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Biological heterogeneity is a primary contributor to the variation observed in
experiments that probe dynamical processes, such as the internalization of
material by cells. Given that internalization is a critical process by which
many therapeutics and viruses reach their intracellular site of action, quan-
tifying cell-to-cell variability in internalization is of high biological interest.
Yet, it is common for studies of internalization to neglect cell-to-cell variabil-
ity. We develop a simple mathematical model of internalization that
captures the dynamical behaviour, cell-to-cell variation, and extrinsic noise
introduced by flow cytometry. We calibrate our model through a novel dis-
tribution-matching approximate Bayesian computation algorithm to flow
cytometry data of internalization of anti-transferrin receptor antibody in a
human B-cell lymphoblastoid cell line. This approach provides information
relating to the region of the parameter space, and consequentially the nature
of cell-to-cell variability, that produces model realizations consistent with the
experimental data. Given that our approach is agnostic to sample size and
signal-to-noise ratio, our modelling framework is broadly applicable to
identify biological variability in single-cell data from internalization assays
and similar experiments that probe cellular dynamical processes.
1. Introduction
Endocytosis is the primary means by which cells uptake, or internalize, drugs,
viruses and nanoparticles [1–5]. Single-cell in vitro analysis of internalization and
similar dynamical processes reveals significant cell-to-cell variability in otherwise
homogeneous cell populations [6–12]. Such heterogeneity is ubiquitous to biology
and essential to life, allowing for robust decision-making, development and adap-
tation of cell populations to environmental uncertainty [13–17]. From a clinical
perspective, heterogeneity in drug uptake and response is considered a leading
contributor to treatment variability and resistance [18–20]. The challenges of work-
ing with data that comprise instrument noise and background fluorescence which
often obfuscate biological variability means that it is relatively common for quan-
titative analysis of internalization to neglect heterogeneity [21,22]. Exacerbating
these issues is a corresponding lack of mathematical tools that account for cell-
to-cell variability and measurement noise while also providing information
about the uncertainty in inferences and predictions drawn from noisy data.

Modern analysis technologies, including flow cytometry, allow the high-
throughput collection of data from experiments that probe internalization at
rates exceeding a thousand cells per second (figure 1) [23]. In an internalization
assay, material labelled with fluorescent probes is incubated with cells and
internalized through pathways responsible for the uptake of material by cells,
such as through clathrin-mediated endocytosis (figure 1a,b) [24,25]. The fluor-
escence of surface-bound probes can be switched off by introducing a
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Figure 1. Internalization dynamics and corresponding experimental assay. (a) Internalization of transferrin, a protein responsible for the uptake of iron by cells. Iron-
saturated transferrin (holoTF) binds to receptors on the cell surface and is internalized through endocytosis. In the low pH of endosomes, iron disassociates before the
transferrin–receptor complex recycles to the cell surface and iron-free transferrin disassociates. (b) A corresponding internalization assay. Anti-transferrin receptor
antibody (anti-TFR) dual-labelled with BODIPY FL and fluorescent internalization probe (FIP)-Cy5 replaces iron-loaded transferrin and is internalized through clathrin-
mediated endocytosis. Experimental observations suggest that a small proportion of labelled antibody disassociates inside the cell, allowing receptor recycling and
the accumulation of antibody inside the cell. (c) A quencher dye switches off fluorescence of surface-bound FIP-Cy5, providing information relating to the proportion
of antibody that has internalized. Single-cell measurements of fluorescence from both probes are collected using flow cytometry. (d ) Flow cytometry data obtained
t = 10 min after antibody are introduced. Since variability in the data is predominantly biological, data from each fluorescent label are highly correlated. Univariate
distributions shown are normalized (i.e. integrate to unity), and comparisons for all experimental time points are provided in electronic supplementary material, S1.
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quencher dye, or the fluorescence of internalized probes
altered due to the lower pH in early endosomes [21,24], pro-
viding quantitative information relating to the amount of
material internalized. Flow cytometry provides measure-
ments related to the total and internalized amount of
material at various time points (figure 1c,d ). In contrast to
methods that capture single-cell time-lapse data using
microscopy [7,26], flow cytometry provides single-cell snap-
shot data, sacrificing information relating to individual
trajectories for significantly higher sample sizes (often of
the order of several million cells). While previous studies
have shown that measurement noise introduced by the flow
cytometry electronics and background autofluorescence are
not insignificant, variability in the data is primarily biological
[11,27–31]. We confirm this by performing an internalization
assay with a dual-labelled fluorescent probe, finding that
measurements are highly correlated, indicating a shared
source of variability (figure 1d ).
Mathematical and statistical techniques allow quantitative
analysis of transient dynamics, heterogeneity andmeasurement
noise. As the number of molecules internalized by each cell is
relatively large, single-cell trajectories describing the relative
amount of material internalized can be accurately described by
deterministic models derived through kinetic rate equations.
Ordinary differential equation (ODE) constrained Bayesian hier-
archical and random effects models incorporate cell-to-cell
variability through a parameter hierarchy where distributions
parametrized by hyperparameters describe cell-level properties
[32–34]. Both individual cell properties and hyperparameters
are estimated during calibration of hierarchical models to data,
presenting a significant computational challenge for the large
sample sizes provided by flow cytometry data. In themathemat-
ical literature, so-called heterogeneous [35] or random [36]ODEs
and populations ofmodels [37]make similar assumptions, often
without assuming a parametric distribution of cell properties
[9,38,39]. Issues presented by large sample sizes can be avoided
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Figure 2. Dynamical model of internalization and recycling matches experimental data. (a) The dynamical model describes the relative concentration of internal,
transferrin-bound receptors, T (grey); surface antibody-bound receptors, S (blue); internal antibody-bound receptors, E (red); and internal free antibody, F (orange).
(b) Geometric mean of FIP-Cy5 fluorescence measurements for samples that are not quenched (red) and those that are (orange) at various time points. The dyna-
mical model is calibrated using maximum-likelihood estimation, with the solution shown (solid curve). (c) Solution to the mathematical model at the maximum-
likelihood estimate (table 1).
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by calibratingmodels using the empirical distribution of the data
(through, for example, kernel density estimates) [35], an
approach that provides point estimates but neglects inferential
uncertainty and poses a challenge when the signal-to-noise
ratio in the data is not sufficiently high.

