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Structure of the herpes simplex virus type 2 C-
capsid with capsid-vertex-specific component
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Yuhua Li5, Junzhi Wang5, Hongrong Liu3, Xinzheng Zhang1,2, Zihe Rao1,2,6,7,8 & Xiangxi Wang 1,2

Herpes simplex viruses (HSVs) cause human oral and genital ulcer diseases. Patients with

HSV-2 have a higher risk of acquiring a human immunodeficiency virus infection. HSV-2 is a

member of the α-herpesvirinae subfamily that together with the β- and γ-herpesvirinae sub-

families forms the Herpesviridae family. Here, we report the cryo-electron microscopy

structure of the HSV-2 C-capsid with capsid-vertex-specific component (CVSC) that was

determined at 3.75 Å using a block-based reconstruction strategy. We present atomic

models of multiple conformers for the capsid proteins (VP5, VP23, VP19C, and VP26) and

CVSC. Comparison of the HSV-2 homologs yields information about structural similarities

and differences between the three herpesviruses sub-families and we identify α-herpesvirus-
specific structural features. The hetero-pentameric CVSC, consisting of a UL17 monomer, a

UL25 dimer and a UL36 dimer, is bound tightly by a five-helix bundle that forms extensive

networks of subunit contacts with surrounding capsid proteins, which reinforce capsid

stability.
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Herpesviruses constitute a large family of dsDNA viruses,
which are the causative agents of a range of diseases,
including oral and genital blisters (herpes simplex viruses,

HSV-1, and HSV-2), congenital disorders in immune-
compromised individuals (Human cytomegalovirus, HCMV)
and cancers (Epstein–Barr virus (EBV) and Kaposi sarcoma
herpesvirus (KSHV))1. Based on their biological properties and
genome sequences, the family Herpesviridae is divided into three
subfamilies: α-, β-, and γ-herpesvirinae2 and the nine known
human herpesviruses span all three subfamilies. HSV-1, HSV-2,
and varicella-zoster virus (VZV), which belong to the α-
herpesvirinae subfamily, are present in a high proportion of
adult populations globally and can establish lifelong latent
infections within the peripheral nervous system. In contrast,
genetically modified forms of HSV-1/HSV-2, designed to repli-
cate specifically in tumor cells and lyse tumor-specific cells, have
been used therapeutically3. A clear understanding of the structure
and function of the structural proteins of herpesviruses could help
assist in the design of anti-viral agents as well as improve
their utility and efficiency as a therapeutic agent for treating
tumors.

HSV has a characteristic particle structure comprising a DNA-
filled capsid (~125 nm diameter), a proteinaceous tegument layer,
and a lipid envelope4. In addition to protecting the genome, the
capsid functions in retrograde transport in the host cell, release of
the viral genome into the nucleus of the host cell, and mediation
of the egress of nascent capsid from the cell nucleus5,6. Three
assembly intermediate capsids termed A-, B-, and C-capsids can
be isolated from lysates of infected cells7. A-capsids are empty
and result from abortive DNA packing, while B-capsids comprise
a core including scaffold proteins. Whether B-capsids are abortive
forms or assembly intermediates is still debated8,9. The third type
of capsid, C-capsid, is fully packed with the DNA genome and
matures into an infectious virion. All three types of capsids have
mature angular shells (triangulation number T= 16), composed
primarily of 955 copies of the 150 kDa major capsid protein, VP5,
arranged as 150 hexons and 11 pentons10. The dodecameric UL6
portal complex occupies the 12th vertex, breaking the local and
icosahedral symmetry. 320 copies of the “triplex” comprising two
copies of VP23 and one copy of VP19C connect adjacent cap-
somers11 while 900 copies of VP26 cap the outer surface of
hexons but not pentons12. Compared to A- and B- capsids, C-
capsids have significantly higher occupancy of the capsid-vertex-
specific component (CVSC), comprising UL17, UL25, and the
putative UL36 proteins13 disposed around the exterior of each of
the capsid vertices and implicated in DNA packing and capsid
maturation14. The DNA genome is under considerable pressure
within the capsid as shown by cryo-EM micrographs of HSV-1 C-
capsids, where the inter-duplex spacing is measured at ~26 Å, a
value comparable to that found in dsDNA bacteriophages and
near the theoretical limit for close packing of DNA duplexes15.
The CVSC reinforce the capsid structure to withstand high
internal genome pressures and may signal the completion of
DNA packing, thereby initiating nuclear egress14,16. The CVSC
homolog has also been identified in γ-herpesvirus KSHV, but
with a relatively low occupancy in contrast to the occupancy of
CVSC in α-herpesviruses17. However, the CVSC in the β-
herpesvirus HCMV bears neither compositional nor structural
similarities to those found in the α- and γ-herpesviruses, whilst
the β-herpesvirus-specific tegument protein pp150, an evolu-
tionary substitute for CVSC, forms a global net that allows DNA-
filled C-capsids to cope with the pressure of its large genome18.
The necessities to mediate binding of divergent tegument proteins
may facilitate the most external components of the capsid (e.g.,
VP26 and CVSC) to diversify across the different subfamilies of
herpesviruses.

