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Background: Pancreatic cancer (PC), the most common fatal solid malignancy, has a
very dismal prognosis. Clinical computerized tomography (CT) and pathological TNM
staging are no longer sufficient for determining a patient’s prognosis. Although numerous
studies have suggested that glycolysis is important in the onset and progression of cancer,
there are few publications on its impact on PC.

Methods: To begin, the single-sample gene set enrichment analysis (ssGSEA) approach
was used to quantify the glycolysis pathway enrichment fraction in PC patients and
establish its prognostic significance. The genes most related to the glycolytic pathway
were then identified using weighted gene co-expression network analysis (WGCNA). The
glycolysis-associated prognostic signature in PC patients was then constructed using
univariate Cox regression and lasso regression methods, which were validated in
numerous external validation cohorts. Furthermore, we investigated the activation of
the glycolysis pathway in PC cell subtypes at the single-cell level, performed a quasi-
time series analysis on the activated cell subtypes and then detected gene changes in the
signature during cell development. Finally, we constructed a decision tree and a
nomogram that could divide the patients into different risk subtypes, according to the
signature score and their different clinical characteristics and assessed the prognosis of
PC patients.

Results:Glycolysis plays a risky role in PC patients. Our glycolysis-related signature could
effectively discriminate the high-risk and low-risk patients in both the trained cohort and the
independent externally validated cohort. The survival analysis andmultivariate Cox analysis
indicated this gene signature to be an independent prognostic factor in PC. The prognostic
ROC curve analysis suggested a high accuracy of this gene signature in predicting the
patient prognosis in PC. The single-cell analysis suggested that the glycolytic pathwaymay
be more activated in epithelial cells and that the genes in the signature were also mainly
expressed in epithelial cells. The decision tree analysis could effectively identify patients in
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different risk subgroups, and the nomograms clearly show the prognostic assessment of
PC patients.

Conclusion:Our study developed a glycolysis-related signature, which contributes to the
risk subtype assessment of patients with PC and to the individualized management of
patients in the clinical setting.

Keywords: pancreatic cancer, glycolysis, single-cell, immune infiltration, prognosis

INTRODUCTION

Pancreatic cancer (PC) is one of the most aggressive malignant solid
tumors, and it remains the fourth leading cause of cancer-related
deaths worldwide, with an overall survival rate of less than 5% (Duan
et al., 2018; Ye et al., 2020). Worldwide, hundreds of thousands of
new patients are diagnosed with PC each year, and nearly 200,000
people die from the disease (Abel and Simeone, 2013; McGuire,
2016). In PC, CA19-9 (a carcinoembryonic antigen) is approved by
the FDA for prognostic monitoring in patients with known PC;
however, it is considered having low sensitivity and specificity for PC
detection (Eissa et al., 2019). Moreover, the clinical prognosis of
patients cannot be accurately evaluated by the TNM staging system
and imaging CT and MRI (Allenson et al., 2017). Therefore, it is
particularly important to find novel prognostic markers.

Glycolysis operates under aerobic and anaerobic conditions to
produce pyruvate. Tumors have long been known to be involved in
aerobic glycolysis (Quinn et al., 2020). Recent studies have found that
glycolysis plays an important role in the development of cancer and
is mainly associated with cell proliferation, angiogenesis, and
migration (Cascone et al., 2018; Zhong et al., 2020), especially in
hepatocellular carcinoma (HCC), triple-negative breast cancer
(TNBC), colorectal cancer (CRC), and lung cancer (Guo et al.,
2021; Shen et al., 2021; Wang et al., 2021; Xie et al., 2021). It was
found that the pancreatic tumors may rely heavily on glycolysis (Qin
et al., 2019; Yang et al., 2019), but the prognostic impact of glycolysis-
related genes on PC patients and the activation of this pathway in PC
cell subtypes have not been fully studied.

In our study, we first investigated the prognostic impact of
glycolysis-related genes in PC. Then, we identified the most
relevant genes for glycolysis by the WGCNA method and
constructed a glycolysis-related prognostic signature to assess
the patient prognosis. Also, this signature was validated in
multiple external cohorts. Subsequently, we further
investigated the glycolytic pathway and the genes in the
signature at the single-cell sequencing level in PC cancer.
Finally, we constructed a decision tree analysis and nomogram
to identify the risk subgroups of PC patients and further facilitate
personalized management of patients.