In this study, we develop a mathematical model of internal-
ization that captures cell-to-cell variability by describing cell
properties—specifically, the number of receptors, the internaliz-
ation rate and the recycling rate of each cell—as jointly
distributed random variables. To describe non-biological
sources of variability from flow cytometry measurements of
an internalization assay, we couple the dynamical model to a
probabilistic observation process that captures autofluorescence
and measurement noise. We take a Bayesian approach to par-
ameter estimation and develop a novel approximate Bayesian
computation (ABC) [40–42] algorithm that matches distribu-
tional information from flow cytometry measurements, with
the goal of identifying sources of cell-to-cell variability that
are consistent with experimental observations. Given that
ABC relies only on model realizations and not the structure of
the model itself, this approach is agnostic to the signal-to-
noise ratio, the complexity of the probabilistic observation pro-
cess, as well as the sample size. Furthermore, ABC allows us to
obtain both point parameter estimates and information relating
to inferential uncertainty, which provides information about the
range of parameters that produce model realizations consistent
with the experimental observations.

We demonstrate our approach by studying heterogeneity
in the internalization of anti-transferrin receptor (anti-TFR)
antibody in C1R cells, a human B lymphoblastoid line.
Data comprise potentially noisy flow cytometry measure-
ments from an internalization assay developed in our
previous work, specific hybridization internalization probe
(SHIP) (figure 1b,c) [21,43]. Measurements are collected
from anti-TFR antibody dual labelled with BODIPY FL and
fluorescent internalization probe (FIP)-Cy5. We take
measurements both with and without a quencher dye,
which switches off the fluorescence of surface-bound FIP-
Cy5 without affecting internalized FIP-Cy5 or the BODIPY
FL signal (results in figure 1d show only very minor exper-
imental variability in BODIPY FL between samples that are
quenched and not). Therefore, we obtain jointly distributed
data that comprise noisy measurements of the total and inter-
nalized amount of antibody in each cell (figure 1c,d ).
Snapshots are collected from samples that are incubated
with antibody-saturated medium for various periods of
time to provide measurements relating to both the total and
internalized amounts of antibody present on each cell.
Using our mathematical model, we are able to identify key
sources of biological variability and provide predictions
that give insight into how the uptake of material varies
between cells. Importantly, our approach to parameter infer-
ence enables us to quantify the uncertainty in inferences
made, allowing us to provide experimental design guidance.
2. Results
2.1. Dynamical model of internalization
We describe the internalization of antibody and the recycling
of receptors using a compartment model. Given that the
concentration of antibody in the surrounding medium is suf-
ficiently high, we assume that the association rate of antibody
to free receptors on the cell surface is much higher than the
kinetic rates of internalization and recycling (electronic
supplementary material, S3). Therefore, we describe the
number of antibody–receptor complexes on the cell surface,
S, and that endocytosed, E. Before incubation in antibody-
saturated medium, endocytosed receptors are bound to trans-
ferrin. To capture this, we describe a pool of internal,
transferrin-bound receptors, of size T. Experimental results
(figure 2b) do not show the antibody concentration reaching
a limiting concentration. This suggests at an accumulation
of free antibody inside cells, of number F, with receptor recy-
cling driving the continued uptake of antibody throughout
the experiment. As the recycling kinetics of antibody-bound
receptors are unknown, we assume that with small prob-
ability, p, endocytosed antibody-bound receptors recycle
and antibody disassociates. These assumptions give rise to
the dynamical model (figure 2a)