Persistent efforts in the past two decades have pushed the
resolution limit of cryo-EM analysis of herpesvirus capsids from
15 Å to 6 Å11,19–21 and further down to the most recent resolu-
tions reported for the structures of the β-herpesvirus HCMV and
the γ-herpesvirus KSHV at 3.9 Å and 4.2 Å, respectively17,18.
However neither of these structures reveal structural information
on auxiliary tegument proteins that bind exclusively to pentons
and peripentonal triplexes to reinforce particle stability. Our
recent determination of the structure of the HSV-2 B-capsid22,
together with the structure of the HSV-1 C-capsid23, expands our
understanding of the drivers of assembly and the basis of stability
of the capsid in α-herpesviruses. Using our recently-developed
block-based reconstruction method24 we have determined the
cryo-EM structure of HSV-2 C-capsid at 3.75 Å and have built
atomic models for the capsid and CVSC. This structural infor-
mation, together with recently-reported four near-atomic struc-
tures spanning all three herpesvirus sub-families, allows us to
identify α-herpesvirus-specific structural features, providing
insights into the early evolution of herpesviruses.

Results
The block-based reconstruction and overall structure. To alle-
viate the Ewald sphere effects caused by the large size of virions
(>200 nm in diameter), we analyzed detergent-treated HSV-2
(MS strain) capsids instead of the intact virions for cryo-EM
imaging (Methods). Cryo-EM micrographs of purified HSV-2 C-
capsids were recorded using an FEI Titan Krios electron micro-
scope equipped with a Falcon detector (Methods). A total of
~50,000 particles were selected from the cryo-EM images and
subjected to two-dimensional (2D) alignment and three-
dimensional (3D) reconstruction with icosahedral symmetry
imposed in Relion25, which yielded a reconstruction of 4.2 Å
resolution. The 4.2 Å resolution map reveals the icosahedrally
ordered components of the virion, including pentons, 3 types of
hexons (P, peripentonal; E, edge; C, center) with the hexameric
rings formed by VP26s, 320 quasi-equivalent triplexes (Ta-Tf)
and 12 pentagram-shape CVSC densities (Fig. 1a). Each asym-
metric unit contains a C-Hex, P-Hex, one-half of an E-Hex, one-
fifth of a Pen, 15 copies of VP26, 51⁄3 triplexes and one CVSC
(Fig. 1b).

There are two bottlenecks that limit the cryo-EM resolution
(~4 Å) of this 1250 Å diameter capsid. One is the complex
architecture that does not strictly conform to the icosahedral
symmetry; the other is the gradient in defocus through the capsid.
To overcome these, we developed a block-based reconstruction
method24. Briefly, any large object with a big defocus gradient can
be split into several smaller blocks so that the defocus gradient on
each block is much less than that of the whole object and each
block can be reconstructed separately with its local mean defocus
(Supplementary Fig. 1). In our case, icosahedral orientation and
center parameters of each particle image determined by Relion25

