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Abstract: We developed Variational Laplace for Bayesian neural networks (BNNs), which exploits a
local approximation of the curvature of the likelihood to estimate the ELBO without the need for
stochastic sampling of the neural-network weights. The Variational Laplace objective is simple to
evaluate, as it is the log-likelihood plus weight-decay, plus a squared-gradient regularizer. Variational
Laplace gave better test performance and expected calibration errors than maximum a posteriori
inference and standard sampling-based variational inference, despite using the same variational
approximate posterior. Finally, we emphasize the care needed in benchmarking standard VI, as there
is a risk of stopping before the variance parameters have converged. We show that early-stopping
can be avoided by increasing the learning rate for the variance parameters.

Keywords: variational inference; Laplace; Bayes; Bayesian neural networks

1. Introduction

Neural networks are increasingly being used in safety-critical settings, such as self-
driving cars [1] and medical diagnosis [2]. In these settings, it is critical to be able to
reason about uncertainty in the parameters of the network—for instance, so that the system
is able to call for additional human input when necessary [3]. Several approaches to
Bayesian inference in neural networks are available, including stochastic gradient Langevin
dynamics [4] Laplace’s method [5–7] and variational inference [8,9].

Here, we focus on combining the advantages of Laplace’s method [5–7] and variational
inference (VI; [10]). In particular, Laplace’s method is very fast, as it begins by finding a
mode using a standard gradient descent procedure, and then computes a local Gaussian
approximate of the mode by performing a second-order Taylor expansion. However, as the
mode is discovered by standard gradient descent, it may be a narrow mode that generalizes
poorly [11]. In contrast, variational inference (VI; [8]) is slower, as it requires stochastic
sampling of the weights, but that stochastic sampling forces it to find a broad, flat mode
that presumably generalizes better.

We developed a new Variational Laplace (VL) method that combines the best of both
worlds, giving a method that finds broad, flat modes even in the absence of the stochastic
sampling. The resulting objective is composed of the log-likelihood, standard weight-decay
regularization and a squared-gradient regularizer, which is weighted by the variance of the
approximate posterior. VL displayed improved performance over VI and MAP in standard
benchmark tasks.

Our squared gradient regularizer relates strongly to the effectiveness of stochastic
gradient descent. In particular, recent work has shown that gradient descent implicitly uses
a squared gradient regularizer [12], and that full-batch gradient descent with a squared
gradient regularizer can recover much of the benefits of implicit regularization from
minibatched stochastic gradient descent [13]. Our work implies that these regularizers can
be interpreted as a form of approximate inference over the neural-network weights.
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2. Background
2.1. Variational Inference (VI) for Bayesian Neural Networks

To perform variational inference for neural networks, we follow the usual
approach [8,14], by using independent Gaussian priors, P and approximate posteriors
Q for all parameters, w:

P(wλ) = N
(

wλ; 0, s2
λ

)
(1)

Q(wλ) = N
(

wλ; µλ, σ2
λ

)
equivalently Q(w) = N (w; µ, Σ), (2)

where µλ and σ2
λ are learned parameters of the approximate posterior, and where Σ is

a diagonal matrix, with Σλλ = σ2
λ. We fit the approximate posterior by optimizing the

evidence lower bound objective (ELBO) with respect to parameters of the variational
posterior, µλ and σ2

λ:

LVI = E
Q(w)

[
log P(y|x, w) + β∑λ log

log P(wλ)

log Q(wλ)

]
. (3)

Here, x is all training inputs, y is all training outputs, and β is the tempering parameter
which is 1 for a close approximation to Bayesian inference, but is often set to smaller values
to “temper” the posterior, which often improves empirical performance [15,16] and has
theoretical justification as accounting for the data-curation process [17].

