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ABSTRACT
◥

Background: Aberrant expression of DNA repair pathways
such as homologous recombination (HR) can lead to DNA repair
imbalance, genomic instability, and altered chemotherapy re-
sponse. DNA repair imbalance may predict prognosis, but var-
iation in DNA repair in diverse cohorts of breast cancer patients
is understudied.

Methods: To identify RNA-based patterns of DNA re-
pair expression, we performed unsupervised clustering on
51 DNA repair-related genes in the Cancer Genome Atlas
Breast Cancer [TCGA BRCA (n ¼ 1,094)] and Carolina Breast
Cancer Study [CBCS (n ¼ 1,461)]. Using published DNA-
based HR deficiency (HRD) scores (high-HRD ≥ 42) from
TCGA, we trained an RNA-based supervised classifier. Un-
supervised and supervised HRD classifiers were evaluated in
association with demographics, tumor characteristics, and clinical
outcomes.

Results : Unsupervised clustering on DNA repair genes
identified four clusters of breast tumors, with one group having
high expression of HR genes. Approximately 39.7% of CBCS
and 29.3% of TCGA breast tumors had this unsupervised high-
HRD (U-HRD) profile. A supervised HRD classifier (S-HRD)
trained on TCGA had 84% sensitivity and 73% specificity to detect
HRD-high samples. Both U-HRD and S-HRD tumors in CBCS
had higher frequency of TP53 mutant-like status (45% and 41%
enrichment) and basal-like subtype (63% and 58% enrichment).
S-HRD high was more common among black patients. Among
chemotherapy-treated participants, recurrence was associated with
S-HRD high (HR: 2.38, 95% confidence interval ¼ 1.50–3.78).

Conclusions: HRD is associated with poor prognosis and
enriched in the tumors of black women.

Impact: RNA-level indicators of HRD are predictive of breast
cancer outcomes in diverse populations.

Introduction
Aberrant expression of certain DNA repair pathways, especially

homologous recombination (HR), can lead to DNA repair imbalance,
genomic instability, and altered chemotherapy response (1–5). Spe-
cifically, it has been previously shown that tumors with HR deficiency
(HRD) are more sensitive to platinum-containing and DNA damage
agents, and treatment of HRDþ patients show increased response rate
and prolonged survival (6–8). Much of the focus in targeting HRD has
been on estrogen receptor (ER) negative or triple-negative breast
cancer (TNBC; refs. 9, 10). For ERþ breast cancer, St. Gallen’s

recommends chemotherapy only for high grade and stage (11) or for
tumors with high genomic risk of recurrence (12, 13). Most currently
available genomic tests are based on overall proliferation and not
specific DNA-repair pathways (14), and therefore, it would be valuable
to identify DNA repair pathways that represent molecular vulner-
abilities to chemotherapy (15) in estrogen receptor–positive (ERþ)
breast cancer (16).

The role of DNA repair is also poorly understood in diverse
populations; however, several studies have shown that black breast
cancer patients tend to receive chemotherapy at higher rates than non-
black patients (17) and one recent study has demonstrated differences
in DNA repair pathway expression by race (18). We interpret race
herein as a social construct that acts on multiple levels, from cells to
society. Different prevalence of breast cancer subtypesmay result from
unequal exposures to environmental carcinogens, differential access to
treatment, screening, and preventative care, disparities in economic
access, ancestry, and other factors associated with racism and social
determinants of health.

Second, most studies of candidate biomarkers for HRD have
focused on using DNA-based data. Using DNA repair pathway aber-
rationsmeasured bywhole-exome or genome sequencing (WES/WGS),
studies have defined presence/absence of mutational signatures (19)
that integrate across genes. This is an attractive approach for identi-
fying samples with molecular vulnerability because it does not rely on
mutations in specific genes, instead identifying patterns of alterations
associatedwith specificDNArepair processes or exposures.However, in
situations where WES/WGS data are unavailable or of low-quality,
alternate pathway-based approaches of monitoring the HR pathway
may supplement findings based on DNA evidence.