were used to guide extraction of components of all four block
regions (Pen-, P-Hex-, E-Hex-, C-Hex-blocks, ~50% bigger than
each capsomers) and all four blocks were refined and recon-
structed separately with their local mean defoci (Supplementary
Fig. 1). After refinement and reconstruction of the four blocks in
Relion25, the resolution of maps for Pen-, P-Hex-, E-Hex-, and C-
Hex-blocks were further improved to 4.0 Å, 3.75 Å, 3.72 Å, and
3.71 Å respectively, as determined by Gold standard Fourier shell
correlation at the 0.143 threshold (Supplementary Fig. 2). The
four blocks can be combined into a complete map that contains
an intact asymmetric unit yielding a final resolution of 3.75 Å for
the HSV-2 C-capsid (Fig. 1a-c and Supplementary Fig. 2). The
resulting density map features well-resolved side chains consis-
tent with this resolution (Fig. 1b and Supplementary Table 1),
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Fig. 1 Architecture of the HSV-2 C-capsid. a Surface representation of HSV-2 C-capsid. The table lists the major capsid elements as identified by color in
the capsid. b Cryo-EM map of an asymmetric unit and local electron density maps are shown. The inset shows the density map (mesh) and atomic model
of VP5 which illustrate side chain features. Residues with side chains are labeled, aa denotes amino acids. c Ribbon diagram of the atomic model of an
asymmetric unit. The triplex consists of two VP23 conformers (denoted as VP23-1 and VP23-2) and one copy of VP19C. UL36-CT denotes UL36 C-
terminal helix. The CVSC comprises a UL17 monomer, two UL25 conformers (denoted as UL25-1 and UL25-2) and two UL36 conformers (denoted as
UL36-1 and UL36-2). Rainbow ribbon models show individual proteins and conformers (blue N terminus through green and yellow to red C terminus)
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allowing atomic models for all four capsid proteins (VP5, VP26,
VP23, and VP19C) and the CVSC to be built in. The atomic
models of an asymmetric unit (ASU) include 16 copies of VP5, 15
copies of VP26 making up a C-Hex, a P-Hex, one-half of an E-
Hex and one-fifth of a Pen, 5 triplexes (Ta, Tb, Tc, Td, Te) and
one CVSC (Fig. 1c).

α-Herpesvirus-specific structural features. α-Herpesviruses are
commonly defined by their ability to establish a latent infection in
neurons, which is a distinctive feature not found in β- and γ-
herpesviruses. Upon infection of sensory nerves innervating the
skin or mucosa, the C-capsids undergo long-range retrograde
axonal transport to the neuronal cell body, during which capsid-
bound tegument proteins are involved26. Additionally, long dis-
tance transport involving mechanical forces generated by mole-
cular motors requires high stability of C-capsids. The cryo-EM
structure of HSV-2 C-capsid reveals an icosahedral assembly of
~1250 Å in diameter, similar to HSV-1, HCMV, and KSHV C-
capsids and HSV-2 B-capsid (Supplementary Fig. 3). The pres-
sure of tens of atmospheres generated by the packing of the
genome27 do not expand the C-capsid, suggesting C-capsids
possess exceptional mechanical and structural stability/rigidity,
which is consistent with previous results unveiled with fluid
atomic force microscopy28. Surrounding each capsid vertex,
HSV-1 and HSV-2 C-capsids present pentagram-shaped densities
of CVSC (parts of CVSC labeled by pink elliptical lines are
flexible in HSV-2) (Fig. 2a). The density values of CVSC when
compared with those of its underlying triplexes (Ta and Tc) are
quite similar (the ratio of the maximum density of the CVSC to
the maximum density of its underlying triplexes is 0.95, assuming
the latter density to reflect 100% occupancy), suggesting nearly
full occupancy of CVSC. This is in contrast to the low occupancy
of CVSC in the virion of KSHV17 and HSV-2 B-capsid22 (Sup-
plementary Fig. 3). Nevertheless, in contrast to HCMV, where the
global binding of the β-herpesvirus-specific tegument protein
pp150 produces a rather smooth surface, the vertices are slightly
raised in HSV-1, HSV-2, and KSHV, giving the viruses more
angular appearances (Fig. 2a and Supplementary Fig. 3). Except
for the capsid-associated tegument proteins, the C-capsids from
all three subfamilies of herpesviruses have the same protein
compositions: VP5, VP23, VP19C, and VP26. Amongst these
capsid proteins, VP26 is the most divergent both structurally and
functionally (e.g., HSV-2 VP26 is ~50% larger than its homolog
SCP in HCMV). In α-herpesviruses, 6 copies of VP26 form a
ring-shaped structure by end-to-end interactions crowning only
hexons, while SCPs bind both hexons and pentons in both β- and
γ-herpesviruses (Fig. 2a). VP19C which, together with 2 copies of
VP23 makes up the “quasi-trimeric” triplex, is about 40% longer
than those of VP19C homologs in both β- and γ-herpesviruses,
whereas the sequences of VP23 are conserved in length and
similarity across the three herpesvirus subfamilies. Unsurpris-
ingly, VP19C in HSV-1 and HSV-2 bears an extra 55-amino acid
insertion-arm domain (disordered in HSV-2 due to the lack of
stabilization/protection by tegument proteins), sitting on the head
of the two VP23 conformers and a longer (~100-amino acid) N-
anchor (disordered in HSV-1), penetrating the capsid floor when
compared with the structures of VP19C homologs from HCMV
and KSHV (Fig. 2b). The necessity to interact with tegument
proteins located outside the capsid and accommodate genomes of
various sizes inside the capsid probably require and cause
alterations in VP19C on both its outer and inner sides. In order to
accommodate the 235 kb genome (~50% larger than that of HSV-
1) within the similar-size capsid successfully, HCMV has prob-
ably evolved distinctive strategies including shortening of its N-
anchor of VP19C from 105 to 44 residues to increase the inner