We need to optimize the expectation in Equation (3) with respect to the parameters of
Q(w), the distribution over which the expectation is taken. To perform this optimization
efficiently, the usual approach is to use the reparameterization trick [8,18,19]—we write w
in terms of ε:

wλ(ελ) = µλ + σλελ (4)

where ελ ∼ N (0, 1). Thus, the ELBO can be written as an expectation over ε:

LVI = E
ε

[
log P(y|x, w(ε)) + β∑λ log

log P(wλ(ελ))

log Q(wλ(ελ))

]
. (5)

where the distribution over ε is now fixed. Critically, now the expected gradient of the
term inside the expectation is equal to the gradient of LVI, so we can use samples of ε to
estimate the expectation.

2.2. Laplace’s Method

Laplace’s method [5–7] first finds a mode by doing gradient ascent on the log-joint:

w∗ = arg max
w

[log P(y|x, w) + log P(w)] (6)

and uses a Gaussian approximate posterior around that mode,

Q(w) = N
(

w; w∗,−H−1(w∗)
)

(7)

where H(w∗) is Hessian of the log-joint at w∗.

3. Related Work

There is past work on Variational Laplace [20–22], which learns the mean parameters,
µ, of a Gaussian approximate posterior,

Qµ(w) = N
(

w; µ,−H−1(µ)
)

(8)
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and obtains the covariance matrix as a function of the mean parameters using the Hessian,
as in Laplace’s method. However, instead of taking the approximation to be centered
around a MAP solution, w∗, they take the approximate posterior to be centered on learned
mean parameters, µ. Importantly, they simplify the ELBO by substituting this approxi-
mate posterior into Equation (3), and approximating the log-joint using its Taylor series
expansion. Ultimately they obtain

LVI ≈ log P(y|w=µ, x) + log P(w=µ)− 1
2 log|H(µ)|+ const. (9)

However, there are two problems with this approach when applied to neural networks.
First, the algebraic manipulations required to derive Equation (9) require the full N × N
Hessian, H(µ), for all N parameters, and neural networks have too many parameters for
this to be feasible. Second, the log|H(µ)| term in Equation (9) cannot be minibatched, as
we need the full sum over minibatches inside the log to compute the Hessian:

log|H(µ)| = log
∣∣∣∑jHj(µ)

∣∣∣, (10)

where Hj(µ) is the contribution to the Hessian from an individual minibatch. Due to these
issues, past Variational Laplace methods did not scale to large neural networks.

An alternative deterministic approach to variational inference in Bayesian neural
networks, approximates the distribution over activities induced by stochasticity in the
weights [23]. Unfortunately, it is important to capture the covariance over features induced
by stochasticity in the weights. In fully connected networks, this is feasible, as we usually
have a small number of features at each layer. However, in convolutional networks, we
have a large number of features, channels× height× width. In the lower layers of a
ResNet, we may have 64 channels and a 32× 32 feature map, resulting in 64× 322 = 65,536
features and a 65,536 × 65,536 covariance matrix. These scalability issues prevented them
from applying their approach to convolutional networks. In contrast, our approach is
highly scalable and readily applicable to the convolutional setting. Subsequent work
such as Haußmann et al. [24] introduced other deterministic approximations, based on
decomposing the relu into a linear function and a Heaviside step. However, their approach
had errors of ∼30% on CIFAR-10.

Ritter et al. [7] and MacKay [25] used Laplace’s method in Bayesian neural networks,
by first finding the mode by doing gradient ascent on the log-joint probability, and expand-
ing around that mode. As usual for Laplace’s method, they risk finding a narrow mode
that generalizes poorly. In contrast, we find a mode using an approximation to the ELBO
that takes the curvature into account and hence is biased towards broad, flat modes that
presumably generalise better.