RNA-based expression of DNA repair genes is a convenient
approach for tracking DNA repair pathway activity. Other RNA-
based classifiers, such as those for TP53 mutant-like status (20, 21),
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exemplify that RNA-level data can indicate DNA alterations and
complement somatic mutation data. For instance, RNA-based TP53
classifiers accurately identify TP53 DNA mutations and predict sur-
vival with hazard ratios that are similar to those from DNA-based
assays (20). We hypothesized that relative expression levels of core
mediators of error-free and error-prone genome maintenance path-
ways could be used to build RNA expression-based classifiers for DNA
repair pathways. We aimed to develop a gene expression classifier for
HRD and apply it across multiple human and model system breast
cancer datasets, including the Carolina Breast Cancer Study (CBCS),
The Cancer Genome Atlas (TCGA), The Molecular Taxonomy of
Breast Cancer International Consortium (METABRIC), and The
Sweden Cancerome Analysis Network - Breast (SCAN-B).

Materials and Methods
Study populations and datasets

The Cancer GenomeAtlas (TCGA) is a large collaboration aimed at
conducting standardized molecular profiling of over 30 cancer types
and has been described in detail elsewhere (22).Wedownloaded legacy
clinical, RNA sequencing (RNA-Seq), and somatic alteration data for
primary breast tumors in TCGA using NCI Genomic Data Commons
(GDC, https://portal.gdc.cancer.gov/projects/TCGA-BRCA) under
dbGap accession phs000178.v1.p1. HRD scores, including loss of
heterozygosity (LOH; ref. 23), large-scale transitions (LST; ref. 24),
and number of sub-chromosomal regions with allelic imbalance
extending to the telomere (NtAI; ref. 25), were extracted from a
previous analysis by Knijnenburg and colleagues (26).

The Carolina Breast Cancer Study (CBCS) is a population-based
study of black and non-black (98% caucasian, referred to as white)
women from 44 counties of central and eastern North Carolina
conducted in three phases; study details and sampling schema have
been described previously (27–30). According to the CBCS study
design, cases were women ages 20 to 74 years, diagnosed with a first
primary invasive breast cancer, and identified via rapid case ascer-
tainment. Black and younger women (age <50) were oversampled.
Race was determined by self-report. Tumor characteristics for cases
(e.g., tumor size, grade, hormone receptor status, node status, and
stage) were abstracted from medical records and pathology reports.
Patients who provided informed consent completed a baseline ques-
tionnaire regarding personal characteristics, including socioeco-
nomics, insurance status, health behaviors, and health history, in
addition to the collection of patient tumor tissue, blood, and medical
records (31, 32). The study was approved by the Office of Human
Research Ethics/Institutional Review Board at the University of North
Carolina at Chapel Hill, conducted in accordance with U.S. Common
Rule. Written informed consent and HIPAA authorization were
obtained from each participant.

The Molecular Taxonomy of Breast Cancer International Con-
sortium (METABRIC) includes approximately 2,000 fresh-frozen
primary breast tumors collected from repositories in the United
Kingdom and Canada. Patients categorized as DCIS, LCIS, and
those with incomplete clinical or pathologic data were excluded (33).
Gene expression was measured using Illumina HT-12 v3 microarray
panel, and normalization procedures have been described
previously (33).

The Sweden Cancerome Analysis Network- Breast (SCAN-B) is a
multicenter prospective study of primary invasive breast cancer
across in Sweden that began in 2010. Patients undergoing treatment
for primary breast cancer at one of seven clinical centers were
offered enrollment into the SCAN-B cohort as part of standard

clinical procedure. In addition to postoperative tumor samples,
participants provided pre- and postoperative blood samples.
Patient demographic and clinical information were collected from
the Swedish national cancer quality registry, and expression was
measured via RNA-seq (34).

To evaluate the HRD classifier cross-species, we used a set of
354 mouse mammary tumors (GSE3165). Gene expression was
normalized, the classifier was applied, and then results were com-
pared with tumor features including strain and subtype from
previous literature (35).