T!b S

and S!l E!pb Sþ F,

)
ð2:1Þ

where β (min−1) is the recycling rate and λ (min−1) is the
internalization rate. It is also possible that endocytosed anti-
body, E, can return to the cell surface without disassociation
from the receptor. However, we have not included this
in our model as a recycled antibody–receptor complex is
indistinguishable from that bound on the cell surface, S.



Table 1. Parameter estimates and approximate confidence intervals for the
homogeneous model. Approximate confidence intervals are calculated using
the observed Fisher information matrix, calculated from the Hessian of the
log-likelihood function [44].

parameter estimate 95% CI units

λ 0.106 (0.097, 0.116) min−1

β 0.047 (0.043, 0.051) min−1

p 0.068 (0.063, 0.072) —

α1 7840 (7540, 8140) fluorescence units
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Given that the number of receptors in each cell is rela-
tively large, equation (2.1) can be formulated as a linear
ODE with exact solution x(t) = x0 exp(Mt), where M is a
matrix of coefficients and x(t) denotes the number of mol-
ecules in each compartment (electronic supplementary
material, S2). Initially, the system is in equilibrium, so

Sð0Þ ¼ b

lþ b
, ð2:2Þ

where molecule counts are taken with respect to the total
number of receptors on the cell, denoted R, so S(0) + T(0) = 1.

2.2. Inference using mean fluorescence intensity
measurements

Flow cytometry measurements are typically summarized using
the geometric mean of the fluorescence intensity distribution,
called the geometric mean fluorescence intensity (GMFI) (figure
2b). Cy5 GMFI measurements from samples that are not
quenched are related to the total amount of antibody in the
sample, A(t) = S(t) + E(t) + F(t), and measurements from
quenched samples are related to the amount of internal antibody
in the sample, I(t) = E(t) + F(t). In practice, quenching is imper-
fect, and a small proportion of surface-bound antibody retains
fluorescence.We pre-estimate this quenching efficiency, η, by com-
paring the fluorescence intensity of quenched and not quenched
samples of cells kept at 4°C, which inhibits internalization,
finding that η≈ 0.94 (electronic supplementary material, S4).
Therefore, GMFI measurements can be modelled by

QGMFIðtÞ ¼ a1AðtÞ þ EQ þ k1

and QGMFIðtÞ ¼ a1

h
IðtÞ þ hSðtÞ

i
þ EQ þ k2:

9=
; ð2:3Þ

Here, we denote by QGMFI(t) GMFI measurements from the
FIP-Cy5 (i.e. quenchable) probe in the samples that are not
quenched, by QGMFIðtÞ that of quenched samples and by EQ
the average autofluorescence. We capture variability in GMFI
measurements,which are statistics of the full fluorescencedistri-
bution, by assumingmeasurement error κ1, κ2∼Normal(0, σ2).
The parameterα1 relates the antibody concentration to the fluor-
escence intensity measurement:A(t) = 1 corresponds to a GMFI
measurement of α1 units. We refer to equation (2.3) as the homo-
geneous model since the dynamical parameters λ and β, and the
number of receptors, R, do not vary cell-to-cell and are fixed
for the population.

To assess the suitability of the dynamical model and pro-
vide a baseline to assess our model that captures biological
heterogeneity, we calibrate equation (2.3) to experimental
data using maximum-likelihood estimation. We tabulate
estimates and confidence intervals approximated using the
observed Fisher information in table 1, and show the model
best fit in figure 2b.

