive performance
capabilities when applied to classification, prediction, and regression problems. In the optimization
process, the regularization parameter C ∈ {0.25, 0.50, 1, 2, 4} was determined with a 5-fold CV
approach using the caret package in the R software [59].

2.5. Identification of Important Features

The analysis and identification of feature importance can provide a better understanding on
the underlying biophysical and biochemical properties governing anticancer activities of peptides.
Herein, the efficient and effective built-in feature importance estimator of the RF method was used
to reveal and characterize differences between ACPs and non-ACPs. As mentioned above, the RF
method provides two measures for ranking feature importance, i.e., the mean decrease of the Gini index
(MDGI) and the mean decrease of prediction accuracy. Since Calle and Urrea [65] demonstrated that
the MDGI provided more robust results when compared with the mean decrease of prediction accuracy,
we utilized the MDGI to rank the importance of interpretable features that included AAC, DPC and
PCP. Until now, these three features have been used to characterize many peptides and proteins such
as for predicting HIV-1 CRF01-AE co-receptor usage [46], predicting protein crystallization [51,66],
predicting the oligomeric states of fluorescent proteins [38], predicting the bioactivity of host defense
peptides [47], prediction of human leukocyte antigen gene [37,49], predicting antifreeze proteins [33],
predicting the hemolytic activity of peptides [34] and predicting the antihypertensive activity of
peptides [36].

The MDGI is an impurity measure that corresponds to the ability of each feature in discriminating
the sample classes. The Gini index can be defined as follows:

1−
2∑

c=1

p2(c|t) (5)
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where denotes the estimated class probability for node t in a tree classifier and c is the class label
(i.e., either ACPs or non-ACPs). Features with the largest MDGI value is considered to be an important
feature as it significantly contributes to the prediction performance.

2.6. Rule Extraction

This work presented an interpretable rule extraction of ACPs (IR-ACP) based on the RF method
cooperating with AAC features for determining how the features work in combination within the
learning process. A set of rules from an individual tree is derived from the root to the leaves.
In this study, only 100 decision trees were used to extract if-then interpretable rules for explaining
the prediction results by means of the RRF, inTrees and xtable packages in the R software [56,57,67].
More details of the rule extraction process can be found in previous related works [67,68].

2.7. Performance Evaluation

Three testing methods consisting of (i) sub-sampling test (2-, 5- or 10-fold cross-validation),
(ii) jackknife test or also known as leave-one-out cross-validation (LOO-CV), and (iii) independent
(or external) testing dataset are often used to evaluate the prediction performance. The sub-sampling
test is one of the popular cross-validation methods for assess the predictive capability of a model.
As elucidated in [41,69] and demonstrated by Equation (50) of [70], among the three cross-validation
methods, the jackknife test is considered as one of the most rigorous and objective methods for
cross-validation in statistics and can provide a unique result for a given benchmark dataset. Thus, in this
study, the 5-fold cross-validation (5-fold CV) and jackknife test were used to evaluate the prediction
performance of our models. The former set (5-fold CV) makes use of data from the training set where
the data set is separated into five subsets. Practically, one subset from a total of five subsets is left out as
the testing set while the remaining are used for training the model. This process is repeated iteratively
until all data samples have had the chance to be left out as the testing set. During the jackknifing
process, each sample in the dataset (N samples) is left out as an independent sample (one sample)
and the remaining sequences (N-1 samples) are used for training the model. This process is repeated
iteratively until all samples have had the chance to be left out as the independent sample.

In order to evaluate the prediction ability of the model, the following sets of four metrics are used:

Ac =
TP + TN

(TP + TN + FP + FN)
(6)

Sn =
TP

(TP + FN)
(7)

Sp =
TN

(TN + FP)
(8)

MCC =
TP× TN − FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(9)

where Ac, Sn, Sp and MCC represent accuracy, sensitivity, specificity and Matthews coefficient
correlation, respectively. TP, TN, FP, and FN represent the instances of true positive, true negative,
false positive and false negative, respectively. Moreover, in order to evaluate the prediction performance
of models using threshold-independent parameters, receiver operating characteristic (ROC) curves
were plotted using the pROC package in the R software [71]. The area under the ROC curve (auAUC)
was used to measure the prediction performance, where AUC values of 0.5 and 1 are indicative of
perfect and random models, respectively.
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2.8. Reproducible Research

To ensure the reproducibility of models proposed herein, all R codes and the benchmark dataset
used in the construction of the predictive models, graphical figures and the ACPred web server
are available on GitHub at https://github.com/Shoombuatong2527/acpred and https://github.com/

chaninlab/acpred-webserver.

3. Results and Discussion

3.1. Prediction Performance

In this study, effort is directed toward the determination of feature types that are beneficial for
the prediction of APCs. This was performed by comparing the performance of different feature types
as constructed using SVM and RF by means of 5-fold CV and jackknife test. The five basic features
consisting of AAC, DPC, PCP, PseAAC and Am-PseAAC were considered as well as their combinations:
AAC + PseACC, AAC + Am-PseACC, PseACC + Am-PseACC and AAC + PseACC + Am-PseACC,
which were also utilized to investigate the complementarity of the five aforementioned features.

Prior to the development of the predictive model, the assessment of modelability of the benchmark
dataset was performed by computing the MODI index. This index helps modelers to estimate the
feasibility of obtaining robust and reliable predictive models. For the binary classification problem,
if the value of MODI index is greater than 0.65, the feature is considered to be reliable for classification
modelling; otherwise, the feature is not recommended for classification modelling.

As shown in Table A1, all feature types and their combinations from the benchmark dataset
met these criteria. Thus, it could be stated that our proposed features are reliable and efficient for
constructing ACP predictor.