MATERIAL AND METHODS

Transcriptome Data Download and
Processing Process
UCSC Xena (http://xena.ucsc.edu/) is a comprehensive website
that collects and organizes sequencing data and clinical data from

multiple oncology databases. In this study, a cohort (GDC TCGA
pancreatic cancer [PAAD]) was downloaded from this database,
including the normalized transcriptome data (HTSeq-FPKM)
and the corresponding clinical data. As the M-stage of many
PC patients in TCGA database could not be accurately
determined, the M-stage was not included in subsequent
analyses such as Cox regression analysis. The International
Cancer Genome Consortium (ICGC) database collects tumor
data on different cancer types or different subtypes, including
gene expression data and related clinical data, etc., and is
commonly used to make a comparison of the conclusions
obtained from the TCGA cohort. In this study, two cohorts of
pancreatic cancer (pancreatic cancer-AU [PACA-AU] and
pancreatic cancer-CA [PACA-CA]) were downloaded from the
ICGC database, including gene expression data and clinical data.
We found that the clinical information of the PACA-AU cohort
included survival time, survival status, gender, and age, and the
clinical information of the PACA-CA cohort included the
survival time, survival status, gender, age, and tumor stage.
Then, 80 and 213 samples containing both expression and
clinical data, respectively, were obtained by matching. The
data are shown in Supplementary Table S1. The expression
data were log2-transformed and used for subsequent analysis.

Single-Cell Sequencing Data Download and
Processing Flow
The Gene Expression Omnibus (GEO) database contains
microarray data, high-throughput gene expression data, and
single-cell sequencing data submitted by research institutions
worldwide. In this research, a single-cell sequencing dataset of
PC containing 16 samples, GSE154778, was downloaded from
the GEO database. First, genes expressed in fewer than three
cells were removed. The cells containing only 300 or fewer
genes were then removed. Subsequently, 2,000 anchors were
set for analysis using the Seurat package’s
“FindIntegrationAnhors” function, and the samples were
integrated using the “IntegrateData” function. Finally, the
principal component analysis method was used to reduce
the dimension by setting the number of principal
components as 20. The results of dimensionality reduction
and clustering are presented in the form of a uniform manifold
approximation and projection (UMAP) graph. The “SingleR”
package is mainly used to annotate the cell types such as
humans and mice. In this study, the cell types were
annotated synthetically by using the SingleR package and
Cell Markers website.
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Single Sample Gene Set Enrichment
Analysis
“ssGSEA”is implemented by extending the gene set enrichment
analysis (GSEA) to allow the definition of an enrichment score that
represents the degree of enrichment of each sample in a given dataset
in the gene set. In this study, the glycolytic gene sets were downloaded
from the GSEA website, and the ssGSEA method was used to
calculate the glycolytic enrichment score for each PC sample.

Weighted Gene Correlation Network
Analysis
WGCNA is a systems biology method used to characterize the
gene association patterns between the different samples and can
be used to identify the highly synergistic sets of genes to identify
the candidate biomarker genes or therapeutic targets based on the
endogeneity of the gene set and the association with the
phenotype. In this study, the candidate genes associated with
glycolysis were obtained by WGCNA analysis.

Construction of the Prognostic Signature
In this study, the glycolysis genes associated with prognosis were
obtained initially by univariate Cox regression. Setting the
domain value p < 0.05, the least absolute shrinkage and
selection operator (LASSO) was performed, by which we can
construct a penalty function and compress some regression
coefficients to finally obtain the best prognostic signature. In
this signature, a risk score can be calculated for each PC patient.
Based on the median risk score value, the PC patients in the
cohort could be divided into the high-risk and low-risk groups.

Evaluation of the Prognostic Signature
Two independent external queues (PACA-AU and PACA-CA)
were used to verify the accuracy of the model. The differences in
prognosis, immune cells, and tumor mutation load between the
high-risk and low-risk groups were compared, and the
applicability of the model for different clinical characteristics
was explored.