The homogeneous model provides a fit that qualitatively
matches GMFI measurements from the experimental data
(figure 2b), and all parameters are identifiable within
relatively precise intervals (table 1). Estimates for the intern-
alization and recycling rates suggest that a proportion of
approximately

Sð0Þ ¼ b

lþ b
� 0:31 ð2:4Þ

of transferrin receptors lie on the surface at equilibrium. Esti-
mates for p suggest that 6.8% (95% CI (6.3%, 7.2%)) of
internalized antibody disassociates, allowing receptor recy-
cling. This is also evident from simple observations of the
experimental data, since the fluorescence intensity increases
throughout the experiment, suggesting that a small pro-
portion of receptors remain on the surface while antibody
accumulates inside the cell (figure 2c).
2.3. Incorporating biological variability into dynamical
model of internalization

We assume biological variability arises through both physical
and physiological differences between cells in the population.
Specifically, we allow number of receptors, R, and dynamical
parameters λ and β to vary cell-to-cell. Without loss of gener-
ality, we set EðRÞ ¼ 1 so receptor and antibody counts are
taken with respect to the average receptor count in the popu-
lation. Given that p relates to a strictly chemical process
governing the association of receptor to antibody, we
assume that it does not vary cell-to-cell.

The properties of the ith cell are modelled by the random
variable ξi = (Ri, λi, βi). Given that we see no evidence of a sub-
population structure in the experimental data, we make the
basic assumption that ξi is unimodal. We expand on typical
hierarchical modelling restrictions [34] by allowing cell prop-
erties λi and ηi to vary according to both normal and non-
normal distributions. To do this, we describe λi and ηi as
shifted Gamma variables parametrized in terms of their
respective means, ðml, mbÞ, standard deviations, ðsl, sbÞ,
and skewnesses, ðvl, vbÞ (electronic supplementary material,
S6). This approach allows us to recover normal distributions
in the limit ω→ 0 in addition to distributions with positive
(ω > 0) and negative (ω < 0) skewnesses, and we note that it
is relatively common to use Gamma distributions in their
own right to describe heterogeneity in rate constants in
biology [45,46]. The number of receptors, Ri, is assumed to
be shifted log-normally distributed [47]. To ensure positivity,
we truncate ξi so that Ri, λi, βi≥ 0. The untruncated marginal
distributions are given by

Ri � ShiftedLogNormalðmR, sRÞ,
li � ShiftedGammaðml, sl, vlÞ

and bi � ShiftedGammaðmb, sb, vbÞ:

9=
; ð2:5Þ

We model the dependence structure of ξi with a Gaussian
copula parametrized by the correlation matrix

P ¼
1 rRl rRb
rRl 1 rlb
rRb rlb 1

0
@

1
A: ð2:6Þ
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To ensure P remains positive definite, we infer ρRλ, ρλβ and
~rRb (all constrained to the interval (−1, 1)) where

rRb ¼ rRlrlb þ ~rRb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� r2RlÞð1� r2lbÞ

q
: ð2:7Þ

Therefore, ρRλ (and similarly for ρRβ and ρβλ) describes the
strength of the correlation between the number of receptors,
R, and internalization rate, λ. We note that this model of
dependence would be equivalent to the standard approach
to model ξi as a multivariate normal [34] with correlation
matrix P if the marginals where also normally distributed.
In electronic supplementary material, S7, we provide full
details of how samples of ξ are obtained.

The heterogeneous model is a random ODE model where
x(t) and its constituents are random variables [36]. For
example, A(t) is a random variable describing the distribution
of bound-antibody present on a cell at time t.
terface
19:20220019
2.4. Statistical model for flow cytometry data
Measurement noise in flow cytometry is primarily attribu-
table to shot noise introduced from the photomultiplier
tubes (PMT noise) that convert the photon signal to an
amplified, analogue electrical signal. Recent studies suggest
that the square coefficient of variation of such noise is
approximately constant [30], so we model shot noise with
uncorrelated white noise (i.e. Gaussian), with variance pro-
portional to the true signal. The second source of noise is
cellular autofluorescence, where the laser used to excite the
labelled antibody can excite other molecules in the cell,
leading to a background autofluorescence where signal is
present in the absence of antibody. We build an empirical
distribution of autofluorescence (EQ, EU) using a sample
where cells have not been introduced to labelled antibody
(electronic supplementary material, S5).