Tables 2 and 3 shows the performance comparison amongst different feature types with RF
and SVM on the benchmark dataset via 5-fold CV and jackknife test, respectively. In addition,
Figure 3 shows the receiver operating characteristic (ROC) curve of the five considered feature sets
obtained from RF (top and bottom left) and SVM (top and bottom right) as evaluated by 5-fold CV
(top left and right) and jackknife test (bottom left and right). As seen in Tables 2 and 3, SVM model
with the Am-PseAAC feature afforded the highest accuracy of 95.03% as evaluated by the jackknife test.
Meanwhile, RF model with PseACC feature and SVM model with AAC feature performed well with
the second and third the highest accuracy of 93.28% and 92.98%, respectively. These results showed
that ACC, PseACC and Am-PseAAC were effective for ACP prediction. Since using a combination of
various features might yield better prediction performance, four combinations of the three effective
features were also considered. The highest accuracy and MCC of 95.61% and 0.91, respectively,
was achieved by using SVM model cooperating with the combination feature of AAC and Am-PseAAC,
while using the combination of the three effective features, i.e., ACC, PseACC and Am-PseAAC,
performed slightly worse than the combination feature of AAC and Am-PseAAC with an accuracy
and MCC of 94.74% and 0.89, respectively. In addition, our prediction results were well consistent with
previous studies [27–29] and related studies [33,34,36,72].

https://github.com/Shoombuatong2527/acpred
https://github.com/chaninlab/acpred-webserver
https://github.com/chaninlab/acpred-webserver
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Table 2. Performance comparison of SVM and RF with various types of sequence features over
five-fold cross-validation.

Feature Classifier Ac (%) Sn (%) Sp (%) MCC auROC

AAC
SVM 92.69 83.94 98.54 0.850 0.977
RF 91.23 92.80 90.32 0.817 0.958

DPC
SVM 83.92 100.00 78.85 0.687 0.942
RF 87.14 91.89 84.85 0.733 0.944

PCP
SVM 84.80 63.50 99.02 0.698 0.938
RF 83.63 90.10 80.91 0.661 0.872

PseAAC
SVM 92.98 84.67 98.54 0.856 0.990
RF 92.11 93.65 91.20 0.835 0.959

Am-PseAAC
SVM 95.03 87.59 100.00 0.899 0.995
RF 92.40 100.00 88.75 0.848 0.974

AAC + PseAAC
SVM 93.57 85.40 99.02 0.869 0.991
RF 92.98 96.69 90.95 0.855 0.964

AAC + Am-PseAAC
SVM 95.32 89.05 99.51 0.904 0.994
RF 93.28 97.50 90.99 0.862 0.969

PseAAC + Am-PseAAC
SVM 94.44 86.86 99.51 0.887 0.994
RF 92.69 98.28 89.82 0.851 0.967

AAC + PseAAC + Am-PseAAC
SVM 94.15 86.13 99.51 0.881 0.993
RF 92.98 98.29 90.22 0.857 0.972

Table 3. Performance comparison of SVM and RF with various types of sequence features over
jackknife test.

Feature Classifier Ac (%) Sn (%) Sp (%) MCC auROC

AAC
SVM 92.98 83.94 99.02 0.857 0.978
RF 91.23 92.80 90.32 0.817 0.959

DPC
SVM 85.09 98.86 80.32 0.706 0.941
RF 86.84 89.66 85.40 0.725 0.947

PCP
SVM 84.80 63.50 99.02 0.698 0.937
RF 83.63 88.57 81.44 0.659 0.868

PseAAC
SVM 92.98 84.67 98.54 0.856 0.990
RF 93.28 97.50 90.99 0.862 0.960

Am-PseAAC
SVM 95.03 87.59 100.00 0.899 0.995
RF 92.40 99.12 89.08 0.847 0.969

AAC + PseAAC
SVM 93.57 85.40 99.02 0.869 0.990
RF 93.28 98.31 90.63 0.863 0.962

AAC + Am-PseAAC
SVM 95.61 89.78 99.51 0.910 0.994
RF 93.57 98.32 91.03 0.869 0.967

PseAAC + Am-PseAAC
SVM 93.86 85.40 99.51 0.875 0.992
RF 93.57 99.15 90.67 0.870 0.959

AAC + PseAAC + Am-PseAAC
SVM 94.74 87.59 99.51 0.893 0.994
RF 92.98 99.13 89.87 0.858 0.973

Furthermore, observations pertaining to the performance comparisons from Tables 2 and 3 and
Figure 3, it can be briefly summarized as follows. Tables 2 and 3 shows that both RF and SVM
models afforded improved prediction performances when using the Am-PseACC feature while the
best prediction performance on the benchmark dataset via both 5-fold CV and jackknife test were
achieved by the SVM model trained using the combination of AAC and Am-PseAAC features.

For the convenience of subsequent descriptions, we will refer to this method as ACPred as it
represents the best model that will be used for further comparisons with other tools.
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3.2. Comparison with Other Methods

To indicate the effectiveness of the proposed method, we compared the performance of our selected
model (named ACPred) with other popular ACP predictors. Since Hajisharifi et al. [24] were the first
group to establish the benchmark dataset, and iACP [26], iACP-GAEnsC [28] and TargetACP [31]
were state-of-the-art ACP predictors that provided prediction results as assessed by the jackknife test,
therefore these predictors were used for performance comparisons. Table 4 lists the performance
comparisons of ACPred with the three ACP predictors. As noticed from Table 4, prediction results
were obtained from two different experimental designs: (i) the prediction model was performed on the
benchmark dataset as derived from the work of [24] as well as those of Hajisharifi et al.’s method, iACP,
iACP-GAEnsC, TargetACP and ACPred, (ii) the prediction model was built using the balanced dataset
including TargetACP and ACPred. The reported results from aforementioned methods as summarized
in Table 4 was obtained directly from the work of iACP-GAEnsC [28].

Table 4. Performance comparison of the proposed ACPred model with existing methods.