Identification of DNA repair clusters in expression data
We curated a list of 51 DNA repair genes representing regulators of

error-prone and error-free DNA repair. Pathways included nucleotide
excision repair (NER), Fanconi anemia (FA),mismatch repair (MMR),
base excision repair (BER), homologous recombination (HR), transle-
sion synthesis (TLS), nonhomologous and alternative end joining
(NHEJ/AEJ), checkpoint, cancer testis antigens (CTA) including
HORMAD1 and MAGEA4 [pathologic cancer-specific activators of
HR and TLS, respectively (36, 37)], and APOBEC cytosine deaminase
family (Supplementary Table S1; ref. 38).

For CBCS gene expression profiling, we used an RNA counting
method suitable for FFPE-derived RNAs (39, 40). Existing RNA data
on 1,800 CBCS specimens included expression of a TP53 pathway
signature (21, 41), and both intrinsic subtype and risk of recurrence
scores (42). We performed cohort-level normalization as described
previously (43) by Removing Unwanted Variation (RUV) with the
RUVg function from the RUVseq package (44). Gene expression
analysis in TCGA, METABRIC, and SCAN-B were limited to the
51 genes list in Supplementary Table S1 to facilitate comparison with
CBCS; additional sensitivity analyses conducted with larger gene
panels yielded similar results.

Unsupervised and supervised predictors of HRD and clinical
features
Unsupervised analysis

Normalized gene expression values were log2-transformed and
median centered using Cluster 3.0 (45), and consensus cluster-
ing (46) was used to discern patterns of tumors based on their DNA
repair gene expression. Stability and robustness of clusters was
assessed with Silhouette width (47) and SigClust (Supplementary
Table S2; refs. 48, 49). Expression data were visualized by heatmaps
using centroid linkage hierarchical clustering in Cluster 3.0 (45) and
Complex Heatmap (50) in R. All analyses were performed in R
version 4.0.2 (51).

We estimated prevalence differences (PDs), which represent the
difference between an index group and a reference group in the
proportion of individuals exhibiting a given clinical or demographic
characteristic, between the unsupervised homologous recombination
deficiency cluster (U-HRD), and all non-HRD samples. PDs and 95%
confidence intervals (CI) were estimated using generalized linear
models with binomial distributions and identify link functions (52).

Supervised analysis
To build the S-HRD classifier, DNA-based HRD score was used

to train the data. Briefly, HRD scores in TCGA were taken from
Knijnenburg and colleagues (26), calculated by taking the sum of
three components of HRD/genome scarring scores: HRD-LOH
(23), LST (24), number of sub-chromosomal regions with allelic
imbalance extending to the telomere (NtAI; ref. 25). Scores were
dichotomized at a cut-off point of 42 in accordance with previous
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recommendations (26). We first constructed a matrix of log2-
transformed, median-centered gene expression values for the 51
genes in our DNA repair panel. Next, we used classification to nearest
centroids (ClaNC; ref. 53) using 10-fold cross-validation to select
subsets of genes that would distinguish individuals with high
HRD from low HRD. For each iteration of gene selection, we used
1–25 genes to predict each HRD status group (2–50 genes total), then
assessed sensitivity and specificity of predictions when applied to
90% of data (training set) versus the remaining 10% (test set). We
repeated this process 10 times such that each sample would be in-
cluded in the test set once, and then calculated the average sensitivity
and specificity of the classifier in the test and training sets at each
number of selected genes. Finally, we chose the optimal number of
genes to use in the final model by finding the number of genes at
which the F1 score (2 PPV � Sens

PPVþSens ) plateaued, averaged between the test
and training sets. The final model was used to evaluate sensitivity and
specificity versus HRD score and applied to subsequent external data-
sets without data on continuous HRD scores (CBCS,METABRIC, and
SCAN-B). Predicted HRD classes were then used to characterize the
prevalence of key clinical features in HRD high and low groups to
determine whether similar patterns emerged across all datasets (i.e.,
TCGA, CBCS, METABRIC, and SCAN-B).