We denote measurements from the FIP-Cy5 probe, which
is quenchable, by Q(t), and the BODIPY FL probe, which is
not quenchable, by U(t). Therefore,

QðtÞ ¼ a1AðtÞRþ 11
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1AðtÞR

p
þ EQ ð2:8Þ

and

UðtÞ ¼ a2AðtÞR|fflfflfflfflffl{zfflfflfflfflffl}
Antibody

þ 12
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2AðtÞR

p|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
PMT noise

þ EU ,|{z}
Autofluorescence

ð2:9Þ

where 11, 12 � Normalð0, s2
kÞ. Similarly, the measurements

from quenched samples are given by

QðtÞ ¼ a1

h
IðtÞ þ ð1� hÞSðtÞ

i
R

þ 11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1

�
IðtÞ þ ð1� hÞSðtÞ�Rq

þ EQ

ð2:10Þ

and

UðtÞ ¼ a2AðtÞRþ 12
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2AðtÞR

p
þ EU : ð2:11Þ
2.5. Calibration and uncertainty quantification
We take a Bayesian approach to parameter estimation cali-
brating the noisy heterogeneous model to SHIP assay data
using a novel ABC [40–42] algorithm that matches the empiri-
cal distribution of flow cytometry measurements, under the
assumption that measurements from each probe are linearly
correlated. There are two primary factors that motivate our
preference for this approach. First, the approach is agnostic
to the sample size as we work with the observed empirical
distributions directly, rather than individual samples.
Second, we are not limited in the complexity of the statistical
model and can, therefore, work with a statistical model of
measurement noise motivated by the actual electronics in
the collection method, in addition to empirical, and not
approximate, distributions of autofluorescence.

Given a set of experimental observations X , we encode
knowledge about the model parameters θ in the posterior
distribution, given by

pðujXÞ|fflfflfflffl{zfflfflfflffl}
posterior

/ pðX juÞ|fflfflfflffl{zfflfflfflffl}
likelihood

pðuÞ|ffl{zffl}
prior

: ð2:12Þ

Here, p(θ) denotes the prior distribution, which encodes prior
parameter knowledge. In our work, we take a standard
approach and set the prior to be uniform with independent
components [48] that correspond to the axis limits in
figure 3. We choose parameter bounds to reflect either phys-
ical constraints on parameters (i.e. all correlations are
bounded and rates, standard deviations, proportionality con-
stants are positive) or realistic bounds (for example, we
expect the distributions of λ and β to be negatively skewed
so that support is low, but non-zero, at zero if internalization
or recycling is inhibited in a small proportion of cells).

In ABC, we approximate the posterior distribution using
the ABC posterior

pðujXÞ � pðujdðX , YðuÞÞ , 1Þ: ð2:13Þ

Here, YðuÞ denotes synthetically generated observations of
the model using parameters θ, d( · , · ) is a discrepancy measure
that measures how close synthetically generated observations
lie to the experimental data (figure 3a,b), and ε is a parameter
that describes the maximum discrepancy at which synthetic
observations are judged to be close. Our choice of discre-
pancy measure, d( · , · ), matches a weighted sum of
discrepancies between univariate distributions (using the
Anderson–Darling distance [49]) and discrepancies in the cor-
relation of FIP-Cy5 to BODIPY FL signal. The weights in
d( · , · ) are chosen so that the contribution from the univariate
distribution and correlation discrepancies are similar in mag-
nitude. Synthetic datasets are generated using n = 1000 cells
per observation time, per condition (quenched or not
quenched), and ε is chosen based on a pilot inference using
a sequential Monte Carlo (SMC) algorithm [50]. Full details
of the discrepancy measure and sampling algorithm are
given in electronic supplementary material, S8.

In figure 3, we plot posterior samples from four indepen-
dent tuned Markov chain Monte Carlo (MCMC) chains
thinned to a total of 400 000 samples, providing an effective
sample size of at least 1000 per parameter. To visualize
model predictions, we compute a point estimate by further
thinning the chains to a total of 400 samples, and identifying
the parameter set that produces the lowest average discre-
pancy from 100 model realizations. Model predictions at
the point estimate are shown alongside experimental data
in figure 4. MCMC diagnostics, parameter descriptions and
best-fit estimates are given in electronic supplementary
material, S9.
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Figure 3. Model calibration and uncertainty quantification using ABC MCMC. (a,b) In ABC, data are compared to model simulations using a weighted sum of
Anderson–Darling distances and discrepancy in the correlations. (a) Parameter combinations that produce model realizations sufficiently similar to the experimental
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2.6. Heterogenous model captures biological variability
The heterogeneous model produces realizations that agree
with flow cytometry measurements, matching both marginal
and jointly distributed data from both probes (figure 4).
Minor discrepancies in univariate distributions highlight the
main sources of unaccounted error; for example, error relat-
ing to the precise time at which internalization is ceased
and error relating to flow cytometry gating.