space and compressing the genome into hexon channels to take
full advantage of the inner space29.
VP5, the most conserved capsid protein across the three

subfamilies, is also folded into seven domains: upper, buttress,
helix-hairpin, channel, Johnson fold, dimerization and N-lasso
(Supplementary Fig. 4). Like other herpesvirus capsids22, none of
the 16 copies of VP5 in an asymmetric unit is identical and they
can be grouped into 4 sub-classes: typical hexon-C1, P1, P6, and
typical penton-Pen1 (subunits from C-Hex, P-Hex, E-Hex, and
Pen denoted as C1 to C6, P1 to P6, E1 to E6, and Pen1 to Pen5,
respectively) (Fig. 1). The capsid shell is assembled via extensive
interactions of the lower sections of VP5, including both
intracapsomer and intercapsomer interactions (Fig. 2b). Interest-
ingly, in α-herpesviruses a set of five helix-pairs comprising two
long αN helices from the dimerization domain of Pen1 and P6 is
observed at the inner surface beneath the penton, forming a new
type of quasi-equivalent twofold interaction (Fig. 2b). In addition,
P6 as well as penton VP5s adopt α-herpesvirus-specific config-
urations at the dimerization domain, that refolds from the helix-
turn-helix structure (observed in P1 and typical-hexon VP5s) into
a single long helix (Fig. 2b). However, these conformational
changes in β-herpesviruses are not very significant at the
dimerization domain and the local quasi-equivalent twofold
interactions between the penton VP5s and P6s are lost (Fig. 2b).
Despite substantial refolding of the penton-VP5 dimerization
domain in KSHV, P6 has a dimerization domain that is flexible,
rather than one that forms a helix-pair with Pen1 as observed in
α-herpesvirus (Fig. 2b). Perhaps correlated with the structural
reorganization at the dimerization domain, the N-lasso of P1 as
well as penton-VP5s refolds from a long, extended lasso structure
(observed in P6 and typical-hexon VP5s) into a short β-hairpin,
establishing new quasi-equivalent twofold interactions above the
helix-pair in α-herpesviruses (Fig. 2b). While the N-lasso of either
hexon-VP5 or penton-VP5 in β-herpesviruses shares a similar
fold, extending out and clasping a pair of VP5s located diagonally
across a local quasi-equivalent twofold axis (Fig. 2b). Coin-
cidently, the N-lasso of P1 rather than clasping a pair of penton-
VP5s, refolds into a configuration that largely eliminates its
lassoing ability in KSHV. Meanwhile, the N-lasso of penton-VP5s
is mostly disordered, which loses the lasso to the P1–P6 pair,
further decreasing the interactions between the penton and
surrounding P-Hexs (Fig. 2b). In summary, HSVs possess subtle
but profound structural differences when compared to β- and γ-
herpesviruses. A structure-based phylogenetic analysis suggests
that γ-herpesviruses occupy a position that potentially bridges α-
with β-herpesviruses and seems slightly close to α-herpesviruses
(Supplementary Fig. 5), which is in line with some common
biological features of HSVs, including similar genome size and
presence of CVSC.