Our approach gives a squared-gradient regularizer that is similar to those discovered
in past work [12,26]. They showed that squared-gradient regularizers connect to gradient
descent, in that approximation errors due to finite-step sizes in gradient-descent imply an
effective squared gradient regularization. The similarity of our objectives raises profound
questions about the extent to which gradient descent can be said to perform Bayesian
inference. That said there are three key differences. First, their approach connects full-
batch gradient descent to squared-gradient regularizers. Of course, most neural network
training is stochastic gradient descent based on minibatches. Given that the stationary
distribution of SGD is isotropic Gaussian (in a quadratic loss-function; Appendix A), we
are able to connect stochastic gradient descent to squared gradient regularizers, and hence
to approximate variational inference. This is especially important in light of recent work
showing full-batch gradient descent gives poor performance, but that performance can
be improved by including explicit squared gradient regularization. Our work indicates
that explicit squared gradient regularization is mimicking the implicit regularization from
stochastic gradient descent. First, our method uses the Fisher, (i.e., the gradients for data
sampled from the model) whereas their approach uses the empirical Fisher, (i.e., gradients
for the observed data) to form the squared gradient regularizer [27]. Second, our approach
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gives a principled method to learn a separate weighting for the squared-gradient for each
parameter, whereas the connection to SGD forces Barrett and Dherin [12] to use a uniform
weighting across all parameters.

Our work differs from, e.g., Khan et al. [28] by explicitly providing a simply imple-
mented loss-function in terms of a squared-gradient regularizer, instead of working with
NTK-inspired approximations to the Hessian.

Other approaches include “Broad Bayesian Learning” [29], which optimizes the archi-
tecture of a Bayesian neural network, exploiting information from previously trained but
different networks. Of course, quantification of uncertainty for Bayesian neural networks
is always fraught [30]. As such, we followed standard practice in the literature of reporting
OOD detection performance and a measure of calibration accuracy [31].

4. Methods

To combine the best of VI and Laplace’s method, we begin by noting that the ELBO can
be rewritten in terms of the KL divergence between the prior and approximate posterior:

LVI = E
Q(w)

[log P(y|x, w)]− β∑λ DKL(Q(wλ)||P(wλ)), (11)

where the KL-divergence can be evaluated analytically:

DKL(Q(wλ)||P(wλ)) =
1
2

(
σ2

λ + µ2
λ

s2
λ

− 1 + log
s2

λ

σ2
λ

)
. (12)

As such, the only term we need to approximate is the expected log-likelihood.
To approximate the expectation, we begin by taking a second-order Taylor series

expansion of the log-likelihood around the current settings of the mean parameters, µ:

E
Q(w)

[
log P(y|x, w)

]
≈ log P(y|x, w=µ) + E

Q(w)

[
∑B

j=1gT
j (w− µ)

]
+ E

Q(w)

[
1
2 (w− µ)TH(w− µ)

]
(13)

where B is the number of minibatches, gj is the gradient for minibatch j and H is the
Hessian for the full dataset:

gj;λ =
∂

∂wλ

[
log P

(
yj|xj, w

)]
(14)

Hλ,ν =
log P(y|x, w)

∂wλ∂wν
. (15)

Here, x and y are the the inputs and outputs for the full dataset, whereas xj and yj are the
inputs and outputs for minibatch j. Now we consider the expectation of each of these terms
under the approximate posterior, Q(w). The first term is constant and independent of w.
The second (linear) term is zero, because the expectation of (w− µ) under the approximate
posterior is zero

E
Q(w)

[
gT

j (w− µ)
]
= gT

j E
Q(w)

[(w− µ)] = 0. (16)

The third (quadratic) term might at first appear difficult to evaluate because it involves H,
the N× N matrix of second derivatives, where N is the number of parameters in the model.
However, using properties of the trace, and noting that the expectation of (w− µ)(w− µ)T

is the covariance of the approximate posterior, we obtain

E
Q(w)

[
1
2 (w− µ)TH(w− µ)

]
= E

Q(w)

[
1
2 Tr

(
H(w− µ)(w− µ)T

)]
= 1

2 Tr(HΣ) (17)
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writing the trace in index notation, and substituting for the (diagonal) posterior covari-
ance, Σ:

1
2 Tr(HΣ) = 1

2 ∑
λν

HλνΣλν = 1
2 ∑

λ

Hλλσ2
λ. (18)

Thus, our first approximation of the expected log-likelihood is

E
Q(w)

[log P(y|x, w)] ≈ log P(y|x, w=µ) + 1
2 ∑λσ2

λHλλ, (19)

and substituting this into Equation (11) gives

LVI ≈ LVL(H) = log P(y|x, w=µ) + 1
2 ∑λσ2

λHλλ − β∑λ DKL(Q(wλ)||P(wλ)). (20)

This resolves most of the issues with the original Variational Laplace method: it requires
only the diagonal of the Hessian, it can be minibatched and it does not blow up if Hλλ

is zero.