Samples relating to the skewness of the internalization
and recycling rate distributions, vl and vb, respectively
(figure 3c,f ), show that information in the experimental
data is insufficient to identify the shape of the internalization
and recycling rate distributions. While the precision to which
we can identify the variance of each rate, sl and sb (figure
3b,e), is limited, it is clear that sl . 0:057 (lower bound on
a 95% CrI), providing evidence to suggest heterogeneity in
the internalization rate. While p has the same interpretation
between the heterogeneous and homogeneous models, the
estimates from the heterogeneous model, p ¼ 4:7% (95% CrI
(3.0%, 6.5%)), are lower with a greater amount of uncertainty
than in the homogeneous model.

In figure 5, we plot the inferred distributions of R, λ and
β; that is, distributions describing cell-to-cell variability that
are able to model realizations consistent with the exper-
imental data. To visualize uncertainty in estimates of these
distributions, we show a 95% credible internal (CrI) for
the univariate probability density functions by resampling
from the posterior distribution. Compared to distributions
of the dynamical parameters λ and β, the distribution of
the relative receptor count, R, is identified with much
greater precision (figure 5a). R does not feature in the dyna-
mical model and is, therefore, less sensitive to issues relating
to model misspecification. While results in figure 3j–l show
relatively large uncertainty in the correlations between
parameters, it appears likely that the receptor count and
recycling rate are negatively correlated (83% of posterior
samples have ρRβ < 0). Parameters identified in the
homogeneous model based on GMFI measurements are
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contained within high-density regions of the inferred distri-
butions in the heterogeneous model. This is also the case
when estimates are compared to bivariate distributions in
figure 5d–f; however, the interpretation of the homogeneous
model parameters in the context of data with significant
heterogeneity is unclear, highlighting the importance of
modelling biological variability when interpreting flow
cytometry data of dynamical processes like internalization.

The data appear insufficient to distinguish between PMT
noise from each fluorescent channel. Initial examination of esti-
mates for the relative magnitude of the noise from the
quenchable (FIP-Cy5) and unquenchable (BODIPY FL) probe
signals in figure 3o–p suggests that the no-noise model may
be appropriate, lending the study to analysis of models that
assume negligible noise [35]. However, the joint distribution
of σ1 and σ2 (figure 3s) reveals an elliptical region, suggesting
that the model requires PMT noise in the signal from at least
one probe. Similar phenomena are observed in error-in-
variables or total-least-squares problems, where errors are
introduced in both independent and dependent variables,
and only the ratio of the error variances is identifiable [51].
2.7. Model predicts unobservable measurements
A primary goal of flow cytometry analysis is to quantify the
amount of fluorescent material present in a sample. In
the context of an internalization assay, we are interested in
the proportion of material internalized through time. By
accounting for variability introduced through receptor
count, PMT noise and autofluorescence, we are able to
better quantify the amount, or proportion internalized, of
antibody compared with standard approaches.

Since it is not possible to collect noise-free data relating to
the joint distribution of I(t), provided from quenched
samples, and A(t), provided from sampled that are not
quenched, statistics such as the proportion of antibody inter-
nalized by each cell cannot be directly measured. Rather, such
statistics are typically estimated as

IfracðtÞ ¼ IGMFIðtÞ
AGMFIðtÞ , ð2:14Þ

where IGMFI(t) and AGMFI(t) are scalar estimates of the aver-
age proportion of internal and total antibody estimated
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using GMFI [7]. Using our calibrated heterogeneous model,
we can predict the distribution of material internalized
through time by simulating the model with sources of noise
removed. In figure 6a, we show the time evolution of the
distribution of I(t)/A(t) at the model best fit, along with the
equivalent prediction from the homogeneous model. In
figure 6b, we repeat this exercise for the total relative
amount of antibody internalized, I(t). To understand uncer-
tainty in these distributions, in figure 6c, we show the time
evolution of the distribution of I(t)/A(t) alongside credible
intervals formed by resampling parameters from the
posterior distribution.