Single-Cell Data Analysis
The “AUCell” package is an R package primarily used to quantify
the level of enrichment of specific gene sets in each cell. In this
study, a single-cell dataset of PC was analyzed to explore the
activation of glycolytic pathways in different PC cell subtypes and
to further assess the expression of genes in cell subtypes in the
signature. The “monocle2” package is a mainstream R package for
the analysis of single-cell mock cell trajectory differentiation. It
was used to further analyze the epithelial cells in a proposed time
series and to observe the changes of genes in the signature during
this differentiation process.

qRT-PCR to Verify the Expression of Seven
Model Genes in PC
Next, the qRT-PCR experiment was performed on six PC
patients, from whom the PC tissue and para-PC tissue were

taken for mRNA quantification. These six patients were enrolled
between June 2021 and October 2021 in Fuyang Hospital
affiliated with Anhui Medical University. All of them signed
informed consent forms. This study was approved by the Ethics
Committee of the Fuyang Hospital affiliated with Anhui Medical
University. The total cellular RNAs were isolated from cells using
the TRIzol reagent (Invitrogen, Carlsbad, CA, United States),
according to the manufacturer’s instructions. The reverse
transcription was conducted using the reverse transcription kit
provided by TaKaRa (Otsu, Shiga, Japan). Real-time polymerase
chain reaction (RT-PCR) was performed using a QuantiTect
SYBR Green PCR Kit (TaKaRa) and on an Applied
Biosystems QuantStudio 1 system (Thermo, Waltham, MA,
United States). Relative quantification was determined using
the 2−ΔΔCt method. The relative expression of messenger RNA
(mRNA) for each gene was normalized to the level of
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA.
The specific primer sequences adopted in this experiment are
summarized in Supplementary Table S2.

RESULTS

Prognostic Impact of Glycolysis on
Pancreatic Cancer and Screening for Genes
Associated With the Glycolytic Phenotype
The main study flow of this study is shown in Figure 1. To
compare the impact of glycolysis genes on patient prognosis in
PC, in TCGA cohort, we quantified the glycolytic enrichment
score of each PC patient using ssGSEA analysis and divided the
patients into high- and low-glycolysis groups, according to the
median value and found that the glycolytic enrichment score was
higher in patients who died, and the prognosis of patients in the
high-glycolysis group was poor (p < 0.001, Figures 2A,B).
Moreover, in order to further search for genes associated with
the glycolytic phenotype in PC,WGCNA analysis was performed.
It was found that when the soft domain value was set to 7, R̂2 >
0.8, suggesting that the data conformed to a power-law
distribution and were suitable for subsequent analysis. The
mean connectivity tended to be stable, suggesting that when
the soft domain value was further increased, the effect on the
results was not significant (Figure 2C). Subsequently, the
minimum number of module genes was set to 100, deepSplit
= 2, and the similar modules were merged by setting cutHight =
0.4, resulting in 18 non-gray gene modules, as shown in Figures
2D,E, among which we found that both black and red modules
had the strongest correlation with the glycolytic phenotype (Cor
= 0.5 & p < 0.001), suggesting that these two module genes are
more closely related to glycolysis in pancreatic cancer. We also
found a strong positive correlation between the module
membership and gene importance in the red and black
modules, as shown in Figures 2F,G (Cor = 0.61 & p < 0.001;
Cor = 0.54 & p < 0.001). The correlation between the red module,
black module, and glycolysis is shown in Figure 2H. We then
selected the genes in the modules and set the p-value of the
conditional GS to <0.0001 to obtain a total of 1,066 hub genes in
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the red and black modules, which were used in the subsequent
one-way COX analysis.

Construction of Glycolysis-Related
Signatures
The aforementioned obtained hub genes were first initially
screened by univariate Cox regression to get the genes related
to prognosis. By setting p < 0.05, a total of 734 candidate genes
were obtained. Next, Lasso regression was performed (Figures
3A,B). By setting the random seed to 55,555 and maxit = 1,000,
the best lambda value is obtained as 0.111., Finally, we got the
signature made up of seven genes (MET, FAM25A, LY6D,
FAM111B, ITGB6, CENPE, and KCTD14). The signature value
was calculated by the following formula: GLCS = MET*0.224
+FAM25A*0.306 +LY6D*0.076 +FAM111B*0.060 +ITGB6
*0.012 +CENPE*0.128 +KCTD14*0.149. All PC samples were
divided into the GLCS high-risk group and GLCS low-risk group,
according to the median value of the signature (GLCS). The
prognosis of patients between the different subgroups of the
signature was subsequently compared, as shown in Figures
3C,D. The GLCS score was different between dead and alive
patients, and the GLCS score was higher in dead patients. (p <