Structure of the CVSC. The vertex of the capsid of herpesvirus is
a hub for protein–protein interactions that are important for
DNA packaging, maturation of the capsid, and egress of the
capsid from the infected cells30. In HSV-2 C-capsids, five copies
of CVSC density are arrayed around the exterior of each of the
capsid vertices bridging two triplexes (Ta and Tc) (Fig. 3a, b).
Possibly due to the lack of protection by tegument proteins/
envelope, the densities at higher radii (corresponding to the VP5
upper-domain and CVSC) are relatively weaker and less well-
defined than those at lower radii (Fig. 3a and Supplementary
Fig. 2). The overall resolution for the CVSC map is 4.3 Å. The
core body of the CVSC has a resolution better than 4.0 Å, and the
resolution of the head region of the map is ∼10 Å (Fig. 3a and
Supplementary Fig. 2). Unexpectedly, in contrast to the bi-lobed
head observed in HSV-123, only a single-lobed UL25 is seen lying
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between the space of two adjacent penton-VP5s, indicative of the
high level of flexibility or sensitivity to proteases possibly due to
the exposure by detergent treatments (Fig. 3a). For the core body,
the EM map reveals the polypeptide backbone and many bulky

side chains, allowing atomic modeling (Fig. 3a), and the crystal
structure of UL25 C domain (PDB code: 2F5U) can be fitted
accurately into the head region of the map, and consistent with
observations in the HSV-1 virion23. The CVSC core body
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comprises one UL17 monomer, two copies of UL25 N domain
(residues 1–90) and two copies of UL36 C-terminus (CT, residues
3,072–3,109) while the CVSC head consists of two copies of UL25
C domain (residues 134–580; although one copy is disordered in
HSV-2), which are arranged together in a 180-Å-long“gun-like”
shape (Fig. 3b).

The CVSC can be functionally divided into four regions: a
globular region at the upper end that binds the penton; a stalk
region in the middle primarily holding the five components
together; a region beneath the stalk region that interacts with Ta,
and a distal region that binds Tc and the P-Hex (Fig. 3b).
Amongst these, the UL17, the major component of CVSC,
involved in the formation of three regions, comprises four
domains named as Ta-binding domain, stalk domain, hump
domain and distal domain based on their roles in the composition
of CVSC (Fig. 3b-d). The two UL25 conformers, engaged in
forming three regions of CVSC as well, consist of N and C
domains. However, the two N domains of the two UL25
conformers differ in structural details but possess the same
secondary structural organization, and can be further divided into
two segments: N-extension (residues 1–47) and a coiled-coil helix
(α2) (Fig. 3c, e). The penton-binding globular region comprising
the C domain of the UL25 attaches itself to the VP5 upper
domain (Fig. 3a, b). The Ta-binding region implicated in
interaction with Ta consists of Ta-binding domain of the UL17
(residues 1–240 and 354–419), which bears an eight-stranded β
barrel and a number of short helices. A five-helix bundle from five
components (contributed by αi from the stalk domain of UL17,
two α2 helices from two UL25 conformers and two C-terminal
helices, α36-C, from two copies of UL36) and a four-helix turn
(the hump domain of UL17) make up the stalk region, which
bridges the penton-binding and Ta-binding regions (Fig. 3b-c).
This structural organization also verifies previous experimental
observations that UL36, acting as an integral part of the CVSC,
has its C-terminal portion bound to UL25 and the penton16,31,32.
Extensive hydrophobic interactions from the five-helix bundle
and four-helix turn tightly integrate the five components into the
CVSC. The distal domain of the UL17 (residues 470–703),
harboring a seven-stranded β barrel and a helix-rich section
around the β barrel, and the two copies of UL25 N-extension
comprise the distal region, which approaches the Tc. At the distal
region, the N-extensions of two UL25 conformers (magenta for
UL25-1; cyan for UL25-2 in Fig. 3e) intertwine with each other
such that three sets of small β sheets (UL25-1 β1 and UL25-2 β3;
UL25-1 β2 and UL25-2 β2; UL25-1 β3 and putative UL25-2 β1,
albeit that β1 is disorder in UL25-2) are formed by two
conformers (Fig. 3e, f). Moreover, β strands (βi and βj) from
the distal domain of UL17 join in two sets of two-stranded sheets
(UL25-1-β1:UL25-2-β3 and UL25-1-β3:UL25-2-β1) within the
UL25 dimer and further establish two sets of three-stranded
sheet, integrating the distal domain of UL17 into the CVSC distal
region. Additionally, a large hydrophobic patch contributed by αp
and αq from UL17 and two α1 helices from the UL25 dimer
augments the integration as well (Fig. 3e). In summary, a five-