Method a Ac (%) Sn (%) Sp (%) MCC

Hajisharifi et al. b 92.68 89.70 85.18 0.78
iACP b 95.06 89.86 98.54 0.90

iACP-GAEnsC b 96.45 95.36 97.54 0.91
TargetACP b 96.22 94.20 97.57 0.92
TargetACP c 98.78 99.02 98.54 0.97

ACPred b 95.61 89.78 99.51 0.91
ACPred-modified

c 97.56 96.08 99.02 0.95

a Results were reported from the work of TargetACP. b Results were performed on the benchmark dataset consisting
of 138 ACPs and 205 non-ACPs. c Results were performed on the balanced dataset consisting of 205 ACPs and 205
non-ACPs by using the SMOTE technique on the benchmark dataset.
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As for performance comparisons on the benchmark dataset, it was found that ACPred was
comparable with that of iACP-GAEnsC and TargetACP as indicated by four statistical parameters.
Moreover, ACPred yielded a greater prediction performance than the method proposed by Hajisharifi
et al. and iACP. To the best of our knowledge, iACP-GAEnsC is the only method that utilizes the
synthetic minority oversampling technique (SMOTE) [73] technique for constructing a balanced dataset
from the original benchmark dataset [24]. From the perspectives of machine learning, it is not fair to
directly compare prediction results between TargetACP and ACPred because TargetACP was trained
and tested on the balanced dataset consisting of 205 ACPs and 205 non-ACPs. In order to perform
a fair comparison, the herein proposed ACPred method was applied on the balanced dataset (called
ACPred-modified), which was generated by means of the SMOTE technique. Herein, the oversampling
method was used to add synthetic samples for the minority class (i.e., ACPs) presented in the
benchmark dataset by setting the parameters of the number of nearest neighbours (k), the number of
extra cases (oversampling) to add to the minority class (perc.over) and the number of cases to reduce
(undersampling) from the majority class (perc.under) were set to 9, 50 and 300, respectively. As seen in
Table 4, ACPred-modified was found to outperform Hajisharifi et al.’s method, iACP and iACP-GAEnsC
with an improvement of 2%–4% and 3%–7% on Ac and MCC, respectively. However, it was observed
that ACPred-modified performed slightly worse than TargetACP by approximately 2%–3% where
ACPred-modified and TargetACP provided 97.56% Ac/0.95 MCC and 98.78% Ac/0.97 MCC, respectively.
Nevertheless, TargetACP was constructed with a sophisticated design thus, it is not easy to identify
and assess which features offer the most contribution to the prediction improvement. On the other
hand, ACPred was designed in a systematic manner for prediction and characterization of anticancer
activities of peptides. In addition, a user-friendly web server ACPred was developed to facilitate
high-throughput prediction of ACP. Therefore, the proposed ACPred model could become a practical
tool for predicting and interpreting the anticancer activity of peptides, or at least as a complementary
tool to existing methods in the field.

Thinking to the future, some possible improvements that could enhance the prediction performance
for predicting anticancer activity of peptides are described hereafter. Firstly, it is worthy to explore
the separation of peptides according to their sequence lengths (e.g., peptides having 4, 5 or 6 amino
acids, peptides having 7–12 amino acids, and peptides having more than 12 amino acids) followed
by the development of separate predictive models for each of the five sequence range [36,74].
Secondly, extract 5, 10 and 15 amino acids from the N or C terminus for the development of
predictive QSAR models, which has successfully been demonstrated by the group of P.S. Raghava [23]
Thirdly, explore the modelability of the dataset using the approach of Golbraikh et al. [44] such that
robust models could be developed. Fourthly, the currently employed non-anticancer peptides [24]
are not based on true experimentally-determined inactive peptides but are random peptides obtained
from the UniProt database therefore, if such true inactive peptides could be determined they may aid
in the development of robust models.

Aside from the aforementioned methodological improvements that have been witnessed from
the literature in the development of anticancer peptide classifiers, however, the underlying origin
of anticancer activity of investigated peptides as rationalized by peptide features is an area that
deserves more attention. Current predictive models used for the prediction of anticancer activity of
peptides are primarily based on sequence order-independent descriptors that does not consider the
order of amino acids in a peptide sequence (e.g., AAC and DPC), which hampers the identification
of motifs from peptides. Such limitation has been addressed by the group of KC Chou [41,75,76] in
which they developed PseAAC and Am-PseAAC descriptors that take into account sequence order
information based on physicochemical properties. However, the interpretability of these descriptors is
limited and thus, existing approaches for rationalizing biological interpretation from these predictive
models are resorted back to the sequence order-independent descriptors such as AAC and DPC.
Analysis of the literature revealed that interpretable descriptors such as the z-scale descriptors [77,78]
have been successful for predicting robust and interpretable models, however the flaw of this approach
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is that the peptides used in the development of the model should be of equal length so as to conduct
sequence alignment. Methodological tweaks addressing such limitation have been made via the use of
autocorrelation such that sequence alignment is not needed and would allow the models to be built on
peptides of varied lengths. In spite of this, this method is not applicable in this study field in which the
prepared dataset removes peptides having high similarity of greater than 90% therefore, rendering the
removal of a large number of peptides that is normally needed when using z-scale descriptors. As such,
there is ample room for the discovery of new and interpretable descriptors for the development of
predictive models of peptides, which is an important area for further driving the field of anticancer
peptide prediction.