0.001). The survival curve analysis suggested that the prognosis of
patients in the GLCS-high group was worse (p < 0.001). After
multivariate Cox analysis, it was found (as in Figure 3E) that
GLCS was an independent prognostic influence compared to
other clinical characteristics (p < 0.001). Subsequently, the
sequential ROC curve analysis (Figure 3F) revealed that the
area under the curve (AUC) of GLCS for the assessment of
prognosis of pancreatic cancer patients was around 0.8, which
was superior to other clinical characteristics, such as gender, age,
and tumor stage. In addition, we also analyzed the correlation
between the seven model genes and the glycolysis phenotype, and
the results are shown in Supplementary Figure S1.

Validation of This Signature Accuracy in
Two Independent External Sets
To further validate the stability and accuracy of the signature, the
PACA-AU and PACA-CA cohorts were used for independent
external validation. As shown in Figures 4A,B, the survival curve
analysis suggested that the prognosis of the GLCS-high group was
worse in both external validation sets, with p = 0.0051 in the PACA-
AU cohort and p < 0.001 in the PACA-CA cohort. To further verify
whether GLCS could be used as an independent prognostic influence,

FIGURE 1 | Flow chart of our study.
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as shown inFigures 4C,D, it was found that in the PACA-AUcohort,
only GLCS was an independent prognostic influencing factor, while
both GLCS and Stage were independent prognostic influencing
factors in the PACA-CA cohort. As shown in Figures 4E,F, the
continuous ROC analysis over time in the two external validation sets
found that theAUCvalue of GLCSwasmaintained at around 0.7 and
superior to other clinical indicators. In conclusion, GLCS was an
independent prognostic influencing factor in both PACA-AU and
PACA-CA cohorts, patients in the GLCS-high group had a poorer
prognosis, and the prognostic diagnostic value of GLCS for PC
patients was superior to that of the other clinical indicators.

Signature Performed Well in PC With
Different Clinical Characteristics
To investigate whether the signature is equally valid in PC
patients with different clinical characteristics, the patients
were grouped according to different clinical characteristics
in TCGA cohort. It was found that pancreatic cancer patients
in the GLCS-high group were always associated with
significantly worse prognosis, whether grouped by T-stage,
N-stage, total stage, age, and gender, suggesting that the
signature remains applicable in a population with different
clinical characteristics (Figures 5A–J).

FIGURE 2 | ssGSEA analysis and weighted gene correlation network analysis (WGCNA). (A) ssGSEA analysis showed that the glycolysis score was obvious
elevated in the dead PC patients. (B) Survival analysis revealed that the high-glycolysis group has a worse prognosis. (C) Best soft threshold of WGCNA was 7. (D)
WGCNA analysis found 18 no-gray genemodules. (E)Correlation between themodules and glycolysis. The black and redmodules had the strongest correlation with the
glycolytic phenotype (Cor = 0.5 and p < 0.001). (F,G) Relation between module membership and gene significance in red and black modules. (H) Correlation
between red and black modules and glycolysis.
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Exploring the Differences in Immune
Infiltration Between GLCS-High and
GLCS-Low Groups
The previous results found that patients in the GLCS-high group
had a poorer prognosis. Then, we further investigated the
differences in immune cells and immune check points (ICPs)
and immunogenic cell death (ICDs) between the GLCS-high and
GLCS-Low groups. Figure 6A shows the immune landscape
between the GLCS-high group and the GLCs-Low group, and
Figure 6B shows the difference in immune infiltration levels
between the two groups in the form of a box plot. From there, we
can see that the trend of immune infiltration levels in the GLCs-

high group is lower, which may be related to its worse prognosis.
It was found that 33 immune checkpoint genes were differentially
expressed between the GLCS-high and GLCS-Low groups
(Figure 6C). Only four immune checkpoint genes, HHLA2,
CD44, CD276, and TNFSF9, were highly expressed in the
GLCS-high group, and 29 immune checkpoint genes were
highly expressed in the GLCS-Low group, such as PDCD1,
CTLA4, PDCD1LG2, and CD86 (Figure 6C).