helix bundle in the stalk region, a large hydrophobic patch and
two sets of three-stranded sheets in the distal region drive the
assembly of these five components into the CVSC.

Interactions between CVSC and surrounding capsid proteins.
We note that one CVSC contacts two subunits of the penton, two
subunits (P1 and P6) from single P-Hex and two triplexes (Ta
and Tc) in an asymmetric manner (Fig. 4). Although densities for
one of the di-lobed head sitting atop the penton in HSV-123 are
not observed in our map, the sole head (UL25 C domain)
approaches two VP5 subunits of the adjacent penton via elec-
trostatic attractions (Fig. 4). The Ta-binding region not only
contacts the EF and IJ loops from VP23-1 and VP23-2 in Ta
triplex, but also attaches its αf to the groove formed by RS- and
VW-loops of P6 (Fig. 4). However, neither VP5 subunits (penton-
or P-Hex-VP5s) nor triplexes (Ta or Tc) show direct interactions
with the stalk region, highlighting the role of the stalk region in
intrinsic integration of the CVSC (Fig. 4). The N-extensions of
the UL25 dimer insert a number of hydrophobic side chains into
two hydrophobic cavities of Tc triplex, one within the VP19C and
the other at the interface among the three components of Tc,
stapling itself in the Tc (Fig. 4). Additionally, the no and kl loops
of the distal domain of UL17 maintain contacts with the VW loop
of P1, further fixing the location of the CVSC (Fig. 4 and Sup-
plementary Fig. 6). Overall the interactions with the CVSC con-
tributed equally by two triplexes (Ta and Tc) and P-Hex subunits
(P1 and P6) determine the contacts formed with all micro-
environments, suggesting that the penton may not be essential for
CSVC binding. In line with this, a recent cryo-EM structure of
the HSV-1 portal-vertex at sub-nanometer resolution reveals that
the portal-vertex CVSC density closely resembles that seen at the
penton-vertices33, suggesting CSVC binding is independent of the
penton. Additionally, steric hindrance resulting from differences
in the relative orientation, in particular the Ta–Tc pair with its
contacting capsomers, prevents the binding of the CVSC to
another pair (Tb–Te) that shows the same arrangement as the
Ta–Tc pair(Supplementary Fig. 7).

