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Abstract
Porcine deltacoronavirus (PDCoV) is one of the most important enteropathogenic pathogens, and it causes enormous 
economic losses to the global commercial pork industry. PDCoV was initially reported in Hong Kong (China) in 2012 
and subsequently emerged in swine herds with diarrhea in Ohio (USA) in 2014. Since then, it has spread to Canada, South 
Korea, mainland China, and several Southeast Asian countries. Information about the epidemiology, evolution, prevention, 
and control of PDCoV and its prevalence in China has not been comprehensively reported, especially in the last five years. 
This review is an update of current information on the general characteristics, epidemiology, geographical distribution, and 
evolutionary relationships, and the status of PDCoV vaccine development, focusing on the prevalence of PDCoV in China 
and vaccine research in particular. Together, this information will provide us with a greater understanding of PDCoV infec-
tion and will be helpful for establishing new strategies for controlling this virus worldwide.

Introduction

Coronaviruses (CoVs) are a family of enveloped viruses 
with a positive-stranded RNA genome, and they can be 
genetically divided into four genera (Alphacoronavirus, 
Betacoronavirus, Gammacoronavirus, and Deltacoronavi-
rus) that belong to the family Coronaviridae of the order 
Nidovirales [1].

CoVs are distributed widely among mammals and birds 
[2–5]. Individual CoVs usually infect their hosts in a spe-
cies-specific manner, with alpha- and betacoronaviruses 
mainly infecting mammals, gammacoronaviruses normally 
infecting avian species, and deltacoronaviruses infecting 
both mammals and avian species. Attention to coronaviruses 
has increased in recent years because of the emergence of 
severe acute respiratory syndrome (SARS), Middle-East 

respiratory syndrome (MERS), and the newly emerging 
coronavirus disease 2019 (COVID-19), all of which cause 
acute respiratory illness, with mortality rates up to 9.5% in 
SARS and 35% in MERS, and with an inferred infection 
fatality rate varying from 0.00% to 1.63%, with corrected 
values varying from 0.00% to 1.54% for COVID-19 [6–10].

Porcine deltacoronavirus (PDCoV), a member of the 
genus Deltacoronavirus, is a novel swine enteropathogenic 
coronavirus that causes acute diarrhea, vomiting, and dehy-
dration in neonatal piglets [11–15]. PDCoV was initially 
identified in 2012 during a molecular surveillance study in 
Hong Kong and emerged later in swine herds with diarrhea 
in Ohio (USA) in 2014 [2, 16]. Subsequently, the outbreak 
exhibited a global spread, and the virus has been detected in 
fecal samples from piglets in South Korea, mainland China, 
Thailand, Vietnam, and Laos [17–20].

The epidemiological, clinical, and pathological features 
of PDCoV are similar to those of transmissible gastroen-
teritis virus (TGEV) and porcine epidemic diarrhea virus 
(PEDV), but PDCoV has a lower clinical impact and dis-
ease severity than TGEV and PEDV [21, 22]. Pathogenicity 
experiments have confirmed that PDCoV exhibits enter-
opathogenicity, causing severe diarrhea and vomiting in 
suckling piglets. Histological examination has revealed 
lesions characteristic of atrophic enteritis, primarily in the 
jejunum and ileum, which were characterized by intestinal 
villi atrophy and shortening [12, 13, 23–26].
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PDCoV infections have caused significant economic 
losses in the swine industry worldwide. Therefore, the devel-
opment of effective vaccines is essential for the prevention 
and control of PDCoV. However, there are currently no 
effective vaccines available for PDCoV. This review sum-
marizes the latest discoveries in the study of PDCoV, with 
particular emphasis on its epidemiology, genetic evolution, 
and prevalence in China as well as vaccine research.

Genomic organization and general 
characteristics

The genome of PDCoV is approximately 25.4 kb in length 
[16, 27], making it the smallest genome known among 
CoVs. The genome organization of PDCoV is typical of 
CoVs and contains six common coronaviral genes in the 

following conserved order: 5ʹUTR-ORF1a-ORF1b-S-E-M-
NS6-N-NS7-3ʹUTR [2, 27] (Fig. 1).