Interestingly, we found that immunogenic cell death (ICDs)
genes were differentially expressed in the GLCS-high and
GLCS-Low groups (Figure 6D). EIF2A, EIF2AK1, MET,
IFNA1, IFNE, ANXA1, P2RY2, PANX1, HMGB1, EIF2AK4,
CALR, and EIF2AK2 were highly expressed in the GLCS-high

FIGURE 3 |Gene signature was constructed in TCGA cohort. (A,B) LASSOCox regression was used to identify the most important genes, and the optimal lambda
was 0.111. (C)GLCSwas obviously elevated in the dead PC patients (p = 2.3E-10). (D) Survival analysis reveals that GLCS-high has a worse prognosis (p < 0.0001). (E)
Multivariate Cox analysis reveals that GLCSwas an independent prognostic factor (p < 0.001). (F) AUC of GLCS and clinical features. The AUC value of GLCSwas higher
than that of other clinical features.
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group, and HGF, TLR4, P2RX7, and FPR1 were highly
expressed in the GLCS-Low group. In conclusion, the
immune cells were less enriched in the GLCS-high group,
immune checkpoint genes were less expressed in the GLCS-

high group, and immunogenic cell death (ICD) genes were
highly expressed mainly in the GLCS-high group, which might
be a factor contributing to the poorer prognosis of patients in
the GLCS-high group.

FIGURE 4 | Assessment of the gene signature in extra validation cohorts. (A) Survival analysis in the PACA-AU cohort suggested that the prognosis of the GLCS-
high group was worse (p = 0.0051). (B) Survival analysis in the PACA-CA cohort suggested that the prognosis of the GLCS-high group was worse (p < 0.001). (C,D)
Multivariate Cox analysis in the PACA-AU cohort and PACA-CA cohort revealed that GLCS was an independent prognostic factor. (E,F) AUC of GLCS and clinical
features in the PACA-AU cohort and PACA-CA cohort.
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Exploring the Mutational Landscape
Between GLCS-High and GLCS-Low
Groups
Gene mutations are an important influential factor in the
prognosis of tumor patients. To investigate the mutation of
genes in the GLCS-high and GLCS-Low groups in PC patients,
the “maftools” R package was used to map the mutation
landscape of PC patients. It was found that the top 20
genes with the highest mutation frequency were mutated in
86.39% of patients, and the top two most mutation-prone
genes were KRAS and TP53 (Figure 7A). Both mutation types
were dominated by missense_mutation, and they were mainly
distributed in the GLCS-high group. Moreover, we analyzed
the mutation symbiosis of the top 20 genes and found that
mutation symbiosis existed between KRAS and GNAS (p <
0.05), between KRAS and CDKN2A, SMAD4, TP53 (p < 0.05),
and between TP53 and GNAS and CDKN2A (p < 0.01)
(Figure 7B). As shown in Figure 7C, the distribution of
the mutation number and tumor mutational load (TMB)
was different in the two groups, and the number of
mutations and TMB were higher in the GLCS-high group
(p < 0.001).

Probing Glycolytic Pathway Activation in PC
Cell Subtypes
To further investigate the activation of the glycolytic pathway
in pancreatic cancer cell subtypes, we performed a subsequent
analysis of single-cell sequencing samples from PC. Also, the
15 PC samples were first integrated by the “CCA” method, as
shown in Figure 8A, and we found that these samples were
more uniformly distributed without significant batch effects
and suitable for subsequent analysis. Subsequently, we
obtained a total of 16 cell clusters by principal component
analysis with reduced dimensionality. The cells were annotated
with the SingleR package and could be roughly annotated as
seven cell subtypes: epithelial cells, monocytes, chondrocytes,
T cells, slippery muscle cells, endothelial cells, and fibroblasts
(Figure 8B). Then, to further investigate the enrichment of the
glycolytic pathway in different cell types, we performed the
scoring of the pathway among various cell types using the
AUCell package and found that the glycolytic pathway has
higher AUC values in epithelial cells, suggesting that the
glycolytic pathway is more enriched in this cell type
(Figure 8C). Interestingly, we found that seven genes in the
signature FAM111B, CENPE, KCTD14, FAM25A,MET, LY6D,
and ITGB6 were all expressed mainly in the epithelial cells,