3.3. Biological Space

The identification of feature importance from AAC and DPC descriptors can provide a better
understanding on the biochemical and biophysical properties of anticancer activities of peptides.
Previously, AAC and DPC features have been analyzed as to further gain insights on how to characterize
therapeutic peptides [29,34,36,47] and protein functions [33,51,79]. In this study, the value of MDGI
was adopted to rank and estimate the importance of each AAC and DPC feature. Such information
is derived from the analysis of the benchmark dataset that consists of 138 ACPs and 205 non-ACPs.
Table 5 lists the percentage values of the 20 amino acids for both ACPs and non-ACPs along with
amino acid composition difference between the two classes as well as their MDGI values. In addition,
a heatmap showing the feature importance for DPC features is shown in Figure 4. From Table 5,
it can be observed that the ten informative amino acids with the highest MDGI values are Lys, Cys,
Gln, Arg, Ile, Leu, His, Pro, Glu and Gly (29.54, 19.71, 15.89, 11.42, 10.13, 7.84, 7.80, 7.37, 6.88 and
6.56, respectively). Meanwhile, Figure 4 shows that the 20 top-ranked dipeptides according to their
MDGI value are KK, KI, CY, IK, AK, KV, IP, LK, TC, SC, CG, LF, FK, GL, FL, LR, PP, LG, IG and AQ.
Interestingly, among the 5 top-ranked informative amino acids, 3 of these are polar (i.e., Lys, Gln and
Arg), while 2 are non-polar (i.e., Cys and Ile) and hydrophobic residues. In addition, Lys and Arg are
also positively-charged residues, which may support the anti-cancer cell penetrating properties of
peptides (i.e., that is required for targeting tumors with specificity and low toxicity) [80]. Although the
percentage compositions differentiating ACPs from non-ACPs as presented in Table 5 highlight that
ACPs a have higher percentage of polar residues and lower percentage of basic residues as compared
to non-ACPs, cell surface binding and internalization are critical for specific targeting of cells with
anti-cancer activities. According to the membrane of cancer cells presenting anionic molecules such as
phosphatidyl serine (PS), heparin sulfate and O-glycosylated mucins, the ACPs that contain positive
charge are critical for endocytosis and selectively killing cancer cells. While hydrogen bonds that
appear on ACPs were designed for improving the solubilization of hydrophobic molecules on ACPs.
However, positively charged amino acids alone are not enough to completely neutralize cancer cells
but rather aid in rapid internalization of cancer cells for selective killing with low toxicity to normal
cells. Moreover, hydrogen bonded interactions to encapsulate anti-cancer drugs has been utilized
for increasing the oral efficiency and drug-controlled release. Therefore, only hydrogen bond on
ACPs are not adequate to resist cancer cells. Thus, the combination between crucial amino acids and
physicochemical properties could provide a synergistic effect that enhances the efficiency of ACPs [81].
As such, results from the analysis of the top ranked informative AAC are discussed below.
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Table 5. Amino acid compositions (%) of anticancer and non-anticancer peptides along with their
difference as well as MDGI values. The rank of each amino acid amongst their 20 amino acids are
shown in parenthesis for AAC difference and MDGI.

Amino Acid ACP (%) Non-ACP
(%) Difference p-Value MDGI

A-Ala 7.623 11.005 −3.383 (7) <0.05 6.41 (11)
C-Cys 3.906 8.015 −4.109 (5) <0.05 19.71 (2)
D-Asp 2.417 3.418 −1.002 (15) <0.05 3.85 (15)
E-Glu 1.707 3.523 −1.816 (12) <0.05 6.88 (9)
F-Phe 6.823 2.41 4.413 (2) <0.05 6.12 (12)
G-Gly 1.975 4.123 −2.148 (11) <0.05 6.56 (10)
H-His 1.536 5.798 −4.262 (4) <0.05 7.80 (7)
I-Ile 10.072 6.98 3.092 (9) <0.05 10.13 (5)

K-Lys 2.542 1.651 0.892 (17) 0.086 29.54 (1)
L-Leu 8.099 3.739 4.36 (3) <0.05 7.84 (6)
M-Met 9.831 13.888 −4.057 (6) <0.05 4.34 (14)
N-Asn 11.497 3.964 7.533 (1) <0.05 4.98 (13)
P-Pro 0.905 2.224 −1.319 (13) <0.05 7.37 (8)
Q-Gln 5.385 2.711 2.674 (10) <0.05 15.89 (3)
R-Arg 4.211 7.495 −3.283 (8) <0.05 11.42 (4)
S-Ser 6.537 5.832 0.705 (19) 0.245 3.50 (16)
T-Thr 3.781 4.704 −0.923 (16) 0.098 3.13 (17)
V-Val 2.258 1.560 0.698 (20) 0.083 2.96 (18)
W-Trp 2.244 1.423 0.821 (18) <0.05 2.51 (20)
Y-Tyr 6.65 5.539 1.111 (14) 0.091 2.90 (19)
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To roughly analyze the characteristics of ACPs, a few studies have shed light on important amino
acids and dipeptides commonly found in ACPs by using simple composition analysis approaches
without the use of experimental methods. For instance, Tyagi et al. [23] reported results of residue
preference at 10 N-terminus and 10 C-terminus by using the sequence logos. Their analysis revealed
that Leu and Lys were typically found at the N-terminus while Cys, Leu and Lys were typically found
at the C-terminus. Chen et al. [26] also confirmed that amino acids including Lys, Ile, Cys, Glu, and Gly
were abundant in ACPs as compared to non-ACPs. Recently, Manavalan et al. [29] revealed that the
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three top-ranked informative dipeptides consisted of KK, AK and KL. As can be noticed in Table 5 and
Figure 4, our analysis results derived from the MDGI values of AAC and DPC were quite consistent
with the three aforementioned studies.

As mentioned above, amongst the five top-ranked informative amino acids, Lys had the highest
MDGI value of 29.54. Such feature with the highest MDGI is considered to be the most important factor
governing the anticancer activity. As a basic residue, Lys is highly conserved in the composition of
therapeutic peptides as it enhances the formation of electrostatic interactions between the peptide and
the plasma membrane owing to its cationicity [82]. The role of cationicity in ACPs have been previously
investigated by the study of Gopal et al. [83]. The authors modified a synthetic AMP known as
HPA3NT3 (FKRLKKLFKKIWNWK), which was derived from Helicobacter pylori by substituting Arg
and Asn with Lys at positions 3 and 13, respectively. Gopal et al. reported that the Lys-modified peptide
increased the peptide selectivity toward negatively-charged membrane surface, which could allow for
endocytosis and specificity of the APC in killing cancer cells. In addition, Wang et al. [84] has shown
that the cell-penetrating ability is critical for specifically targeting cationic cancer cells. The authors
observed that a Lys-rich peptide, L-K6 (IKKILSKIKKLLK-NH2) could internalize into MCF-7 cells
without significant cell surface disruption. Interestingly, the authors also found that the internalized
L-K6 could induce MCF-7 cell death without significant cytoskeleton disruption and mitochondrial
impairment. Moreover, these findings indicated that the negatively-charged phosphatidylserine (PS)
reported to be abundantly exposed on cancer cell surfaces [85,86] might contribute to the preferential
binding of L-K6 to MCF-7 cancer cells. Furthermore, defensins are a large subfamily of natural cationic
human AMP showing anticancer properties. Their roles in the immunomodulation of the innate and
adaptive immune system have extensively been studied in previous works [87,88]. Defensins are
categorized as either α-defensins or β-defensins, depending on their sequence homology and Cys
connectivity (Figure 1), they are found to be rich in cationic residues (e.g., Lys and Arg) that enhances
their immunomodulatory effects [89]. Papo et al. [90] constructed a short 15 amino acid peptide
consisting of d- or l- amino acids (d-K6L9; LKLLKKLLKKLLKLL-NH2) and observed that d-K6L9