ORF1a and ORF1b occupy nearly three-fourths of the 
viral genome and encode two overlapping replicase polypro-
teins [28, 29]. Downstream of ORF1a and ORF1b, there are 
several additional ORFs that code for the structural proteins: 
spike (S), envelope (E), membrane (M), nonstructural pro-
tein 6 (NS6), nucleocapsid (N), and nonstructural protein 7 
(NS7) [17, 30]. The S protein forms peplomers on the virion 
surface and plays an important role in receptor attachment 
and viral and host cell membrane fusion [31–33]. It is a 
major target for virus neutralizing antibodies, and its struc-
ture is divided into S1 and S2 domains [34, 35]. The E and 
M proteins are transmembrane proteins that function in viral 
envelope formation and release [28, 36]. The N protein is the 
most abundant and multifunctional viral component. The 
primary role of the CoV N protein is to package the genomic 

Fig. 1  Schematic diagram showing the genome organization of eight 
known CoVs of the genera Alphacoronavirus, Betacoronavirus, 
Gammacoronavirus, and Deltacoronavirus. The expanded regions 

below show the structural and accessory proteins in the 3′ regions of 
PEDV, TGEV, HCoV-229E, SARS-CoV-2, SARS-CoV, MERS-CoV, 
IBV, and PDCoV.
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viral genome into long, flexible, helical ribonucleoprotein 
(RNP) complexes called capsids, and the capsid protects the 
genome and ensures its timely replication and reliable trans-
mission [37]. In addition, the PDCoV N protein associates 
with viral pathogenesis by interfering with the early activa-
tion of pRIG-I in the host antiviral response [38, 39]. NS6 
and NS7 encode an accessory protein [40, 41], and NS7 of 
PDCoV overlaps with the N protein [42].

Survival and inactivation

Many factors can influence virus survival outside of the host, 
including temperature, relative humidity (RH), desiccation, 
irradiation, the milieu in which the virus is suspended, and 
the physicochemical properties of the virus. CoVs survive 
for extended periods of time in feces, feed, and feed ingre-
dients [43]. This prolonged survival can be reduced by feed 
additives [44] and heat [45].

PEDV can survive for 1–7 days at 70% RH at 60 °C, 
TGEV can exist for up to 14 days at 60 °C, and PEDV can 
survive for more than 4 weeks in wet complete feed but for 
only 1 week in dry complete feed [46, 47].

There is a lack of data on the presence and survival of 
PDCoV. Theoretically, the physical and chemical proper-
ties of PDCoV are comparable to those of other intestinal 
coronaviruses, such as TGEV and PEDV, but there are some 
differences.

A survey conducted by a Chinese team showed that 
PDCoV is resistant to acid and organic solvents but is sen-
sitive to heat. PDCoV is stable at pH 3.0 and is tolerant to 
ether and chloroform treatment. Most PDCoV strains are 
absolutely inactivated at 50 °C after 60 min of exposure 
[48]. The Weibull distribution model was used to analyze 
the inactivation kinetics of PDCoV in various feed ingredi-
ent matrices, and the results showed that the virus survived 
the longest in soybean meal and that the first log reduction 
of virus titer of PDCoV and TGEV in soybean meal was 
observed at 42.04 days and 42 days, respectively [43].

Further study is needed to measure the comparative sur-
vival of coronaviruses in the environment so that effective 
control strategies can be designed and implemented.

Host range and susceptibility

CoVs have remarkable potential for crossing species barri-
ers, which plays a major role in virus evolution and diversi-
fication [49, 50]. CoVs have been detected in a wide range 
of hosts, covering avian and mammalian species, including 
humans, poultry, bats, dogs, swine, and cattle [3, 8, 51–55], 
causing respiratory, neurological and gastrointestinal 

diseases, but coronaviruses of the genera gamma- and del-
tacoronavirus have been isolated primarily in birds.

Deltacoronaviruses were previously identified primarily 
in multiple songbird species, Asian leopard cats, and Chi-
nese ferret badgers [2]. Pigs are the main hosts of PDCoV, 
and pigs of all ages are susceptible to PDCoV [15], with 
suckling piglets being the most susceptible [14]. PDCoV in 
piglets is mainly characterized by varying degrees of diar-
rhea, vomiting, dehydration, and histopathological lesions 
typical of atrophic enteritis [12].

In addition to swine, calves and chickens have been 
shown by experimental testing to be susceptible to PDCoV 
infection [3, 5, 56]. Jung et al. demonstrated that gnotobi-
otic calves inoculated orally with PDCoV develop an acute 
infection with persistent fecal PDCoV RNA shedding and 
PDCoV-specific serum IgG antibody responses but show no 
signs of significant intestinal lesions or clinical disease [3]. 
Liang et al. found that PDCoV can infect and be continu-
ously passaged in chicken embryos, and chickens showed 
mild diarrhea symptoms, with viral RNA being detected 
in multiple organs and intestinal contents after inoculation 
[56]. A recent report of PDCoV infection in poultry in the 
United States showed similar features of diarrhea, persis-
tent viral RNA shedding, and PDCoV-specific IgY antibody 
responses [5].