Given our interest in HRD according to ER status and race, we
also calculated ER-stratified PDs and 95% CI to determine whether
black women in each ER stratum experienced an enrichment of
S-HRD high tumors. To determine whether differential misclassifi-
cation of S-HRD by race biased results, we recapitulated the “true”
HRD status of S-HRD high and low tumors by randomly sampling
these tumors according to race-specific positive and negative pre-
dictive values of the classifier; tumors that were not sampled were
assigned a misclassification-corrected HRD status opposite of their
initial determination. We repeated this process 1,000 times, fitting the
ER-stratified PD model each time to generate a misclassification-
corrected distribution of HRD enrichment among black participants.
In TCGA, where continuous data were available, we compared con-
tinuous HRD score and score components by race and ER status
using Wilcoxon ranked sign tests.

To determine whether HRDwas associated with somatic alterations
inDNA repair genes, we compared the proportions of supervisedHRD
(S-HRD) high and low individuals in TCGA with RAD51, BRCA1,
BRCA2, and TP53 copy number changes and somatic and germline
mutations. Of the 420 somatic mutations identified, only 11 (2.6%)
were predicted to have low impact or serve as moderators by the
Ensembl Variant Effect Predictor. We plotted overall tumor mutation
burden against HRD scores and S-HRD to identify associations
between HRD and aggregate somatic changes. Finally, we compared
the ability ofHRD scores and theHRD classifier to distinguish samples
with somatic alterations by calculating AUCs for each gene alteration
type/gene/classification method trio.

We plotted Kaplan–Meier curves to determine whether HRD
classification was associated with 5-year recurrence risk in CBCS.
Specifically, we followed women in CBCS with stage I–III breast
cancer who received chemotherapy treatment from the time of
interview to incidence of recurrence, censoring women at death,
loss-to-follow up, or five years, whichever was sooner. Recurrence
analyses were restricted to CBCS participants treated with chemo-
therapy to minimize confounding by indication, given that nearly
all stage I–III HRD-high tumors in CBCS were treated with
chemotherapy, and stratified by ER status. Within each ER stratum,
we compared women with S-HRD high tumors to those with

S-HRD low tumors using Cox proportional hazards models and
log-rank tests. We further validated HRD-recurrence associations
by running equivalent survival models in METABRIC.

Data availability
TCGA data can be downloaded through the Genomic Data

Commons at https://portal.gdc.cancer.gov, while mouse-specific
and SCAN-B expression data are available on Gene Expression
Omnibus, accession numbers, and GSE96058. CBCS data are not
publicly available due to concerns about patient privacy but may be
accessed after submission of a letter of intent and approval from
the CBCS steering committee. METABRIC expression data are
available after application to the International Cancer Genome
Consortium Data Access Committee in the European Genome-
Phenome Archive, accession numbers EGAD00010000210 and
EGAD00010000211. Analysis code is available at https://codeocean.
com/capsule/4968825/tree/v1.

Results
DNA repair gene expression clusters

Using unsupervised consensus clustering across 51 genes represent-
ing various DNA repair pathways, TCGA breast cancers (n ¼ 1,094)
clustered into four distinct groups (Fig. 1A). Cluster strength and
significance, assessed by Silhouette Width and SigClust, supported
four distinct gene expression clusters (Supplementary Table S2). Upon
inspection of the clusters, we designated the clusters APOBEC high- or
low-expressing according to expression of APOBEC genes among
HRD low samples; HRD high or low based on HR/FANC genes,
among samples with lower expression of APOBEC3A/3B. The same
four groups were detected inCBCS (Fig. 1B), and TCGAunsupervised
groups were highly correlated to analogous groups in CBCS by
distance to centroid analysis (r > 0.7). Supplementary Table S3 shows
the distribution of these four groups in TCGA and CBCS. The
proportion of tumors with high-HRD was 29.3% in TCGA and
39.7% in CBCS.

HRD is often inferred by a combination, sum score of LOH,
telomeric allelic imbalance (NtAI), and LST. To evaluate whether the
HR/FA high group was enriched for HRD, we analyzed the distribu-
tion of HRD scores by DNA repair group and found that high HRD
scores were enriched in the HR/FA high group (Fig. 1C). Therefore,
HRD DNA-based status is associated with expression of a specific
subset of DNA repair genes, including genes whose products mediate
the HR pathway.