FIGURE 5 | Gene signature is suitable for different clinical patients. (A) Among the TI and TII stage PC patients, the prognosis of the high-GLCS group was worse
(p = 0.002). (B) Among the TIII&TIV stage PC patients, the prognosis of the high-GLCS group was worse (p < 0.001). (C) Among the PC patients with N0, the prognosis
of the high-GLCS group was worse (p < 0.001). (D) Among the PC patients with N1, the prognosis of the high-GLCS group was worse (p < 0.001). (E) Among PC
patients with stage I, the prognosis of the high-GLCS group was worse (p = 0.003). (F) Among PC patients with stage II, the prognosis of the high-GLCS group was
worse (p < 0.001). (G) Among PC patients with age<=65, the prognosis of the high-GLCS group was worse (p < 0.001). (H) Among PC patients with age>65, the
prognosis of the high-GLCS group was worse (p < 0.001). (I) Among male PC patients, the prognosis of the high-GLCS group was worse (p < 0.001) (J) Among female
PC patients, the prognosis of the high-GLCS group was worse (p < 0.001).
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especially ITGB6, LY6D, andMET (Figures 8D–K). In order to
further investigate the relationship between epithelial cell
development and genes in the signature, we selected all
epithelial cells and visualized the results through the
“monocle2” package. By setting the method as “DDRtree”
and max_components as 2, it was found that the epithelial
cell differentiation process produced two branches, and the

darker blue color in the upper left suggests that differentiation
occurs earlier, from deeper blue to lighter blue (Figures 8I–M).
Interestingly, we found that there are three differentiation
states during epithelial cell differentiation (Figure 8N).
State 1 in the upper left is the earlier differentiation state.
State 2 and State 3 are later differentiation. We also found that
the expression of one gene in the signature, KCTD14, showed a

FIGURE 6 | Exploration of the relation between GLCS and immune infiltration. (A) Immune landscape of PC patients. (B) Difference in immune infiltration levels
between the two groups in the form of a box plot. (C) Differences in the immune checkpoint gene expression between high-risk and low-risk groups. (D) Differences in
the expression of immunogenic cell death genes between high-risk and low-risk groups (*p < 0.05, **p < 0.01, and ***p < 0.001).

FIGURE 7 | Exploration of the relation between GLCS and tumor mutation. (A) Landscape of genetic mutations in PC patients. (B)Mutation symbiosis among the
top mutation genes. (C) TMB were higher in the GLCS-high group.

Frontiers in Genetics | www.frontiersin.org July 2022 | Volume 13 | Article 9037839

Chen et al. Glycolysis in Pancreatic Cancer

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


FIGURE 8 |Single-cell analysis. (A) Fifteen samples were integrated with the CCAmethod. (B)Dimension reduction and cluster analysis. The cell types were shown
with the umap plot. (C)Glycolysis pathway was activated in different cell types (D–K). Genes in the prognostic signature expressed differently in different cell types. (L–N)
Analysis of epithelial cell locus differentiation and (O) the genes in the signature expressed differently during the epithelial cell locus differentiation.
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FIGURE 9 | Clinical implications of the signature. (A) Decision tree analysis could divide PC patients into five risk subtypes. (B) Five risk subtypes have different
prognosis, and cluster 1 has a best prognosis. (C) Nomogram analysis showed the 1-, 3-, and 5-year mortality rates of patient TCGA-S4-A8RP. (D,E) 2- and 3-year
calibration curves of the nomogram. (F) AUC of the nomogram and other clinical features to evaluate the prognosis of PC.
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decreasing state during the differentiation of epithelial cells. In
contrast, the expression of the remaining six genes showed an
up and then down.

Clinical Implications of the Signature
We performed a decision tree analysis of PC patients using the
“rpart” R package. It was found that patients could be divided into
five groups based on the high and low expressions of GLCS, N0
stage, and Stage II stage. Through survival analysis, we found that
there were differences in prognosis among these five groups
(Figure 9A). Among these five groups, cluster 1 had the best
prognosis but cluster 4 had the worst prognosis (Figure 9B). To
further guide the clinic, we constructed a nomogram, as shown in
Figure 9C. By comparing the GLSC values of the patient with the
clinical characteristics, we could predict the 1-, 3-, and 5-year
mortality rates of 21.8, 74.7, and 85.1% for this patient, which
could help guide some clinical decisions and treatment options.
Moreover, we found that the accuracy of the prognosis at 2 and
3 years predicted by this nomogram is also relatively high, as
shown in Figures 9D,E. Furthermore, the AUC value of the
nomogram for predicting the prognosis of patients over time is
around 0.8, which is better than other clinical indicators
(Figure 9F). The glycolysis score in different clusters and in

the high-risk and low-risk groups of the aforementioned three
cohorts is shown in Supplementary Figure S2.