specifically targets and lyses cancer cells as well as inhibiting the growth of primary and metastatic
tumors in in vivo models. The ability of d-K6L9 in selectively targeting cancer cells can be attributed to
its cationicity whereby the peptide can bind to highly enriched surface-exposed PS in cancer cells as
compared to non-cancer cells [91]. Similarly, Arg, which is a positively-charged residue that differs
from Lys by its side chain, was shown to be the fourth informative amino acid form our analysis thus,
reiterating the importance of the cationic property of APCs.

The second most important amino acid was Cys that afforded an MDGI value of 19.71. Cys is
a highly reactive amino acid in which it contains a thiol group that is oxidized to form a dimer
thus creating a disulfide bridge between two spatially adjacent Cys residues. The significance of
disulfide bridges are seen in their strong, hydrophobic nature which are extremely important for the
overall structural fold of the peptide, while also increasing the peptide stability against proteolytic
degradation [92]. Almost a decade ago, GO-201 ([R]9CQCRRKNYGQLDIFP) achieved in facilitating the
inhibition of mucin-1 cytoplasmic domain (MUC1-CD) [93]. Thus far, many studies have established
the function of the GO-201 peptide whereby its anticancer activity was demonstrated both in vitro and
in vivo against human breast cancer, prostate cancer, chronic myelogenous leukemia and pancreatic
cancer [93–96]. From these aforementioned studies, the researchers were able to determine key motifs
responsible for the anticancer activity of GO-201 as CxC, thus reiterating the crucial role of Cys disulfide
bridges [97]. Furthermore, Tyuryaeva et al. [98] explored the molecular mechanism of Cys-induced
cytotoxicity and the resulting apoptosis of cancer cells by designing and testing peptide sequences
containing the key CxC ([R]9KCGCFF; named DIL) or CxxC ([R]9FFCPHCYQ; named DOL) motifs.
The results obtained from this study suggests that the disulfide oxidoreductase is responsible for the
effective cytotoxtic action of Cys. Therefore, it can be inferred that peptides containing the CxC or
CxxC motifs form disulfide bridges that pilot a partial loss of protein function and the rapid onset of
apoptosis. It can therefore be anticipated that such peptide sequences could help to create a potentially
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valuable new class of ACPs. Similarly, Schroeder et al. [99] ascertained a novel peptide GKAKCCK
having pronounced antimicrobial activity. The authors discovered that the efficiency of this peptide
was critically dependent on the two continuous cysteines and that upon mutating these residues to Ala
or Ser, its activity was completely abrogated. Hence, given the well-established connection between
antimicrobial and anticancer peptides [13,100], it is likely that the GKAKCCK peptide is able to induce
antitumorigenic effects.

3.4. Mechanistic Interpretation of Informative PCP

The physicochemical properties of amino acids play an essential role as effective
features for identifying and characterizing protein or peptide functions from their primary
sequences [33,34,36,51,79]. It is well known that PCPs [39], such as molecular volume, exposure or
accessible surface, polarity (hydrophobicity/hydrophilicity), charge/pK, hydrogen-bonding potential
and so forth are correlated with the structure and function of the amino acid sequence [101].
Herein, we have obtained the ten top-ranked informative PCPs corresponding to their MDGI values as
shown in Table 6.

Table 6. Ten top-ranked physiocochemical properties from the AAindex having the highest
MDGI values.

Rank AAindex Categorized Property Description MDGI

1 ARGP820101 Hydrophobicity Hydrophobicity index (Argos et al., 1982) 1.51

2 ARGP820102 Hydrophobicity Signal sequence helical potential (Argos et al., 1982) 1.40

3 BHAR880101 Hydrophobicity Average flexibility indices (Bhaskaran-Ponnuswamy, 1988) 1.08

4 ARGP820103 Hydrophobicity Membrane-buried preference parameters (Argos et al., 1982) 1.04

5 BEGF750102 Beta propensity Conformational parameter of beta-structure (Beghin-Dirkx, 1975) 1.00

6 BEGF750101 Alpha and turn propensities Conformational parameter of inner helix (Beghin-Dirkx, 1975) 0.92

7 BIGC670101 Physicochemical properties Residue volume (Bigelow, 1967) 0.91

8 BEGF750103 Alpha and turn propensities Conformational parameter of beta-turn (Beghin-Dirkx, 1975) 0.87

9 BIOV880102 Hydrophobicity Information value for accessibility; average fraction 23% (Biou et al., 1988) 0.85

10 ISOY800107 Hydrophobicity Normalized relative frequency of double bend (Isogai et al., 1980) 0.83

The most important PCP is seen to be ‘hydrophobicity’ with an MDGI value of 1.51,
which corresponds to the AAindex ARGP820101. In addition, from the analysis, 4 of the 10 top-ranked
informative PCPs are related to α-helix properties of peptides consisting of ARGP820102, BEGF750101,
ISOY800106 and CHOP780201 with corresponding MDGI values of 1.40, 0.92, 0.64 and 0.61, respectively.
Furthermore, 3 of 10 top-ranked informative PCPs including the AAindices of BEGF750102, BEGF750103
and CHOP780101 are related to β-sheet properties with MDGI values of 1.00, 0.87 and 0.83, respectively.
Consequently, it could be inferred that the hydrophobicity of a peptide along with its structural
orientation (i.e., α-helix or β-sheet) are significant in determining the anticancer properties of peptides.
The important PCPs of ACPs are analyzed and discussed below.