4.1. Pathological Optima When Using the Hessian

However, a new issue arises: Hλλ is usually negative, in which case the approximation
in Equation (20) can be expected to work well. However there is nothing to stop Hλλ

from becoming positive. Usually if we, e.g., took the log-determinant of the negative
Hessian, this would immediately break the optimization process (as we would be taking
the logarithm of a negative number). However, in our context, there is no immediate issue
as Equation (20) takes on a well-defined value even when one or more Hλλ’s are positive.
That said, we rapidly encounter similar issues as we get pathological optimal values of σ2

λ.
In particular, picking out the terms in the objective that depend on σ2

λ, absorbing the other
terms into the constant, and taking β = 1 for simplicity, we have

LVL(H) =
1
2 ∑λ

(
−
(

1
s2

λ

− Hλλ

)
σ2

λ + log σ2
λ

)
+ const. (21)

Thus, the gradient wrt a single variance parameter is

∂

∂σ2
λ

LVL(H) =
1
2

(
−
(

1
s2

λ

− Hλλ

)
+ 1

σ2
λ

)
. (22)

In the typical case, Hλλ is negative so
(

1
s2

λ

− Hλλ

)
is positive, and we can find the optimum

by solving for the value of σ2
λ where the gradient is zero:

σ2
λ =

1
1
s2

λ

− Hλλ

. (23)

However, if Hλλ is positive and sufficiently large, Hλλ > 1
s2

λ

, then
(

1
s2

λ

− Hλλ

)
becomes

negative, and not only is the mode in Equation (23) undefined, but the gradient is al-
ways positive:

0 <
∂

∂σ2
λ

LVL(H) =
1
2

(
−
(

1
s2

λ

− Hλλ

)
+ 1

σ2
λ

)
. (24)

as both terms in the sum: −
(

1
s2

λ

− Hλλ

)
and 1

σ2
λ

are positive. As such, when Hλλ > 1
s2

λ

, the

variance, σ2
λ grows without bound.
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4.2. Avoiding Pathologies with the Fisher

To avoid pathologies arising from the fact that the Hessian is not necessarily negative
definite, a common approach is to approximate the Hessian using the Fisher informa-
tion matrix:

−H ≈ F =
B

∑
j=1

E
P(ỹj |xj ,w=µ)

[
g̃j(ỹj)g̃T

j (ỹj)
]
. (25)

Importantly, g̃ is the gradient of the log-likelihood for data sampled from the model, ỹj, not
for the true data:

g̃j;λ(ỹj) =
∂

∂wλ

[
log P

(
ỹj|xj, w

)]
. (26)

This gives us the Fisher, which is a commonly used and well-understood approximation to
the Hessian [27]. Importantly, this contrasts with the empirical Fisher [27], which uses the
gradient conditioned on the actual data (and not data sampled from the model):

Femp =
B

∑
j=1

gjgT
j , (27)

which is problematic, because there is a large rank-1 component in the direction of the
mean gradient, which disrupts the estimated matrix specifically in the direction of interest
for problems such as optimization [27].

Using the Fisher information (Equation (25)) in Equation (19), we obtain an approxi-
mate expected log-likelihood:

E
Q(w)

[log P(y|x, w)] ≈ log P(y|x, w=µ)− 1
2 ∑λσ2

λ∑B
j=1 g̃2

j;λ. (28)

Substituting this into Equation (11) gives us the final VL objective, LVL, which is an
approximation of the ELBO:

LVI ≈ LVL = log P(y|x, w=µ)− 1
2 ∑λσ2

λ∑B
j=1 g̃2

j;λ − β∑λ DKL(Q(wλ)||P(wλ)). (29)

In practice, we typically take the objective for a minibatch, divided by the number of
datapoints in a minibatch, S:

1
SLVL;j =

1
S log P

(
yj|xj, w=µ

)
− S

2 ∑λσ2
λ

(
1
S g̃j;λ

)2
− β

2SB ∑λ

(
σ2

λ+µ2
λ

s2
λ

− 1 + log s2
λ

σ2
λ

)
, (30)

where
(

1
S g̃j;λ

)
are the gradients of the log-likelihood for the minibatch averaged across dat-

apoints, i.e., the gradient of 1
S log P

(
ỹj|xj, w=µ

)
. Remember B is the number of minibatches

so SB is the total number of training datapoints.