qRT-PCR to Verify the Expression of Seven
Model Genes in PC
Next, we used qRT-PCR to detect the expression of seven model
genes in PC. The results showed that seven model genes were all
upregulated in PC compared with normal adjacent tissues (*p <
0.05, **p < 0.01, and ***p < 0.001; Figure 10). In addition, we used
the HPA database to verify the seven model genes at the protein
level, and the results are shown in Supplementary Figure S3.

DISCUSSION

There has been a renewed interest in tumor glycolysis in recent
years (Cascone et al., 2018). Increased glucose uptake and
glycolysis are characteristic of cancer and can contribute to
tumor progression by accelerating the growth of tumor cells
and thus tumor progression (Li et al., 2016; Fang et al., 2020).
Aberrant cancer cell metabolism has been shown to play an
important role in tumor progression and is a hot topic of research

FIGURE 10 | qRT-PCR to verify the expressions of seven model genes in PC. The seven model genes were all upregulated in PC compared with the normal
adjacent tissues (*p < 0.05, **p < 0.01, and ***p < 0.001). (A) MET; (B) FAM25A; (C) LY6D; (D) FAM111B; (E) ITGB6; (F) CENPE; (G) KCTD14.
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for investigators (Fang et al., 2020). Recently, metabolic
reorganization has been found to be one of the new features
of cancer that may be associated with patient prognosis (Gong
et al., 2016). Moreover, among the different types of metabolic
reorganization, accelerated aerobic glycolysis is an important
phenotype of metabolic reorganization in cancer (Cascone
et al., 2018). Through aerobic glycolysis, it can provide the
molecules required for cancer cell growth and proliferation for
new cells and play an important role in maintaining cellular redox
during proliferation. (Cascone et al., 2018) Studies on glycolysis
of various tumors have found that oncogenic pathways promote
tumorigenesis and development by regulating tumor glycolysis,
especially in proliferation and angiogenesis (Shang et al., 2019; Li
et al., 2020a), such as in liver cancer and breast cancer. However,
in pancreatic cancer, few people have studied and developed a
glycolysis-related gene signature to predict the patient prognosis
and assess the patient risk for individualized management of
clinical patients.

In our study, we found that glycolysis is a prognostic risk
factor in PC, which is consistent with previous evidence that
glycolytic pathways promote tumor progression and are
associated with poor patient prognosis. We then searched for
a set of genes most associated with glycolysis by WGCNA and
then constructed a prognostic signature; to validate the stability
and the accuracy of the signature, we validated the signature in
two additional independent external data cohorts and found that
the gene signature was an independent prognostic influencer in
pancreatic cancer patients and could better distinguish the high-
risk patients, and we also validated the signature by. We also
found that the gene signature was more accurate than the clinical
TNM system and gender-age in the prognostic assessment of
patients by continuous-time prognostic ROC analysis.
Furthermore, we found the differences in multiple immune
cells and mutations between the two subgroups of the gene
signature and that activated CD8 T cells, central memory CD4
T cells, effector memory CD4 cells, and effect memory CD8
T cells were infiltrated more in the GLCS-Low group than in the
GLCS-high group. It has been found that activated T cells can
inhibit the glycolytic pathway and thus inhibit the progression of
PC (Cascone et al., 2018), which is consistent with the results in
our study that more activated T cells in the GLCS-Low group had
a better prognosis for patients. It was found that tumor
mutational burden (TMB) is identified as a biomarker for
response to immunotherapy in several cancer types and is
often associated with poor prognosis (Li et al., 2020b), and in
this study, we found that the value of TMB in the GLCS-Low
group was lower than that in the GLCS-high group and that the
prognosis was worse in the GLCS-high group. Subsequently, our
analysis of the dataset of pancreatic cancer single-cell sequencing
revealed that the glycolytic pathway was mainly activated in
epithelial cells, and seven genes in the gene signature were
also mainly expressed in epithelial cells, especially ITGB6,
LY6D, and MET, suggesting that epithelial cells may play an
important role in the progression of PC. We further investigated
the cell differentiation trajectory of epithelial cells and found that
there were two branches of epithelial cells, and the expressions of
ITGB6, LY6D, and MET in the gene signature mainly showed an