While our analysis revealed that several parameters
are non-identifiable, or cannot be constrained to a relative
precise interval, we are still able to produce relatively precise
predictions of statistics such as the proportion of material
internalized. Results in figure 6c show a discrepancy between
predictions from the homogeneous and heterogeneous
models. Aside from very early time, when the distribution
of material internalized is relatively wide, the homogeneous
model predictions lie within the lower tail of the predicted
distribution. This is consistent with the discrepancy we
observe in estimates of p between models: the heterogeneous
model predicts that antibody disassociation and receptor
recycling is rarer that what is predicted by the homogeneous
model. This results in a smaller proportion of surface-bound
antibody at late time.

Using the inferred joint distribution of λ and β we can
build a picture of the proportion of receptors present on the
cell surface at equilibrium (i.e. at the start of the experiment),
S(0) (equation (2.4)). In figure 6d, we show the inferred distri-
bution of S(0) at the model best fit, along with the uncertainty
associated with the estimate and that predicted by the homo-
geneous model. While we have not precisely estimated this
distribution, it is clear that, on average, a smaller number of
receptors are present on the cell surface than not, in agreement
with the prediction of the homogeneous model of 31%. We
also see that the inferred distribution is highly variable; at
the best fit, for example, non-zero density at zero suggests
that some cells have a very small proportion of receptors on
the surface, perhaps due to inhibition of recycling. In figure
6e, we show the inferred relationship between S(0) and R at
the best fit. This result suggests that cells with a larger
number of receptors—which may correlate to cells in latter
stages of the cell cycle—have fewer surface-bound receptors.

3. Discussion
Heterogeneity is ubiquitous in cell processes such as the
internalization of material, yet the phenomenon is poorly
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understood and often ignored. Paired with experimental pro-
tocols that probe these processes, flow cytometry is capable of
generating vast quantities of single-cell snapshot data that
capture cell-to-cell variability. Often, such data are summar-
ized with point statistics that provide information about the
transient behaviour to the detriment of acknowledging varia-
bility between otherwise homogeneous cells. In this study,
we develop a mathematical model of internalization that
captures dynamical behaviour, biological variability, and
measurement noise of arbitrary magnitude. We apply our
model to identify key sources of biological variability in
the internalization of anti-TFR antibody by C1R B-cell
lymphoblastoid cells.

While computationally costly, our distribution-matching
ABC approach to inference carries several advantages over
likelihood-based approaches; for example, those based on
Bayesian hierarchical models or those that model cell proper-
ties as a finite mixture [39]. Firstly, ABC is robust to model
error, incorporating uncertainty due to factors that are not
explicitly modelled [52] by approximating the likelihood
through an acceptance criterion that allows for an imperfect
(i.e. d( · , · ) > 0) match between simulated and observed
data. This might include the relatively small discrepancies
we observe in figure 4 that highlight potential model-
misspecification as well as error introduced experimentally,
such as the precise measurement time and the time at
which internalization is ceased.
Secondly, the distribution-matching approach allows the
interpretation of pre-processed or summarized data, in con-
trast to typical techniques that require single-cell-level data.
Automatic clustering algorithms [53–55] are an alternative
to manual gating and provide an opportunity to analyse
the parametric mixture distributions identified algorithmi-
cally, rather than relying on accurate classification of
individual data points to perform analysis on the underlying
data. Matching distributions rather than single-cell obser-
vations also carries a computational advantage, as, aside
from initial data pre-processing, the approach is independent
of the sample size.

Lastly, since ABC relies only on model simulations, our
approach is agnostic to the complexity of the underlying
measurement model and the signal-to-noise ratio. While
the signal-to-noise ratio in our data is relatively high
(demonstrated by the high correlation between BODIPY
FL and FIP-Cy5 measurements in figure 1d ), this is not
always the case. In particular, flow cytometry measurements
are often corrupted by autofluorescence and bleed-through
from overlapping emission spectra. In our framework,
both sources of extrinsic variability can be built into the
probabilistic observation process that relates antibody con-
centration to flow cytometry measurements (equations
(2.8)–(2.11)), or accounted for using pre-processing software
where the compensated distributions are analysed rather
than the underlying data.
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Working with single-cell snapshot data collected using
flow cytometry provides little to no information about the
joint distribution of antibody concentration in individual
cells between time points, potentially explaining why infer-
ences relating to heterogeneity in dynamical parameters
are relatively imprecise. Additional results in figure 7 illus-
trate the predicted dependence in internalized antibody
concentration between early (10min) and late (120min)
observation times, denoted by Q(10) and Q(120), respectively.
An interpretation of model predictions with higher fitted
correlations between Q(10) and Q(120) is that single-cell
trajectories remain ordered: cells with a relatively lower pro-
portion of antibody internalized at t = 10 min retain a
relatively lower proportion at t = 120 min. Therefore, it is
unclear from single-cell snapshot data (figure 7b) whether
cell trajectories remain ordered or whether cells can ‘catch
up’; that is, whether cells that are initially slow to internalize
material end up with a large amount internalized at later time
points. Intuitively, assuming that such a correlation is strong
(i.e. trajectories remain ordered) strongly impacts inferences.
Our results in figure 7c,d show that making such an assump-
tion narrows uncertainty in the distribution of recycling rates
to distributions where cells that do not recycle (i.e. βi = 0) are
rare. Single-cell trajectory data, collected through fluor-
escence microscopy [7], for example, could be applied in
future to validate predictions relating to the joint distri-
butions of fluorescence between time points, in addition to
validating the inferred distributions for receptor count and
the internalization and recycling rates.