4.3. Constraints on the Network Architecture

Importantly, here the regularizer is the squared gradient of the loss with respect to
the parameters. As such, computing the loss implicitly involves a second-derivative of the
log-likelihood, and we therefore cannot use piecewise linear activation functions such as
ReLU, which have pathological second derivatives. In particular, the second derivative has
a delta-function “spike” at zero:

d2

dx
φ(x) =

d
dx

[
d

dx
φ(x)

]
=

d
dx

Θ(x) = δ(x) (31)
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where φ is the relu nonlinearity, Θ(x) is the Heaviside step function which is zero for x < 0
and one for 0 < x, and δ(x) is the Dirac delta function. As the function is almost never
evaluated at exactly zero, it is not possible to sensibly take into account the contribution
of the infinitely high spike in the second derivative at zero. Interestingly, this issue is
very similar to the one that turns up when differentiating step (i.e., Θ(x)) activations—
the derivative is well-defined and zero almost everywhere. The issue is that there are
delta-function spikes in the gradient at zero that gradient descent cannot reasonably work
with. Instead, we used a softplus activation function, but any activation with well-behaved
second derivatives is admissible.

5. Results

We compared MAP, VI and our method (VL) on four different datasets (CIFAR-10,
CIFAR-100 [32], SVHN [33] and fashion-MNIST [34] MIT Licensed) using a PreactResNets-
18 [35] with an initial learning rate of 1E-4, which decreased by a factor of 10 after 100
and 150 epochs and a batch size of 128 with all the other optimizer hyperparameters
set to their default values. We tried two variants of variational inference: evaluating
test-performance using the mean network, VI (mean), and evaluating test performance
by drawing 10 samples from the approximate posterior, VI (sampled). We swept across
different degrees of posterior tempering, β. Using β < 1 is normatively justified in the
Bayesian framework as accounting for the effect of data curation [17]. For many values of
β VL gave better test accuracies, test log-likelihoods and expected calibration errors [31,36]
than VI or MAP inference (Figure 1). Importantly though, for the optimal value of β, VL
almost always gave better performance on these metrics (Table 1). These experiments
took ∼480 GPU hours, and were run on a mixture of nVidia 1080 and 2080 GPUs in an
internal cluster.

Table 1. Best values test NLL, test accuracy and ECE for a variety of datasets, as we used different
values of the tempering parameter, β.

Dataset Method Test NLL Test Acc. ECE

VL 0.23 92.4% 0.017

CIFAR-10 VI (Mean) 0.37 91.1% 0.053
VI (10 Samples) 0.35 90.2% 0.044

MAP 0.43 90.8% 0.058

VL 1.00 71.4% 0.024

CIFAR-100 VI (Mean) 1.29 68.8% 0.100
VI (10 Samples) 1.49 67.3% 0.026

MAP 1.61 67.5% 0.159

VL 0.14 97.1% 0.009

SVHN VI (Mean) 0.16 96.3% 0.012
VI (10 Samples) 0.22 95.5% 0.022

MAP 0.24 95.7% 0.028

VL 0.16 94.6% 0.010

Fashion MNIST VI (Mean) 0.23 94.0% 0.034
VI (10 Samples) 0.29 93.6% 0.016

MAP 0.29 93.6% 0.096
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PreactResNet-18 on Various Datasets
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Figure 1. Training a PreactResNet-18 on various datasets, displaying the test accuracy, test log-likelihood, expected
calibration error (ECE) [31,36] and OOD detection metric (AUROC) for CIFAR-10, CIFAR-100, SVHN and fashion MNIST.
Downsampled Imagenet [37] was used as OOD data. See Appendix B.