Although there have been no reports of PDCoV infect-
ing humans, some researchers have observed that PDCoV 
efficiently infects human cells [57, 58]. Cruz-Pulido et al. 
analyzed the transcriptomes of human and pig intestinal epi-
thelial cells after PDCoV infection and found that human 
cells exhibited a more pronounced and upregulated response 
to PDCoV infection in comparison to pig cells and specu-
lated that humans could be a new host for PDCoV [57].

Epidemiology and geographical distribution 
in China

PDCoV was first reported in Hong Kong in 2012 and was 
subsequently detected in pigs from the United States in Feb-
ruary 2014 [2, 16]. Shortly thereafter, PDCoV was intro-
duced into South Korea, China, Thailand, Vietnam, Canada, 
and Mexico, exhibiting a global distribution trend [18, 20, 
59–61].

In China, PDCoV was first reported in 2015 and quickly 
spread across the country. However, it remains unclear 
when PDCoV was introduced into China. A retrospective 
study on clinical samples collected during 2004–2014 from 
Hubei, Anhui, Jiangsu, and Guangxi provinces revealed that 
PDCoV was present in the Chinese mainland as early as 
2004 [18]. After the PDCoV outbreaks in 2015, detailed 
studies of the epidemiology and evolution of PDCoV were 
conducted in China, which led to the accumulation of a large 
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amount of data (Table 1). To date, PDCoV infection has 
been reported in 26 provinces of China, including all major 
traditional breeding areas [15, 27, 62–75].

From March 2016 to June 2018, a survey covering 18 
provinces revealed that the infection rate of PDCoV and 
PEDV among Chinese pig populations was 13.07% and 
36.72%, respectively, and the coinfection rate of PDCoV and 
PEDV was 4.73% [63]. In another study, a total of 2987 field 
diarrheal samples collected from 168 pig farms in five prov-
inces (Jiangxi, Zhejiang, Fujian, Guangdong, and Hunan) in 
southern China during 2012–2018 were tested, the positive 

rates of PDCoV infection varied from 19.62% to 31.47% 
among samples from different years, and the positive rates 
of different provinces varied from 19.57% (Guangdong) 
to 33.32% (Fujian). Of 2987 samples, 813 (27.22%) were 
PDCoV positive, and of the 813 PDCoV-positive samples, 
380 (46.74%) were coinfected with PEDV [71]. Interest-
ingly, we also found that PDCoV was detectable in pigs 
of all ages (sows, suckling piglets, nursery pigs, finishing 
pigs), and the positive rates were 27.79% (187/673), 29.52% 
(501/1697), 20.45% (73/357), and 16.74% (36/215), respec-
tively, indicating that suckling piglets are more susceptible 

Table 1  Studies of PDCoV infection of pigs in China

Reference Provinces No. of samples Positive rate % (n) Year Sample types

PDCOV PEDV PDCOV + PEDV

[59] Gansu, Qinghai, Sichuan 189 3.70 (7) 27.51 (52) 2.11 (4) 2016, 2017 Faecal samples
[60] 18 provinces (Heilongji-

ang, Liaoning, Beijing, 
Hebei, Henan, Shanxi, 
Shandong, Hubei, 
Anhui, Hunan, Jiangxi, 
Zhejiang, Jiangsu, 
Guangxi, Yunnan, 
Fujian, Sichuan, Gansu)

719 13.07 (94) 36.72 (267) 4.73 (34) 2016–2018 Faeces, faecal swabs, small 
intestines

[61] Hebei 871 11.02 (96) – – 2015, 2016 Serum
[62] Heilongjiang 319 11.59 (37) – – 2014, 2015 Serum
[63] Guangdong 84 41.7 (35) – – – Faeces, faecal swabs, small 

intestines
[64] 9 Provinces (Henan, 

Shaanxi, Liaoning, 
Gansu, Ningxia, 
Chongqing, Hainan, 
Jiangxi, Qinghai)