3.4.1. Hydrophobic Residues on α-Helical Structure Enhances Cell Penetrating Properties of
Anticancer Peptides

It is commonly known that the hydrophobicity property is critical for the 3D structure of a protein.
Many descriptors have been developed for measuring the hydrophobicity of proteins, depending on
the presence of hydrophobic residues at specific locations in the peptide sequence. These indices are
usually based on the 3D crystal structure of proteins coupled with the physicochemical properties of
their side chains [102,103]. For instance, Argos et al. [104] utilized the hydrophobic index as measured
by Nozaki and Tanford [105] for the 20 canonical amino acids for determining the role of hydrophobicity
on the structure of amino acids. As mentioned above, the property of ARGP820101 with an MDGI
value of 1.51 pertained to the hydrophobicity property. This result suggests that the presence of
hydrophobic amino acid residues on the α-helix might be important for governing the anticancer
activity of peptides. Moreover, the property of ARGP820103 (the fourth most important PCPs) is
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also associated with hydrophobicity property. Many previous studies have described the need for
symbiosis between hydrophobicity and cationicity of peptides in order to enhance its cell penetrating
property and its ability to reach target cell as to exert its effects [106–109]. In addition, researchers
have made efforts to assess the influence of hydrophobicity on anticancer effects. For instance,
Huang et al. [108] systematically altered the hydrophobicity of a 26-residue α-helical peptide (peptide
P; KWKSFLKTFKSAKKTVLHTALKAISS) by replacing Ala residues with the more hydrophobic
Leu residues as to increase its hydrophobicity or by changing Leu residues to Ala residues as to
decrease its hydrophobicity. On the basis of these results, the authors observed a correlation between
higher hydrophobic variants whereby the Leu-substituted peptides (A12L and A20L) exhibited greater
anticancer activity against cancer cells with higher IC50 values than peptide P. Thus, peptides with
higher hydrophobicity are assumed to penetrate deeper into the hydrophobic core of the cell membrane,
thereby causing pores or channels on the cancer cell membrane and exhibiting greater anticancer
activity. From these results, it can be inferred that the presence of hydrophobic residues on the α-helical
structure of ACPs can enhance its anticancer properties.

3.4.2. Peptides Forming an Amphipathic α-Helix Contributes to Anticancer Activity

Interestingly, four of the ten top-ranked informative PCPs consisting of ARGP820102, BEGF750101,
ISOY800106 and CHOP780201 described helical properties of peptides such as helical potential [104],
inner helix [110], frequency of helix end [111] and frequency of α-helix [112], respectively,
as shown in Table 6. This supports the notion that the helical structure plays a principal
role in governing the anticancer property of peptides. In addition, the α-helical conformation
as adopted by many ACPs in biological membranes, is now regarded as a key determinant
of anticancer activity [113]. BMAP-27 (GRFKRFRKKFKKLFKKLSPVIPLLHL) and BMAP-28
(GGLRSLGRKILRAWKKY GPIIVPIIRI) are well-known peptides derived from bovine sources
having a cationic NH2 terminal that forms an amphipathic α-helix. They exert their cytotoxic
activity against human leukemia cells by enhancing membrane permeability, which allows for
an influx of Ca++ ions, thereby leading to apoptosis via DNA fragmentation [114]. In addition,
the structures of Cecropin A (KWKLFKKIEKVGQNIRDGIIKAGPAVAVVGQATQIAK) and Cecropin
B (KWKVFKKIEKMGRNIRNGIVKAGPAIAVLGEAKAL), which were first derived from insects,
primarily consisted of two α-helix [115,116] while its amphipathic N-terminal (i.e., that is capable of
interacting with anionic membrane components) is responsible for mediating the cytotoxic activity
against cancer cells. On the other hand, the C-terminal is hydrophobic and it is postulated to facilitate
peptide entry into the membrane thereby enabling oligomerization to occur, which subsequently
leads to leakage of cell components due to pore formation and eventual cell death [117]. In addition,
Srisailam et al. [118] designed a custom lytic peptide by modifying the cecropin B (CB) to contain two
identical hydrophobic segments on both the N and the C terminals, thus disrupting its normal α-helical
structure. The resulting peptide CB-3, was unable to effectively lyse cell membranes on cancer cells
as well as bacterial cells as compared to the control peptide, therefore highlighting the significance
of the peptide structure on its function. Interestingly, Moore et al. [119] uncovered that CB exhibited
anticancer activities when tested against colon adenocarcinoma cells in vivo and cytotoxicity against
multidrug-resistant breast and ovarian cancer cell lines in vitro.

Similarly, Magainins isolated from the skin of Xenopus laevis is comprised of
a α-helical secondary structure with separate cationic and hydrophobic faces. Magainin-2
(GIGKFLHSAKKFGKAFVGEIMNS) causes lysis of both hematopoietic and solid tumor cell lines
as while observing selective cytotoxic activity against several human bladder cell lines [120].
In addition, it was perceived using florescence spectrometry that magainins could lyse
tumor cells by forming ion-conducting α-helical channels in the cancer cell membrane [121].
Melittin (GIGAVLKVLTTGLPALISWIKRKRQQ) is another well-known ACP that is derived from
the venom of European honeybee (Apis mellifera) [122]. The N-terminal region of melittin is
largely hydrophobic whereas the C-terminal contains positively-charged amino acid residues.
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Melittin form channels in lipid bilayers and is lytic against both cancer cells and normal cells [123].
Self-association of amphipathic α-helical monomers of melittin is largely suggested to be responsible
for perturbations of membrane integrity thereby leading to cellular lysis via the barrel stave
mechanism [124]. Furthermore, the only human cathelicidin-derived cationic ACP to date,
LL-37 (LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES) is present throughout the body and
assumes a α-helical conformation that is comprised of both cationic and hydrophobic faces oriented in
a parallel manner with lipid membranes. As such these peptides are suggested to engage in a carpet-like
mechanism for its cytotoxicity [125]. However, unlike other ACPs, LL-37 is toxic to eukaryotic cells at
slightly higher concentrations and thus lacks the selectivity of an ACP. Nevertheless, Okumura et al. [126]
showed that a C-terminal fragment of LL-37 (hCAP18) was able to induce mitochondrial depolarization
and apoptosis in human oral squamous carcinoma cells but not in healthy human gingival fibroblasts
and human keratinocyte cells. In summary, it is evident that the amphipathicity associated with certain
α-helical structures is pivotal for the elicitation of peptide anticancer activities.