In both TCGA and CBCS, the HR/FA high groups
had enrichment for basal-like subtype, black race, and TP53
mutant-like RNA status as compared with the HR/FA low groups.
When adjusted for TNBC status, the HR/FA high group remain-
ed associated with TP53 mutant-like RNA status and black race
(Fig. 1D).

We hypothesized that a supervised DNA repair gene expression
classifier could be trained to stably recapitulate HRD score. Using
ClaNC (53), we trained a classifier to distinguish high and low HRD
score samples in TCGA. The classifier had approximately 85% sen-
sitivity (Fig. 2A) and 70% specificity (Fig. 2B), with the maximum
sensitivity and specificity at 15 genes and 3 genes per group, respec-
tively. Based on Youden index, we trained a model with 15 genes per
group (30 total, Fig. 2C, listed in Supplementary Table S1, expression
inFig. 2D). In the full training dataset, the classifier had 84% sensitivity
and 73% specificity. The classifier had highest accuracy among
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Figure 1.

Breast cancer samples separate into four distinct groups based on DNA repair pathway gene expression. A, Heatmap visualization of the four distinct DNA repair
groups from consensus clustering in TCGA. Tracks show DNA repair group, PAM50 subtype, race, and TP53 mutant-like status. B, Heatmap visualization of the four
distinct DNA repair groups from consensus clustering in CBCS. Tracks show DNA repair group, PAM50 subtype, race, and TP53 mutant-like status. C, Violin plot of
HRDscores inHR/FA lowandHR/FAhigh groups according to intrinsic breast cancer subtype. Dashed line delineates samples fromhighHRD (≥42) or lowHRD (<42),
and P values are fromWilcoxon rank sign tests.D, Prevalence differences of clinical features in HR/FA high group compared to HR/FA low group in CBCS and TCGA.
Clinical features include TNBC status, TP53 mutant-like status, and race. Ninety-five percent (95%) confidence intervals (CI) are included for each measure.
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Luminal A subtype (89%), and white race (75%), and highest sensi-
tivity in basal-like (100%) and Her2-enriched (91%) subtypes, and in
Black participants (92%; Supplementary Table S4).

Supervised HRD (S-HRD) high samples were enriched for TP53
mutant-like status (PD ¼ 73.3%; 95% CI ¼ 68.9–77.4), black race
(PD ¼ 18.2%; 95% CI ¼ 9.6–26.8), and basal-like subtype (PD ¼
74.5%; 95% CI ¼ 71.0–77.5; Fig. 3A). HRD high samples were also
enriched for somatic and germline alterations in RAD51, BRCA1,
BRCA2, and TP53 (Fig. 3A and B, with AUC in Supplementary
Fig. S1A), with higher rates of SNV and indels in TP53, PALB2,
RAD51, BRCA1, BRCA2, and other HRD associated genes (Sup-
plementary Fig. S1B; ref. 54). The overall mutational burden was
also higher among S-HRD high samples (median log10 mutations

per megabase: S-HRD high ¼ 2.05, IQR ¼ 1.33, 3.31; S-HRD
low ¼ 1.02, IQR ¼ 0.71, 1.56, P < 0.001) and correlated with HRD
score (Fig. 3C, r ¼ 0.30, P < 0.001).