398 36.18 (144) 19.60 (78) – 2015–2017 Faeces

[65] Heilongjiang, Jilin, 
Liaoning

672 3.87 (26) 19.05 (128) – 2017, 2018 Faeces

[27] Jiangxi 356 33.71 (120) 64.89 (231) 19.66 (120) 2012–2015 Intestinal and fecal samples
[66] Shaanxi, Henan, Hubei 70 2.9 (2) 84.2 (59) 2.9 (2) 2015, 2016 Intestinal and fecal samples
[67] Guangdong, Guangxi, 

Hainan
390 1.28 (5) 22.56 (88) 1.28 (5) 2012–2015 Faeces

[15] Henan 177 69.49 (123) 0 0 2017–2019 Fecal samples, small intes-
tinal content

[68] Jiangxi, Zhejiang, Fujian, 
Guangdong, Hunan

2987 27.22 (813) 57.32 (1712) 12.72 (380) 2012–2018 Faeces, intestine, milk

[69] Henan 430 23.49 (101) – 14.18 (61) 2015–2018 Faecal and intestinal 
samples

[70] Guangdong 252 21.8 (55) 65.5 (165) 0.79 (2) 2015, 2016 Faecal and intestinal 
samples

[118] Guangdong 420 13.33 (56) 31.9 (134) 5.95 (25) 2012–2016 Fecal samples, small intes-
tinal content

[119] Guangxi 1547 4.52 (70) 54.94 (843) 1.1 (17) 2013–2018 Faecal samples
[71] Jiangxi 249 31.33 (78) – – 2012–2015 Faeces, faecal swabs, small 

intestines
[72] Liaoning, Shaanxi, 

Shandong, Chongqing, 
Ningxia, Gansu

354 34.2 (121) 9.6 (34) 1.4 (5) 2015–2018 Faecal samples
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to PDCoV infection [71]. These results are consistent with 
those of another study conducted in 2019 [15].

In general, the infection rates of PEDV and PDCoV and 
their coinfection rates in China vary from region to region, 
and the infection rate of PEDV is higher than that of PDCoV, 
indicating that although there is a commercial vaccine, 
PEDV prevention and control in China are still inadequate. 
These findings also reveal the possibility that PDCoV is one 
of the major pathogens, in addition to PEDV, causing out-
breaks of diarrhea in swine farms on China.

In terms of the geographical distribution in China 
(Fig. 2), the infection rate of PDCoV in the northeast-
ern (Heilongjaing, Jinlin, Liaoning) [68] and northwest-
ern regions (Gansu, Qinghai) [62] is comparatively low, 
but the infection rate of PDCoV in central China (Henan, 

Hubei) [15, 64] and southern China (Guangdong, Jiangxi) 
[66, 73, 74] is higher, which may be related to the greater 
amount of pig production and the higher frequency of pig 
transport in these provinces.

These data provided us with a basic reference for under-
standing the epidemiology of PDCoV in China, and statis-
tics show that PDCoV infection occurs extensively in the 
pig population in China.

However, because China is a country with a vast ter-
ritory and a large number of breeding stock, these epide-
miological studies are limited by sample size, sampling 
location, and season. Therefore, the epidemic features and 
incidence trends of PDCoV infection are not completely 
understood. More epidemiological data should be moni-
tored dynamically in future studies in China.

Fig. 2  Geographical distribution of PDCoV strains in different 
regions of China. The genome sequences of 40 strains from 15 dif-
ferent provinces of China were downloaded from the NCBI database, 
and phylogenetic trees were constructed using the neighbor-join-
ing method in MEGA7. Green represents the area of central China 
(Henan, Anhui, Hubei, Hunan, Jiangxi), gray represents the area of 

northwestern China (Shaanxi, Gansu, Qinghai), yellow represents 
the area of eastern China (Jiangsu, Shanghai), blue represents the 
area of northern China (Hebei, Tianjin), pink represents the area of 
southwestern China (Sichuan), and red represents the area of southern 
China (Guangdong, Guangxi).
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Transmission

CoVs cause respiratory infections in humans and intesti-
nal infections in pigs, and viruses with different phenotypes 
spread in different ways. Respiratory pathogenic coro-
naviruses (e.g., SARS-CoV, MERS-CoV, SARS-CoV-2) 
spread primarily through respiratory droplets and close 
contact [76–78], while enteropathogenic coronaviruses 
(TGEV, PEDV, PDCoV) are spread mainly by contact with 
feces, vomitus, and contaminated feed and trucks [79, 80]. 
Although some possibilities have been considered for how 
PDCoV was introduced and rapidly disseminated through-
out pig farms around the world, the exact mechanism by 
which PDCoV entered and disseminated is not completely 
understood.