3.4.3. Peptides Forming β-Sheet Are Vital to Peptide Structure and Contribute to Anticancer Activity

As seen in Table 6, 3 out of the 20 top-ranked informative PCPs pertain to β-sheet structure
(i.e., BEGF750102, BEGF750103 and CHOP78010) which correspond to properties such as conformational
parameter ofβ-structure, conformational parameter ofβ-turn and normalized frequency ofβ-turn [110],
respectively. Although, most of the well-known APCs are α-helical structures, some β-sheet ACPs
have also been extensively studied. Many studies showed that defensins contain a group of
closely related Cys-Arg rich cationic peptides. Out of these, human α- and β-defensins remain
the most studied, comprising of six conserved Cys residues that form three intramolecular disulfide
bridges between the N-terminal and the C-terminal regions of the peptide [127,128]. In the studies
of [129,130], human neutrophil peptides (HNPs) -1 (ACYCRIPACIAGERRYGTCIYQGRLWAFCC),
-2 (CYCRIPACIAGERRYGTCIYQGRLWAFCC) and -3 (DCYCRIPACIAGERRYGTCIY QGRLWAFCC)
were shown to possess cytotoxic effects against several human and mouse tumor cells such as
human B-lymphoma cells, human oral squamous carcinoma cells, and mouse teratocarcinoma
cells. HNPs were also shown to kill cancer cells through membrane binding mediated by
electrostatic interactions, followed by rapid collapse of the membrane potential and loss of membrane
integrity [130,131]. In addition, Mader et al. [100,132] reported that bovine lactoferricin (LfcinB;
FKCRRWQWRMKKLGAPSITCVRRAF) isolated from cow’s milk, represents a cationic ACP with
amphipathic β-sheet configuration displaying anticancer activity against leukemia cells and various
other carcinomas [100,132]. Moreover, LfcinB not only exerts its action by inducing apoptosis through
direct disruption of the mitochondrial membrane, but is also capable of lysing the membrane itself,
depending on the cancer cell type [133,134].

Furthermore, isolated from the hemocytes of horseshoe crab (Tachypleus tridentatus), the ACP
tachyplesin I (KWCFRVCYRGICYRRCR) is arranged in two anti-parallel β-sheets that are held in
place by two disulfide bonds [135]. Chen et al. [136] discovered that tachyplesin I killed cancer cells
in a unique way by binding to hyaluronan on human prostate carcinoma cells, as well as to the C1q
complement component in human serum, leading to the activation of the classical immune complement
pathway. As a result, complement-mediated lysis of tachyplesin I-coated cancer cells was achieved.
In a separate study, Adamia et al. [137] observed that the binding activity of tachyplesin I to C1q was
dependent on its secondary structure which consists of two disulfide bonds formed by Cys residues at
positions 3–16 and 7–12. Previously it has also been demonstrated that, the deletion of Cys residues
from tachyplesin I altered its β-sheet structure to that of a linear form thus, disrupting its activity [138].
Therefore, from the aforementioned studies, it can be postulated that β-sheet is vital for maintaining
the stability of peptide structures. As noticed in Table 5, our result of informative amino acids is
consistent with the above-mentioned studies, where Cys is the second most important amino acid
having a MDGI value of 19.71.
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Nevertheless, further research is necessary to determine the key amino acids that could transform
non-ACPs into ACPs and thus, allow the generation of a library of potentially novel ACPs. The design
of effective ACPs from non-ACPs could possibly be based on the improvement of physicochemical
properties, like hydrophobicity, positive charge, replacing the amino acid used or adding a functional
motif with better activity towards the targeted cancer cells. In that regard, Tada et al. [139] revealed
that the replacement of amino acid His to Arg in epidermal growth factor receptor (EGFR) binding
peptide increased its anti-tumor activity via stronger binding affinity to the EGFR on cancer cells.
Furthermore, the utilization of a motif containing the amino acids Trp, Met and Trp (WMW) was able
to sensitize apoptosis and reduce the migratory effect on cancer cells which in turn could synergize
the anti-cancer activity of peptides [140]. Therefore, it is of paramount importance to explore this
area further.

3.5. Interpretable Rules Acquisition Obtained from the RF Model

Interpretable rules crucial for discriminating ACPs from non-ACPs were derived from the RF
model built using AAC features on the benchmark dataset known as IR-ACP. The main advantages of
these constructed rules are two folds: (i) to demonstrate which amino acid or which combination of
amino acids are effective for ACP prediction, and (ii) to simply discriminate ACPs from non-ACPs
without the need to go through the mathematical and computational details. Tables 7 and A2 shows the
twenty interpretable rules that were important for ACPs and eleven that were important for non-ACPs.

Table 7. Eight if-then rules for the prediction of anticancer peptides using random forest and amino
acid composition.

No. Rule Covered Samples Misclassified
Sample Ac (%)

1 G > 0.041 and I > 0.0615 and L ≤ 0.1715 and K > 0.0385
and M ≤ 0.027 48 1 97.92

2 R ≤ 0.0515 and Q ≤ 0.026 and K > 0.094 48 1 97.92

3 C > 0.1145 and P ≤ 0.073 35 0 100.00

4 L ≤ 0.093 and F > 0.0715 and S ≤ 0.152 33 4 87.88

5 A ≤ 0.0145 and Q ≤ 0.026 26 4 84.62

6 R ≤ 0.0665 and E ≤ 0.044 and H > 0.052 21 4 80.95

7 I > 0.108 and K > 0.055 42 6 85.71

8 E ≤ 0.0545 and G > 0.0365 and K > 0.108 and M ≤ 0.04 49 1 97.96

Table 7 presents eight interpretable rules that were important for identifying ACPs and each rule
comprises a different number of criteria. If a query peptide meets all of the criteria in at least one
of the eight rules, then it will be predicted as an ACP. As observed in Table 7, four rules afforded
a prediction accuracy larger than 95%, namely rules #1, #2, #3 and #8, while the remaining rules
provided acceptable results with accuracy ranging between 80.79% and 87.88%. These results indicated
that the constructed rules are robust, both in terms of their accuracy and interpretability for predicting
and characterizing ACPs.