Among ER-negative tumors in TCGA, there were no significant
differences in HRD scores or score components (i.e., LOH, LST, NtAI)
between black and non-black women. However, among participants
with ERþ disease, black women had significantly higher HRD scores
than white women (Fig. 4A). Similar results were observed with
S-HRD, although after correcting for misclassification S-HRD was
enriched in both ERþ and ER� tumors (Fig. 4B). Applying the S-HRD
RNA classifier to the CBCS (n¼ 1,461), we found 813 (55.6%) low and
648 (44.4%) high HRD samples. Similar to TCGA, CBCS HRD high
tumors had larger tumor size, and increased frequency of basal-like
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in selected DNA repair genes. Proportions were calculated as the cumulative number of alterations of a given type divided by the total number of alterations of that
type across participantswith increasingHRD scores. Red lines indicate copy number (CN) gains, purple lines indicate CN losses, blue lines indicate somaticmutations,
green lines indicate germlinemutations (only available for BRCA1/2), and black lines indicate any somatic alteration. Vertical dashed line indicates anHRD score of 42,
corresponding to the cutoff for high versus low HRD DNA groups. B, Percent of HRD high (yellow) and low (purple) samples with somatic alterations in RAD51,
BRCA2, BRCA1, and TP53. � , P < 0.01; ��� , P < 0.001 via two sample tests of proportions. C, Scatterplot of log10mutations per Mb in TCGA samples by HRD DNA score
(dashed line is at 42). Dots are colored by HRD RNA calls (r ¼ 0.30, P < 0.001). Grayed out dots are samples enriched for the APOBEC mutational signature from
COSMIC (19).
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subtype and TP53 mutant-like status. HRD high samples were
enriched in younger and black participants in CBCS (Supplementary
Table S5).

To further explore whether observed patterns between S-HRD
and tumor characteristics remained consistent in external datasets,
we employed publicly available mouse and human datasets. In
METABRIC and SCAN-B, the HRD classifier shared clinical asso-
ciations observed in TCGA and CBCS, with HRD high samples
enriched for basal-like subtype, TP53 mutant-like status, higher
grade, larger tumor size, and younger age (Table 1). Using a mouse
mammary tumor dataset (35), we measured the proportion of
HRD high and low samples using gene expression orthologs. HRD

high class was associated with basal-like and Claudin-low tumor
types, and TP53-null or aberrant tumors (Supplementary Fig. S2).

HRD classifier and recurrence
Given our interest in the utility of HRD to identify samples at high

risk for poor outcomes, we compared the 5-year risk of recurrence in
HRD-high versus HRD-low stage I–III chemo-treated CBCS samples,
both in ER� and ERþ tumors. As shown in Fig. 5A and B, HRD-high
samples had a higher risk of recurrence than the HRD-low samples
regardless of ER status, although this difference was statistically
significant only in ERþ tumors. We performed the same analysis in
METABRIC and again found thatHRD-high samples had a higher risk
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Figure 4.

HRD is strongly associated with self-
reported race in ERþ cancers, whereas
ER� cancers show similar HRD pheno-
types in black and white women,
althoughmisclassificationmaypartial-
ly account for this in S-HRD. A, Distri-
bution of continuous HRD DNA scores
and score components in TCGA (n ¼
875 individuals with nonmissing HRD
scores and self-identification as black
or white). B, Relative frequency of
S-HRD high class, relative to S-HRD
low class, according to race and ER
status in CBCS (n¼ 485 ER�, 972 ERþ)
and TCGA (n ¼ 198 ER�, 630 ERþ).
Misclassification-adjusted bars indi-
cate mean results over 1,000 simula-
tions based on ER and race-specific
empirical positive and negative pre-
dictive values of the classifier.
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of recurrence than the HRD-low samples regardless of ER status,
which was significant in both ERþ and ER� tumors (Supplementary
Fig. S3).

Discussion
By probing DNA repair gene expression in TCGA and CBCS, we

identified RNA-based classifiers of DNA repair imbalances, specifi-
cally HRD, that are associated with basal-like subtype, TP53 mutant-
like status and that are also present in 25% of ERþ tumors. Our
observation thatHRDhigh tumors weremore clinically aggressive and
associated with higher hazards for recurrence among ERþ tumors
suggest potential value in prognostication for ERþ patients who may
require treatments beyond endocrine therapy. The potential value of
HRD scores has been acknowledged previously (8, 55), but our results
indicate that RNA-based classifiers ofHRDmay be a cost-effective and
FFPE-applicable approach for identifying these defects in large pop-
ulation-based studies or clinical specimens. Given that ERþ, black
patients have higher frequency of HRD-high samples and poorer
outcomes, understanding the role of HRD in the prognoses of diverse
patients is important. However, there is substantial overlap between
HRD and other prognostic indicators, including breast cancer subtype
and p53 mutation, suggesting that HRD reflects part of a broad
molecular vulnerability rather than serving as an independent out-
come predictor.