Direct transmission

PDCoV is transmitted horizontally (pig-to-pig infection) 
through both direct and indirect contact. Direct transmis-
sion occurs by contact with various secretions (feces, vomi-
tus, saliva, milk, nasal secretions, oral fluids, semen) from 
infected pigs.

A total of 293 porcine samples from the United States and 
Canada were tested, and 52% (27/52) of intestinal samples, 
40% (30/75) of fecal samples, 32% (6/19) of feed samples, 
and 19% (10/54) of saliva samples were positive for PDCoV 
[81]. The contamination of samples from different sources is 
indicative of the complexity of potential transmission.

The fecal-oral route is considered to be the most impor-
tant mode of PDCoV transmission. Feces and vomitus from 
infected pigs contain high levels of the virus [81, 82]. Fecal 
shedding of PDCoV initiates even before the presentation of 
clinical signs and normally lasts for several weeks [12, 14, 
25]. In some cases, fecal shedding may continue even after 
clinical signs have completely disappeared [25].

Indirect transmission

Indirect transmission occurs through virus-contaminated 
feed, feed trucks, transport trailers, and breeders. Contami-
nated feed and transport trailers may play an important role 
in the spread of the virus in and among farms [80].

Lowe et al. investigated the role of transport in the spread 
of porcine epidemic diarrhea virus infection in the United 
States and found that 6.6% (38/575) of the trailers were con-
taminated prior to unloading, and of the trailers not con-
taminated at arrival, 5.2% (28/537) were contaminated dur-
ing the unloading process [80]. Greiner surveyed feed mills 
from various regions in the United States and found that 
5% of the truck foot pedals and 1% of the bulk-ingredient 

pits tested suspect for PEDV, 3.4% of the foot pedals of the 
trucks tested positive, and 2.2% of the office floors tested 
suspect for PDCoV [83].

Previous research has suggested that PDCoV can survive 
in feed and feed ingredients at room temperature for up to 
56 days [43], indicating that feed may be another route for 
PDCoV transmission. However, the spray drying process 
of feed production is hot enough to inactivate the infectious 
virus; therefore, the spread of the virus caused by transport 
should be given more attention.

Airborne

Studies have demonstrated the possibility of virus trans-
mission through aerosols. In a study performed by Alonso 
and colleagues, it was shown that aerosolized PEDV can 
be transported up to 10 miles downwind through the air 
[79]. Interestingly, PEDV was not detected in air samples 
under field conditions, but pigs infected with experimental 
air samples experienced PEDV symptoms of moderate to 
severe diarrhea. Another study showed that despite obstacles 
to farrowing stalls and physical barriers, PDCoV infection 
would likely spread rapidly throughout modern farrowing 
and gestation barns [13]. The above case shows that airborne 
transmission should be considered as a potential route of 
PDCoV dissemination.

Origin and evolution

Origin

In the past 20 years, the world witnessed three serious 
zoonotic events in humans, SARS-CoV in 2003, MERS-
CoV in 2012, and the SARS-CoV-2 that is circulating this 
year.

SARS-CoV was confirmed to have been transmitted to 
humans from Paguma larvata in 2002, causing outbreaks 
in 37 countries, with more than 8000 cases and 774 deaths 
[6]. MERS-CoV is reported to have spread from dromedary 
camels to humans in 2012 and has caused lethal respiratory 
infections in humans and 712 deaths [8]. In the ongoing 
COVID-19 epidemic, it has been suggested that SARS-
CoV-2 was transmitted from pangolins to humans [84], and 
this virus has spread to more than 180 countries around the 
world. All three epidemics are thought to have originated 
from bat CoVs, which are transmitted to humans directly or 
indirectly through an intermediate host [85, 86].

There are four major known enteric coronaviruses that 
affect the pig industry: TGEV, PEDV, PDCoV, and the 
newly emerging swine acute diarrhea syndrome coronavi-
rus (SADS-CoV). PEDV shows a close phylogenetic rela-
tionship to a CoV detected in T. brasiliensis bats in Brazil, 
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indicating a possibility of bat origin [87]. SADS-CoV is the 
first bat-origin coronavirus shown to cause severe disease 
in domestic animals, and it shares 98.48% sequence identity 
with Rhinolophus bat coronavirus HKU2 [88].