3.6. ACPred Web Server

In order to make the prediction model presented herein a practical tool that can be widely used by
the scientific community, we have constructed a web server called the ACPred using the best model
as described in previous sections. The web interface has been established using the Shiny package
under the R programming environment. The web server is freely accessible at http://codes.bio/acpred/.
Screenshots of the ACPred web server is shown in Figure 5 in which panel A shows the web server
prior to submission of input data and panel B shown the web server after the prediction has been made.

http://codes.bio/acpred/
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for prediction.

Briefly, a step-by-step guide on using the web server is given below:

• Step 1. Enter the following URL into the web browser, http://codes.bio/acpred/.
• Step 2. Either enter the query peptide sequence into the Input box or upload the sequence file

by clicking on the “Choose file” button (i.e., found below the “Enter your input sequence(s) in
FASTA format heading”).

• Step 3. Click on the “Submit” button to initiate the prediction process.
• Step 4. Prediction results are automatically displayed in the grey box found below the

“Status/Output” heading. Typically, it takes a few seconds for the server to process the task.
Users can also download the prediction results as a CSV file by pressing on the “Download
CSV button”.

Additionally, users can also run a local copy of ACPred on their own computer by using the
following one-line code in an R environment:

shiny::runGitHub(‘acpred-webserver’, ‘chaninlab’)
However, prior to running the aforementioned code, it is recommended that users first install the

prerequisite R packages. This can be performed by using the following code:

http://codes.bio/acpred/


Molecules 2019, 24, 1973 21 of 28

install.packages(c(‘shiny’, ‘shinyjs’, ‘shinythemes’, ‘protr’, ‘seqinr’, ‘caret’, ‘markdown’))

4. Conclusions

There is increasing evidence indicating that ACPs could be a potential, valuable therapeutic
agent for cancer treatment. With the avalanche of peptide sequences generated from many sources,
there is significant demand for computational methods that can support the timely discrimination of
ACPs from other peptides, as well as offer insights from analysis using only their primary sequences.
In this study, we have developed a the ACPred model in a systematic manner by taking advantage of
two powerful machine learning methods consisting of support vector machine (SVM) and random
forest (RF) for the prediction and characterization of anticancer activities of peptides. The best
model for further development of ACPred was achieved by using the SVM method coupled with the
combination of amino acid composition and pseudo amino acid composition features. By comparing
with the state-of-the-art method, the TargetACP, it was found that the performance of ACPred was
comparable to that of TargetACP (95.61% vs. 96.22% accuracies) as assessed by the rigorous jackknife
test. Moreover, the feature importance analysis and interpretable rules extraction were carried out by
using the RF model to identify which feature was the most important in predicting ACPs while also
providing a better understanding of the anticancer activities of investigated peptides. Results from
model interpretation revealed that the hydrophobic residues on the α-helical structure, Cys residues on
the β-sheet structure and the formation of amphipathic α-helix played a crucial role in the anticancer
activity of the investigated peptides. Finally, a web server named ACPred was established and made
freely available online at https://codes.bio/acpred/.
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Appendix A

Table A1. Summary of MODI index as derived from various types of peptide features on the
benchmark dataset.

Feature MODI

AAC 0.868
DPC 0.836
PCP 0.722

PseAAC 0.859
Am-PseAAC 0.859

AAC + PseAAC 0.859
AAC + Am-PseAAC 0.859

PseAAC + Am-PseAAC 0.856
AAC + PseAAC + Am-PseAAC 0.856

https://codes.bio/acpred/
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Table A2. Twenty if-then rules for discriminating ACP from non-ACP using random forest and amino
acid composition.

% Covered Samples Rule Prediction Result

14.33 R > 0.017 and C ≤ 0.1145 and H ≤ 0.0645 and L > 0.1605 and K ≤ 0.1035 non-ACP
13.74 G > 0.041 and I > 0.0615 and L ≤ 0.1715 and K > 0.0385 and M ≤ 0.027 ACP
9.65 E > 0.058 and G ≤ 0.068 non-ACP
7.89 R ≤ 0.0515 and Q ≤ 0.026 and K > 0.094 ACP
7.89 C ≤ 0.1145 and H ≤ 0.0645 and K ≤ 0.1055 and W > 0.028 non-ACP
5.26 C > 0.1145 and P ≤ 0.073 ACP
4.97 N > 0.019 and K ≤ 0.1705 and M > 0.037 non-ACP
4.09 Q > 0.098 and K ≤ 0.0575 non-ACP
3.22 C > 0.015 and C ≤ 0.043 non-ACP
3.80 L ≤ 0.093 and F > 0.0715 and S ≤ 0.152 ACP
6.43 R > 0.013 and R ≤ 0.1345 and C ≤ 0.1205 and H ≤ 0.0465 and F ≤ 0.1345 non-ACP
2.63 A ≤ 0.0145 and Q ≤ 0.026 ACP
3.22 I ≤ 0.0335 and P > 0.074 non-ACP
2.34 R ≤ 0.0665 and E ≤ 0.044 and H > 0.052 ACP
1.75 N ≤ 0.0565 and H ≤ 0.0415 and K≤ 0.0335 non-ACP
1.46 I > 0.108 and K > 0.055 ACP
1.17 E ≤ 0.0545 and G > 0.0365 and K > 0.108 and M ≤ 0.04 ACP
2.05 I ≤ 0.0665 and F ≤ 0.006 non-ACP
2.05 S ≤ 0.04 non-ACP
2.05 Else ACP
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