Previous groups have examined the relationship between HRD and
clinical outcomes among chemotherapy-treated women. Recently,
Boo and colleagues used both a DNA-based HRD signature and a
NanoString RNA “BRCA-ness” classifier to predict survival after
treatment with adjuvant chemotherapy in patients with TNBC. The
authors foundmodest improvement in survival for patients with HRD

compared with those without, suggesting that tumors with HRD may
be more sensitive to chemotherapeutic effects (56). While the limited
number of women with HRD who did not receive chemotherapy
limited our ability to investigate chemosensitivity directly, our results
suggest that ERþ breast cancers, a group that experiences substantial
survival heterogeneity by race, withHRD show a similar profile to ER�

or triple-negative cancers with HRD (18). Noting that women in
historically marginalized populations have often been excluded from
precision medicine approaches (57), and that disparities due to
systemic racism are often most stark for “treatment-amenable”
(e.g., ERþ) breast cancers (58), the development of a classification
method that could be applied to identify ERþ patients with poorer
prognoses could be helpful, although additional analyses will be
needed to identify predictors of chemotherapeutic response in these
patients.

HRD represents defective homologous recombination, a form of
DNA double-strand break (DSB) repair (59). HRD is typically seen in
tumors from BRCA1/2 mutation carriers, as the BRCA gene products
play an important role in DNA repair via homologous recombina-
tion (60). Thus, it may seem counter intuitive that HRD is associated
with increased expression of HR genes. However, overexpression of
HR/FA genes reflects dysregulation of the pathway, such as higher
expression of HR genes (including RAD51) being associated with
increased mutation rates (61). The association between HRD and
mutational burden has been previously demonstrated in lung (62),
breast (63), and other cancers (64). Patterns of DNA repair gene
expression can indicate rewiring of DNA repair pathway choice and
may reveal specific dependencies and vulnerabilities of cancer cells.HR
can be highly error-prone and drives both genome instability and
cancer (65–67). In the absence ofMMRproteins, the HR pathwaymay
use a mismatched, or “homologous”, donor sequence, which results in

Table 1. Table of clinical features in low HRD and high HRD classifier samples in METABRIC and SCAN-B datasets.

METABRIC SCAN-B
HRD Low HRD High HRD Low HRD High

N 1,162 830 1,938 1,471
Age

≥50 y 953 (82.5) 603 (73.1) 1,637 (84.5) 1,135 (77.2)
<50 y 202 (17.5) 222 (26.9) 301 (15.5) 336 (22.8)

ER Status
Positive 1,040 (92.3) 459 (56.6) 1,886 (98.8) 1,049 (82.0)
Negative 87 (7.7) 352 (43.4) 23 (1.2) 231 (18.0)

PAM50
LumA 658 (57.2) 60 (7.3) 1,505 (77.7) 204 (13.9)
LumB 214 (18.6) 274 (33.3) 247 (12.7) 520 (35.4)
Basal 33 (2.9) 296 (35.9) 8 (0.4) 352 (23.9)
Her2 70 (6.1) 170 (20.6) 20 (1.0) 328 (22.3)
Normal 175 (5.0) 24 (2.9) 158 (8.2) 67 (4.6)

Tumor size
≤20 mm 548 (47.9) 305 (37.5) 1,383 (71.4) 815 (55.4)
>20–≤50 mm 538 (47.1) 464 (57.0) 507 (26.2) 588 (40.0)
>50 mm 57 (5.0) 45 (5.5) 48 (2.5) 68 (4.6)

Grade
I 158 (14.5) 11 (1.4) 472 (24.5) 33 (2.3)
II 602 (55.1) 170 (21.2) 1,202 (62.5) 391 (27.5)
III 333 (30.5) 622 (77.5) 249 (12.9) 997 (70.2)