To date, the origin of the novel PDCoV is still unknown. 
It is generally believed that the deltacoronavirus originated 
in birds [2, 89], but the partial genome sequences of PDCoV 
isolated from birds are too short to reflect evolutionary char-
acteristics. It has been speculated that avian coronavirus may 
be the genetic source of mammalian deltacoronaviruses, and 
there may be cross-species transmission from birds to mam-
mals [24, 58].

Compared to many other species, pigs are in frequent 
contact with humans, birds, and other animals and theoreti-
cally have a greater chance to be involved in cross-species 
transmission of viruses [90].

A study by Woo et al. showed that PorCoV HKU15 and 
SpCoV HKU17 are members of the same species, which 
implies that interspecies jumping from birds to pigs may 
have occurred [2]. Li et al. observed that PDCoV can effi-
ciently infect cells with an unusually broad species range, 
including human and chicken cells [58]. Similar results were 
also reported in the comparative transcriptome profiling 
of human and pig intestinal epithelial cells after PDCoV 
infection [57]. Therefore, it appears inevitable that similar 
zoonotic events will occur again in the future, so more epide-
miological studies need to be conducted to clarify the origin, 
epidemiology, and interspecific transmission mechanisms of 
coronaviruses.

Evolution

To date, 104 complete genome sequences of PDCoV iso-
lates from the United States, China, Korea, Laos, Vietnam, 
Thailand, and Japan are available in the GenBank database. 
To investigate the molecular origin and evolution of PDCoV 
in mainland China, we performed a detailed phylogenetic 
analysis at the genome level using strains that have been 
reported in countries for the first time or for which epide-
miological data show a high prevalence.

A total of 22 strains of porcine deltacoronavirus and 
seven avian isolates from seven countries were selected for 
phylogenetic analysis. Of these, 14 PDCoV isolates were 
from 13 different provinces of mainland China (Fig. 3).

The phylogenetic analysis showed that the PDCoV iso-
lates clustered together, while the avian deltacoronaviruses 
formed a separate cluster, and the evolutionary relationship 
between the two is distant. All porcine deltacoronavirus 
strains are closely related in the genetic evolution and have 
a high degree of sequence similarity, indicating that they 
might have originated from a common ancestor. The US, 
Korean, and Japanese PDCoV isolates grouped in the same 
branch with up to 99.9% nucleotide sequence identity and 

therefore might represent the same strain. The isolates from 
Vietnam, Laos, and Thailand belong to another branch with 
98.4–99.8% whole-genome nucleotide sequence identity. It 
is clear that the Southeast Asian PDCoV isolates are much 
more closely related to the Chinese strains.

The nucleotide sequence identity of the 14 strains from 
mainland China ranged from 97.7% to 99.7%, with the iso-
lates from Qinghai and Gansu and the Anhui strains belong-
ing to the same branch with 99.1–99.5% nucleotide sequence 
identity. The isolates CHN/AH/2004, CHN/GS/2016, and 
CHN/QH/2017 were found to be more closely related to 
HKU15-44, while the Jiangsu isolate (CHN/Jiangsu/2014) 
was more closely related to HKU15-155.

Compared with the US, Korean, and Japanese PDCoV 
strains, most Chinese strains (except HKU15-44, CHN/
AH/2004, CHN/GS/2016, and CHN/QH/2017) have a con-
tinuous deletion mutation of three nucleotides (AAT) at 
one site in the S gene. Previous reports have shown that the 
mutation rate of the S gene is relatively high, which may 
lead to altered tissue tropism, virulence, and even host speci-
ficity [27]. Whether the deletion of ATT has an effect on the 
virulence of the virus needs to be studied further.

In general, analysis of genetic evolution based on whole-
genome sequencing shows that PDCoV has undergone 
extensive variation in different regions, and the mutations 
occur mainly in the S gene. Thus, it is important to monitor 
genetic variations occurring in the PDCoV S gene as well as 
to evaluate the impact of these variations on pathogenicity in 
order to develop an effective vaccine to control the disease.

Virulence and pathogenicity

Coronavirus infection has been documented previously in 
livestock and companion animals [55, 91]. TGEV and PEDV 
and the newly reported SADS-CoV mainly cause severe 
intestinal infections in piglets, leading to high morbidity 
and mortality and vast economic losses [88, 92, 93]. Bovine 
CoV, rat CoV, and infectious bronchitis virus (IBV) cause 
mild to severe respiratory tract infections in cattle, rats, and 
chickens, respectively [94–96]. Feline infectious peritonitis 
virus (FIPV) causes highly lethal disease in domestic cats 
[97].