Discussion
The fact that pentons lose their N-lassoing abilities with sur-
rounding P-Hexs with ~35% less interaction areas compared to
hexon–hexon contact areas22, probably accounts for the vulner-
ability of pentonal vertices of the herpesvirus capsids to disin-
tegration34. The CVSC in HSVs as well as the ORF32 and ORF19
in KSHV35 or pp150 in HCMV18 seems to be an adaptation to
allow DNA-filled C-capsids to cope with the pressure of its large
genome. Five copies of the CVSC together with five copies of Ta
and Tc cement the connections between the penton and its five
neighboring P-Hexes, firmly stabilizing the pentonal vertex to
retain the viral genome (Fig. 3a). The exceptionally high struc-
tural and mechanical stability of the C-capsids of HSVs can
probably be attributed to the assembly of the CVSC observed in
HSV-1 and HSV-2 structures. In fact, CVSC have also been

Fig. 3 The CVSC structure. a Cryo-EM densities of the CVSC surrounding a pentonal vertex. The color scheme is same as in Fig. 1c. The density for the
UL25-1 C domain marked by magenta-colored dashed lines, is not observed due to its flexibility in our map. The inset shows the density map (mesh) and
atomic model of CVSC which illustrate side chain features. b Pipe-and-plank depictions of the CVSC. The color scheme is same as in Fig. 1c. c Schematic
diagram of domain organization of the CVSC five components. d, e Cartoon representation of domain organization of UL17 and two UL25 conformers. Top
view of the five-helix bundle (red inset); the left shows the five-helix bundle (colored by residues’ hydrophobic characters: hydrophobic to hydrophilic
gradient) viewed along the center of the coiled coil. The blue and yellow insets highlighting the hydrophobic interactions and hydrophobic side chains are
shown as sticks. f represents amino acid sequences of the N domain from two UL25 conformers with secondary structural elements labeled; three sets of
small β sheets formed separately by two conformers are indicated by three colored lines. The N-terminal 11 residues which are disordered in the structure
of UL25-2 are marked by black dots
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shown to be required for structural reinforcements at the vertices,
the most stressed part of the capsids36. In line with this, thermal
stability assays demonstrated that HSV-2 C-capsids can with-
stand remarkably high temperature (up to 76 °C), revealing HSV-
2 C-capsid is one of the most robust viral capsids (Supplementary
Fig. 8). Such stability protects capsids from physical damage
during long distance transportation involving mechanical forces
generated by molecular motors in the axonal cytoplasm before
they reach the nuclear pores for releasing the genome.

The near-atomic structure of the HSV-2 C-capsid reported
here, together with recent cryo-EM structures of HSV-1, HCMV,
and KSHV, expands our understanding of the structural simila-
rities and differences of the α-, β-, and γ-herpesviruses sub-
families, enabling identification of α-herpesvirus-specific struc-
tural features. Structure of the CVSC and its interactions with
capsid proteins coupled with functional studies suggest multiple
potential functions like providing reinforcement for enhancing
the stability of the capsid, maturation of capsid, egress of the
capsid, initiating primary tegumentation for neonatal virons, and
retrograde transport of the incoming viral capsid during initial
infections. Our structure provides information on the modes of
interaction between the capsid and teguments, which would
unveil crucial information on the space–time complexity in the
herpesvirus life cycle and may ultimately inform future ther-
apeutic inventions.

Methods
HSV-2 capsid purification. Vero cells without mycoplasma contamination were
cultured in Dulbecco’s Modified Eagle Medium (DMEM) plus 10% fetal bovine

serum (FBS) and grown to the concentration of 1.5 × 108, then inoculated with
herpes simplex virus 2 strain MS at a multiplicity of infection (MOI) of 0.1–1. The
herpesvirus-infected cells were scraped from the plates and harvested when
reaching 90% cytophathic effect, and resuspended in PBS containing 1% NP-40.
Cells were lysed by three cycles of freezing and thawing. After lysis, the suspension
was centrifuged at 1500g for 15 min at 4 °C to remove cell debris. We further enrich
the capsids by a discontinuous 20 and 60% sucrose gradient (w/v in PBS) and
collected the band at interface of the two sucrose layers. To separate three types of
capsids, crude HSV-2 capsids (~0.6 mg in 600 µl PBS) were loaded onto a con-
tinuous 20–50% (w/v in PBS) sucrose density gradient (made by Biocomp) and
centrifuged at 80,000g for 1 h using a SW40 rotor (Hitachi company). Three sets of
fractions were collected and dialyzed against PBS buffer.