Lymph node status
Negative 659 (57.1) 384 (46.5) 1,231 (65.4) 796 (56.3)
Positive 496 (42.9) 441 (53.5) 652 (34.6) 619 (43.7)

Note: 65 SCAN-B observations missing grade, 111 missing node status. Age, PAM50 subtype, tumor size group, grade, and lymph node status distributions are listed.
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hyperrecombination and causes genome rearrangements (68–71). In
addition, pathologic inactivation of someDNArepairmechanisms can
be associated with compensatory increases in the expression of other
DNA repair mediators. For example, the error-prone DNA polymer-

ase POLQ was found to be elevated at the mRNA level in HR-deficient
epithelial ovarian cancers (23). Finally, previous studies have demon-
strated that TP53 represses aberrant HR repair (72, 73), and tumors
that are enriched for HRD often have mutated TP53 (74).

Figure 5.

HRD-high classified samples in the CBCS have
poorer outcomes among ERþ tumors. A, Cumula-
tive event plot of recurrence over a 5-year period
among stage I–III chemo-treated ERþ participants
in CBCS. Blue line indicates HRD high samples and
red line indicates HRD low samples. Risk tables are
shown below. B, Cumulative event plot of recur-
rence over a 5-year period among stage I–III che-
mo-treated ER� participants in CBCS. Blue line
indicates HRD high samples and red line indicates
HRD low samples. Risk tables are shown below.
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It is important to consider how DNA repair interacts with immune
response. Building evidence suggests that genomic instability may
identify tumors that would respond to immunotherapy, and several
studies have suggested that different breast cancer subtypes may
respond differentially to platinum-based chemotherapies (75, 76).
HRD high tumors may be more responsive to platinum-based che-
motherapies, especially in high-grade serous ovarian can-
cer (23, 59, 77, 78). Other groups have examined how HRD impacts
pathologic complete response (pCR) after neoadjuvant chemotherapy,
with majority of groups showing that HRD status is predictive of
pCR (55, 79, 80). There is an unmet need to predict response to
chemotherapeutic agents or immunotherapies. Decision tools such as
OncotypeDXandProsigna canhelp indicatewhether chemotherapy is
needed, but nowidely available genomic assays help to identify specific
chemotherapeutic or immunotherapy regimens. Our results suggest
that HRD is indeed prognostic, although additional work is needed to
confirm its role in treatment response.

There were some limitations of our analysis. Our selected gene list is
only a fraction of the possible genes involved in various DNA repair
pathways, includes some genes not typical of DNA repair studies (e.g.,
CTAs), and does not represent all DNA repair variation in breast
cancer. Even with a limited gene list, we found consistent patterns of
DNA repair gene expression in two divergent breast cancer datasets.
We used DNA-based HRD score as the gold standard to train our
classifier, but other groups have suggested that HRDetect (81) as an
accurate way tomeasureHRD.We could not evaluateHRDetect in this
analysis. Although we used an established cut-off point for determin-
ing samples with high HRD scores (8), dichotomization may have
introduced further misclassification in our analysis, particularly
among samples near the cut-point. More broadly, future studies
should consider predictions based on continuous HRD to understand
existing variation within HRD categories. We also lacked DNA-based
HRD in CBCS, METABRIC, and SCAN-B. Finally, we lacked power
to assess the association of HRD with pCR in patients treated
with neoadjuvant chemotherapy. Only 59 participants (4.0%) with
S-HRD data in CBCS had neoadjuvant chemotherapy and only 29%
of the study population had pCR. Given the increased utilization of
neoadjuvant chemo, pCR is a priority outcome for future studies
of HRD.

In summary, RNA-based assays for DNA repair may address an
unmet need in precision medicine, especially for population-based
studies with limited genetic and genomic data. It is important to
identify how such assays perform in diverse populations and given the
sampling structure of CBCS, we were able to document higher rates of
HRD in ER-positive breast cancer among black women, suggesting
that this pathway merits further consideration in relation to outcome
disparities among ERþ patients.
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