Clinically, PDCoV can cause infection in pigs of various 
ages but mainly causes infection in newborn piglets, char-
acterized by mild to severe diarrhea, vomiting, dehydration, 
anorexia, and growth retardation [13, 15, 98]. Inoculation 
experiments have suggested that although PDCoV exhibits 
enteropathogenicity in both gnotobiotic and conventional 
piglets, infected pigs display milder signs of clinical impact 
and disease severity than those infected with PEDV and 
TGEV [12, 24, 82].
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Due to their underdeveloped immune system, neonatal 
piglets are highly susceptible to viral infection during their 
first few weeks. Mortality rates are highest in neonatal pig-
lets, often reaching nearly 100%. Commercial fattening pigs 
and sows can also exhibit typical clinical features, such as 
diarrhea, inappetence, and persistent viral shedding in feces, 
but the symptoms of fattening pigs and sows are relatively 
mild, and the mortality rate is lower, with the animals gradu-
ally recovering [15].

Within 20–48 h postinfection, diarrhea is observed. Diar-
rhea typically lasts for at least 1 week. Vomiting symptoms 
were inconsistent in different experiments, which may be 
due to differences in virulence between strains. Core body 
temperatures remained within normal limits, and no respira-
tory signs were observed. Viral shedding peaked on day 7 
postinfection, and virus was still detectable in feces and in 
the ileum at day 21 postinfection, which may enhance the 
risk for viral transmission [12–14, 21, 24, 52].

Pathological changes are characterized by intestinal vil-
lous atrophy and shortening, and villous changes are asso-
ciated with extensive intestinal epithelial degeneration and 
necrosis. Gross lesions are observed in the small intestines, 
and no significant lesions are observed in extraintestinal 
tissues except the lung. PDCoV infection can cause mild 
interstitial pneumonia in gnotobiotic piglets [12], which has 
not been reported for PEDV or TGEV.

Vaccine and control strategies

Vaccines remain the most effective means to control coro-
navirus infections. However, there are no effective vaccines 
available for PDCoV. Strategies for PDCoV vaccine devel-
opment include inactivated virus vaccines, subunit vac-
cines, viral vector vaccines, and live-attenuated virus vac-
cines, each of which has both advantages and disadvantages. 

Fig. 3  Phylogenetic analysis of the complete genome sequences of 
29 members of the genus Deltacoronavirus. The tree was constructed 
using the distance-based neighbor-joining method in MEGA7.0. 
Bootstrap analysis was carried out on 1000 replicate data sets, and 
values are shown adjacent to the branching points. Red represents the 

Chinese PDCoVs, blue represents the Vietnamese, Laotian, and Thai 
PDCoVs, yellow represents the US, Korean, and Japanese PDCoVs, 
green represents the Hong Kong (China) PDCoVs, and grey repre-
sents the avian deltacoronaviruses.
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Multiple routes of vaccine research are being evaluated for 
PDCoV and other enteric coronaviruses.

Inactivated virus vaccines

Inactivated virus vaccines use chemicals or radiation to ren-
der the virus noninfectious while preserving its antigenicity. 
The most recent PDCoV vaccine was developed by the State 
Key Laboratory of Veterinary Biotechnology in China. The 
vaccine is based on inactivated virus formulated with an 
adjuvant. When administered to seronegative sows using a 
prime/boost strategy 20 and 40 days before delivery, high 
levels of spike (S)-specific IgG and neutralizing antibody 
against PDCoV were found in colostrum and milk, as well 
as in the serum of piglets born to vaccinated sows [12]. Pig-
lets were infected orally at 5 days of life with  105  TCID50 of 
PDCoV. The experiment showed that 87.1% of all piglets (n 
= 31) born to immunized sows were protected against lethal 
infection, and the infected piglets showed milder diarrhea, 
less viral shedding, and only minor damage to intestinal villi. 
In contrast, piglets from unimmunized sows had moderate 
diarrhea, which quickly worsened at 2 days postinfection and 
remained severe until the end of the experiment.

Live‑attenuated vaccines

Nonreplicating vaccines (inactivated vaccines, subunit vac-
cines) usually generate short-lived neutralizing antibody 
responses with comparatively low titers. In contrast, live-
attenuated vaccines are generally more immunogenic than 
nonreplicating vaccines; they can induce long-lasting immu-
nity, produce a comprehensive spectrum of native viral anti-
gens, and present antigens to the immune system in the same 
manner as in natural infections.