Cryo-EM and data collection. The cryo-grids were prepared using Thermo Fisher
Vitrobot. A 3 μl aliquot of purified HSV-2 C-capsids was applied to a fresh glow-
discharged 400-mesh holey carbon-coated copper grid (C-flat, CF-2/1–2C, Pro-
tochips). After being blotted for 3.5 s in 80% relative humidity, the grids were
plunged into liquid ethane cooled with liquid nitrogen. Cryo-EM datasets were
collected at 300 kV with a Titan Krois microscope (FEI) equipped with a GIF
Quantum energy filter (Gatan) operated in zero energy-loss mode with a slit width
of 20 eV and a direct electron detector (Falcon3). Movies (25 frames, each 0.2 s,
total dose 25 e−Å−2) were recorded with a defocus between 0.8 and 2.3 μm using
SerialEM37 at a nominal magnification of 59,000×, which yields a final pixel size of
1.41 Å.

Image processing. A total of 10,280 micrographs were recorded. Frames 3–22
were used and corrected for beam-induced drift by aligning and averaging the
individual frames of each movie using MOTIONCORR38. The contrast transfer
function (CTF) parameters for drift-corrected micrographs were estimated by
Gctf39. 7902 micrographs with visible CTF rings beyond 1/5 Å in their spectra were
selected for further processing. Particles were picked automatically by EMAN
package40. A total of 64,659 particles from 7902 micrographs were firstly picked for
the two-dimensional alignment and three-dimensional reconstruction with
Relion25. The structural flexibility of the capsid and the defocus gradient on this
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large capsid limit the resolution, only yielding a reconstruction of 4.2 Å resolution
with icosahedral symmetry imposed. To overcome these two problems, we
developed a block-based reconstruction22. In our case, icosahedral orientation and
center parameters of each particle image determined by Relion25 were used to
guide extraction of components of four block regions (Pen-, P-Hex-, E-Hex-, C-
Hex-blocks, ~50% bigger than each capsomers) and all four blocks were refined
and reconstructed separately with their local mean defoci. For each boxed particle,
there were 60, 30, 60, and 12 icosahedral-symmetry-related copies for P-Hex-, E-
Hex-, C-Hex-, and Pen-blocks respectively. On condition that we acquired the
rotation and translation parameters of a virus calculated by Relion, the distance d
between the center of the virus and the center of one copy in the 3D virus along the
Z axis can be further calculated to determine the gradient in defocus through
the capsid. Assume that the defocus obtained by fitting the Thon ring can represent
the distance between focused point of objective lens and the center of the virus.
So the local defocus of each copy in the 3D virus was the sum of d and the defocus
value. This local defocus of each copy, rather than the uniform defocus obtained by
fitting the Thon ring, was used to reconstruct the blocks. After refinement and
reconstruction of the four blocks in Relion25, the resolution of maps for Pen-,
P-Hex-, E-Hex-, C-Hex-blocks was further improved to 4.0 Å, 3.75 Å, 3.72 Å, and
3.71 Å respectively, as determined by Golden standard Fourier shell correlation at
the 0.143 threshold41. A program was used to combine the four blocks into an
asymmetric unit. After combining these blocks, the final resolution of HSV-2
C-capsid is 3.75 Å.

Model building and refinement. The 3.1 Å structure of the HSV-2 B-capsid22 was
initially fitted into the EM map with CHIMERA42 and further corrected and
adjusted manually by real-space refinement in COOT43. The models of the CVSC
were built de novo into density using COOT43. Models were further improved by
iterative positional and B-factor refinement using Phenix44, rebuilding in COOT43

and evaluated by Molprobity45 and Refmac46. Refinement statistics are listed in
Supplementary Table 1.

Data availability
The cryo-EM density map of HSV-2 C-capsid has been deposited in the electron
microscopy data bank under accession code EMD-6976 and the atomic coordinates of
the asymmetric unit have been deposited in the protein data bank under accession code
5ZZ8. Additional data that support the findings of this study are available from the
corresponding authors upon reasonable request.
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