increasing and then decreasing trend during development, while
interestingly, the expression of KCTD14 mainly showed a
decreasing, then increasing, and then decreasing trend, which
may suggest that the genes in this gene signature may have a role
in epithelial cell development. Finally, in order to facilitate the
risk subgroup classification and personalized management of
clinical patients, we performed decision tree analysis and
constructed a nomogram to classify the PC patients into five
risk subgroups based on the risk values of the gene signature and
clinical characteristics and combined with the nomogram to
evaluate the prognosis of patients to facilitate personalized
management of clinical patients.

Currently, the studies have elucidated the significance of seven
genes in this signature in pancreatic diseases. TheMET gene plays an
important role in the proliferation and progression of pancreatic
cancer through the hepatocyte growth factor (HGF)/C-MET axis
(Wang et al., 2020). A clinical study conducted by Lux et al. (2019)
found that a high serum MET expression was a poor prognostic
indicator in patients with pancreatic cancer. The role of FAM25A in
pancreatic cancer is still unclear. Kalloger et al. (2021)found that the
upregulation of the LY6D expression was associated with poor
prognosis in patients with pancreatic cancer. Seo et al. (2016)
found that FAM111B was associated with autosomal dominant
exocrine pancreatic dysfunction. Lenggenhager et al. (2021)found
that ITGB6 is a potential early biomarker of pancreatic cancer, which
can improve the accuracy of early diagnosis of pancreatic cancer.
Zhuang et al. (2020) performed the bioinformatic analysis and found
that ITGB6 is a poor prognostic indicator of pancreatic cancer and is
associated with Notch pathway activation and immune suppression.
Mayes et al. (2013)found that inhibition of CENPE inhibited the
growth activity of pancreatic cancer cells. Piccolo et al. (2021)found
that KCTD14 was associated with type 2 diabetes in mice and was
involved in mediating the regulation of the nutritional environment
in the digestive tract. In our study, the prognostic signature
constructed by these seven genes can not only guide the
prognosis of patients with pancreatic cancer but also provide a
reference for the exploration of the immune microenvironment of
pancreatic cancer (Liu et al., 2021).

The reasons for the poor prognosis of pancreatic cancer include
delayed diagnosis, lack of early specific serological markers,
invasive growth, early metastasis, and resistance to
chemotherapy/radiotherapy (Goral, 2015). At the same time,
pancreatic cancer is associated with considerable immune
escape (Morrison et al., 2018). The immune escape in
pancreatic cancer is characterized by an immunosuppressive
microenvironment and less immunogenicity due to low
mutation load (Schizas et al., 2020). This is one reason why
immunotherapies, such as immune checkpoint blockade, do not
work well in pancreatic cancer (Schizas et al., 2020). Currently, the
conventional immunotherapy regimens have only been approved
for pancreatic cancer patients with microsatellite instability and
mismatch repair defects (Schizas et al., 2020). Multiple
combination therapies are being developed (Wu et al., 2021).
Our study provides an immunological landscape of pancreatic
cancer, from which we can visually observe differences in levels of
immune cell infiltration between high-risk and low-risk groups. In
addition, we also explored the expression of immune checkpoint-
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related genes and immunogenic cell death genes in the two groups.
This deepens our understanding of the immune
microenvironment of pancreatic cancer and provides a reference
for immunotherapy of pancreatic cancer.

In general, our study comprehensively analyzed single-cell
sequencing data and transcriptome data and thus constructed the
glycolysis-related gene prognostic signature, which has certain
significance in guiding the prognosis and immunotherapy of
pancreatic cancer patients. But there are limitations to our study.
We only conducted the PCR experiments to detect the expression of
seven genes of this signature in pancreatic cancer and normal tissues
and lacked further functional experiments to verify the function of
the genes, which we will make improvements in the future.

CONCLUSION

In conclusion, we found that glycolysis is an influential factor in
the prognosis of PC. Furthermore, we constructed a glycolysis-
related gene tag to assess the prognosis of PC patients and
validated the tag in several external independent cohorts and
found that the tag performed well and had high stability. The
glycolytic pathway may be more activated in the epithelial cells of
pancreatic cancer. The decision trees and nomograms facilitate
personalized clinical management of PC patients.
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