Zhang et al. [99] generated a full-length infectious cDNA 
clone of PDCoV, which they manipulated by replacing the 
NS6 gene with a green fluorescent protein (GFP) to gener-
ate rPDCoV-ΔNS6-GFP. Growth kinetics studies suggested 
that rPDCoV-ΔNS6-GFP showed a substantial reduction in 
viral replication in cell cultures and was highly attenuated in 
neonatal piglets, indicating that PDCoV lacking NS6 might 
be an ideal live-attenuated vaccine candidate.

Generally, live-attenuated virus vaccines are promis-
ing candidates for use against coronavirus infections, but 
they also have decreased safety and stability compared to 
inactivated vaccines, and some live-attenuated virus vac-
cines have the potential to spontaneously revert to virulence 
post-vaccination.

Vectored vaccines

Vectored vaccines function as viral gene delivery systems 
that rely on a host viral genome from a different virus, such 

as adenovirus, poxvirus, measles virus, parainfluenza virus, 
rabies virus, or vesicular stomatitis virus, and they have been 
used in the development of vaccines for CoVs [100–106].

Porcine adenovirus was used to deliver the core neutraliz-
ing epitope of PEDV, and this resulted in robust humoral and 
mucosal immune responses in piglets [100]. A recombinant 
vesicular stomatitis virus expressing the PEDV spike protein 
was developed, and sows immunized with this recombinant 
vaccine provided protective lactogenic immunity against a 
virulent G2b PEDV challenge to their piglets [104]. In addi-
tion, Yuan et al. used swinepox virus to express an epitope 
of the S protein of TGEV and a truncated spike protein of 
PEDV [101, 102].

Virus‑like particles (VLPs)

Virus-like particles (VLPs) have drawn increasing attention 
in recent years. VLPs containing one or more viral structural 
proteins structurally resemble the native virus, can be eas-
ily recognized by antigen-presenting cells and B cells, and 
are capable of eliciting robust humoral and cell-mediated 
immune responses that are comparable to those achieved 
with inactivated or live-attenuated virus vaccines. There 
have been few reports about PDCoV VLPs, but studies of 
other animal coronavirus VLPs can provide a reference for 
PDCoV vaccine research.

Wang et al. [107] produced PEDV virus-like particles 
(VLPs) composed of S, M, and E proteins using a baculovi-
rus expression system and showed that they induced a high 
level of anti-PEDV-neutralizing antibodies in mice. Xu et al. 
[108] developed chimeric IBV VLPs expressing M, E, and 
a recombinant S protein in baculoviruses. These induced a 
high level of IBV-specific antibodies and neutralizing anti-
bodies that were comparable to those induced by an inacti-
vated M41 virus via subcutaneous inoculation.

Moreover, other vaccine approaches for expressing the 
S, E, M, and N genes of two or more coronaviruses as well 
as other viral genes in bacteria, yeast, plants, and nanopar-
ticles have been assessed [109–116]. However, the efficacy 
of these VLPs against lethal infection has not been tested in 
piglets, and further studies need to be performed.

Currently, most commercial vaccines for enteric coro-
naviruses are designed to induce lactogenic immunity by 
vaccinating the sow during pregnancy, and antibodies are 
passively transferred from sows to neonatal piglets via colos-
trum and milk.

Coronavirus infections are generally initiated at mucosal 
surfaces, and it is critical to induce localized intestinal sIgA 
and T cell immune responses to mucosal infections. For 
maternal immunity, oral vaccines or intentional infection of 
the sow may initiate the gut-mammary sIgA axis [117, 118].

A previous study showed that oral inoculation of sows 
with attenuated TGEV, followed by intramuscular injection 
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with a recombinant subunit vaccine expressing the S protein 
of TGEV as a booster generated high titers of sIgA antibod-
ies and neutralizing antibodies in colostrum and milk [119]. 
Similar prime/boost strategies can be applied to PDCoV vac-
cines to induce active immunity in newborn piglets.

Coronaviruses are an important group of pathogens that 
can have a devastating impact on humans and animals. 
New zoonotic coronaviruses are continually emerging or 
reemerging. In addition to good production management 
and strict biosecurity measures, the most effective way to 
control PDCoV is vaccination. Consequently, new vaccine 
development platforms and technologies are highly desir-
able, and further research will provide a better understanding 
of PDCoV replication and pathogenesis, a prerequisite for 
the development of new and promising vaccines to prevent, 
control, and ultimately eliminate the virus.
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