The runtimes of the methods are listed in Table 2. VL or gradient regularization was
around a factor of three slower than either VI or MAP due to the need to compute second-
derivatives. It is still eminently feasible, especially in comparison to past methods for
deterministic variational inference that have fundamental difficulties in scaling to convolu-
tional networks [23]. Furthermore, we did not find that increasing the number of epochs
improved performance either for VI or MAP, as we were already training for convergence.
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Table 2. Time per epoch for different methods on CIFAR-10.

Method Time per Epoch (s)

VL 114.9
VI 43.2

MAP 41.8

Early-Stopping and Poor Performance in VI

Before performing comparisons where we learn the approximate posterior variance,
it is important to understand the pitfalls when optimizing variational Bayesian neural
networks using adaptive optimizers such as Adam. In particular, there is a strong danger
of stopping the optimization before the variances have converged. To illustrate this risk,
note that Adam [38] updates take the form

∆θ = η
m√

v + ε
(32)

where η is the learning rate, m is an unbiased estimator of the mean gradient, 〈g〉, v is an
unbiased estimator of the squared gradient, 〈g2〉 and ε is a small positive constant to avoid
divide-by-zero. The magnitude of the updates, |∆θ|, is maximized by having exactly the
same gradient on each step, in which case, neglecting ε, we have |∆θ| = η. As such, with a
learning rate of η = 10−4, a training set of 50,000 and a batch size of 128 parameters can
move at most 50,000/128 ×10−4 ≈ 0.04 per epoch. Doing 100 epochs at this learning rate,
a parameter can change by at most 4 over the 100 epochs before the first learning rate step.

This is fine for the weights, which typically have very small values. However, the
underlying parameters used for the variances typically take on larger values. In our case,
we will use log σλ as the parameter, and initialize it to three less than the prior standard
deviation, log sλ − 3. To ensure reasonable convergence, log σλ should be able to revert
back to the prior, implying that it must be able to change by at least three during the course
of training. Unfortunately, 3 is very close to the maximum possible change of 4, raising
the possibility that the variance parameters will not actually converge. To check whether
early-stopping was indeed an issue, we plotted the (tempered) ELBO for VI (Figure 2A)
and VL (Figure 2B). For VI (Figure 2A) with the standard setup (lightest line with a learning
rate multiplier of 1), the ELBO clearly has not converged at 100 epochs, indicating early-
stopping. Notably, this was still an issue with VL (Figure 2B), especially if we were to train
for fewer epochs. However, the effect was smaller for VL, which may have been because
the gradients were more consistent, as it did not sample the weights. These issues can be
rectified by increasing the learning rate specifically for the log σλ parameters (darker lines).

We then plotted the test log-likelihood (Figure 2C), test accuracy (Figure 2D) and
ELBO (Figure 2E) against the learning rate multiplier. Again, the performance for VL
(orange) was reasonably robust to changes in the learning rate multiplier. However, the
performance of VI (blue) was very sensitive to the multiplier: as the multiplier increased,
test performance fell but the ELBO rose. As we ultimately care about test performance,
these results would suggest that we should use the lowest multiplier (1), and accept the
possibility of early-stopping. That may be a perfectly good choice in many cases. However,
VI is supposed to be an approximate Bayesian method, and using an alternative form for
the ELBO,

LVI = log P(y|x)− DKL(Q(w)||P(w|y, x)), (33)

we can see that the ELBO measures KL-divergence between the true and approximate
posterior, and hence the quality of our approximate Bayesian inference. As such, very
poor ELBOs imply that the KL-divergence between the true and approximate posterior
is very large, and hence the “approximate posterior” is no longer actually approximating
the true posterior. As such, if we are to retain a Bayesian interpretation of VI, we need
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to use larger learning rate multipliers which give better values for the ELBO (Figure 2E).
However, in doing that, we get worse test performance (Figure 2C,D). This conflict between
approximate posterior quality and test performance is very problematic: the Bayesian
framework would suggest that as Bayesian inference becomes more accurate, performance
should improve, whereas for VI, performance gets worse. Concretely, by initializing log σλ

to a small value and then early-stopping, we leave log σλ at a small value through training,
in which case VI becomes equivalent to MAP inference with a negligibly small amount of
noise added to the weights. We would therefore expect early-stopped VI to behave (and
be) very similar to MAP inference.

In subsequent experiments, we chose to use a learning rate multiplier of 10, as this
largely eliminated early-stopping (though see VI with β = 0.1; Figure 2E). Overall, this
indicates that we have to be very careful to avoid early stopping when running standard,
sampling-based variational inference.
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Figure 2. Analysis of early stopping in VI and VL. The first row is untempered (β = 1), and the second row is tempered
(β = 0.1). (A) ELBO over epochs 0–100 (with the highest initial learning rate) for VI. Different lines correspond to networks
with learning rate multipliers for log σλ of 1, 3, 10 and 30. (B) As (A), but for VL. CDE Final test-log-likelihood (C), test
accuracy (D) and ELBO (E) after 200 epochs for different learning rate multipliers.

6. Conclusions

We gave a novel Variational Laplace approach to inference in Bayesian neural net-
works which combines the best of previous approaches based on variational inference and
Laplace’s Method. This method gave excellent empirical performance compared to VI.
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Appendix A. The Stationary Distribution of SGD

We sought to relate these gradient regularizers back to work on SGD. In particular, we
looked to work on the stationary distribution of SGD, which noted that under quadratic
losses functions, SGD samples an isotropic Gaussian (i.e., with covariance proportional
to the identity matrix). In particular, consider a loss function which is locally closely
approximated by a quadratic. Without loss of generality, we consider a mode at w = 0,

log P
(
{yi}P

i=1|{xi}P
i=1, w

)
= − P

2 wTHw + const . (A1)

where P is the total number of datapoints. Typically, the objective used in SGD is the loss
for a minibatch of size SSGD. Following Mandt et al. [39], we use the Fisher information to
identify the noise in the minibatch gradient,

∂

∂w

[
1

SSGD
log P

(
yj|xj, w

)]
= −Hw + 1√

SSGD
H1/2ξ(t), (A2)

where ξ(t) is sampled from a standard IID Gaussian. For SGD, this gradient is multiplied
by a learning rate, ηSGD,

w(t + 1) = w(t)− ηSGDHw(t) + ηSGD√
SSGD

H1/2ξ(t), (A3)

This is an multivariate Gaussian autoregressive process, so we can solve for the stationary
distribution of the weights. In particular, we note that the covariance at time t + 1 is

C[w(t + 1)] = E
[(

w(t)− ηSGDHw(t)− ηSGD√
SSGD

H1/2ξ(t)
)T(

w(t)− ηSGDHw(t)− ηSGD√
SSGD

H1/2ξ(t)
)]

C[w(t + 1)] = (I− ηSGDH)T C[w(t)](I− ηSGDH) +
η2

SGD
SSGD

H (A4)

Following Mandt et al. [39], when the learning rate is small, the quadratic term can
be neglected.

C[w(t + 1)] ≈ C[w(t)]− ηSGDHC[w(t)]− ηSGD C[w(t)]H +
η2

SGD
SSGD

H (A5)

We then solve for steady-state in which Σ = C[w(t + 1)] = C[w(t)],

0 ≈ −ηSGD

(
HTΣSGD + ΣSGDH

)
+

η2
SGD

SSGD
H (A6)

so,

Σ ≈ ηSGD
2SSGD

I. (A7)

Appendix B. Varying the Batch Size

Here, we vary the batch size. We used a batch size of 128 in the main text. We found
that batch sizes of 64 and 256 have no effect on the relative performance of the methods.
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Figure A1. Replication of Figure 1 with a batch size of 64.
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PreactResNet-18 on Various Datasets
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Figure A2. Replication of Figure 1 with a batch size of 256.
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