Aside from stochastic variations between otherwise
genetically identical cells—due to gene expression [56], for
example—variability in internalization is at least partially
driven by the cell cycle [57,58]. Therefore, we might expect
lower internalization and recycling rates in cells preparing to
undergo mitosis which, therefore, have a larger number of
receptors. This is also suggested by results relating to the
best fit in figure 5, which show that the internalization and
recycling rates decrease with the number of receptors. A limit-
ation of our model is that we cannot capture non-Gaussian
dependence between the dynamical rate parameters without
modelling subpopulations through a finite-mixture approach,
which would significantly increase the dimensionality of the
parameter space. For example, the dependence between R
and λmay not be Gaussian, or even monotonic: internalization
by cells in very late stages of the cell cycle might be inhibited,
whereas in general, larger cells may internalize material more
quickly [59]. Distribution-free approaches [39] might better
capture the dependence structures in these cases. However,
given that our model is already able to match the experimental
data, adding complexity will exacerbate parameter non-
identifiability. Therefore, further work should focus on
experimental design [60]; by inhibiting recycling, pre-sorting
cells to remove variability in R or working with single-cell
trajectory data.

Our analysis demonstrates that inferences drawn using
approaches that neglect heterogeneity can be misleading. In
particular, the interpretation of predictions and parameter
estimates from the homogeneous model are mathematically
unclear. Generally, realizations of the homogeneous model
do not represent the mean of realizations of the hetero-
geneous model, nor do they represent realizations where
parameters in the heterogeneous model are first averaged
[36]. While, in our case, parameters identified by the homo-
geneous model are contained within the distribution
identified by the heterogeneous model, the homogeneous
model produces biased predictions that are not representative
of the entire population (figure 6). These findings highlight a
need to co-develop mathematical tools that account for
biological variability in analysis of single-cell data.

A better understanding of heterogeneity in internalization
has important implications for drug delivery [5,19], in
addition to our understanding of pathological processes,
such as the internalization of viruses [61,62]. In this study,
we develop a novel quantitative model that captures biologi-
cal variability in internalization using arbitrarily noisy flow
cytometry data. In contrast to conventional approaches, we
can produce predictions that give insight into the variability
in material internalized while accounting for inferential
uncertainty. Applying mathematical models that capture
biological variability allows practitioners to get the most
out of the vast amounts of single-cell data generated by
flow cytometry and other modern experimental tools.
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4. Methods
4.1. Cell culture
C1R cells, a human B cell lymphoblast cell line, were cultured in
Dulbecco’s modified Eagle medium (DMEM) supplemented
with 10% FBS and 1% penicillin streptomycin, at 37°C in a
humidified 5% CO2 atmosphere.

4.2. Dual-labelled fluorescent internalization probe
Purified monoclonal IgG1 anti-human transferrin receptor anti-
body (OKT9) [63] was purchased from WEHI Antibody Facility.

The antibody was labelled with two fluorescent dyes:
BODIPY FL and FIP-Cy5. For this, anti-TFR antibody was
incubated with BODIPY FL-NHS ester and incubated at 4°C
overnight. BDP FL-labelled antibody was purified using a 7K
MWCO Zeba spin desalting column (Thermo Scientific). The
antibody was then functionalized with dibenzylcyclooctyne
(DBCO)-NHS ester. Functionalized antibody was purified
using a 7K MWCO Zeba spin desalting column (Thermo Scienti-
fic), and incubated with azide-FIP-Cy5 at 4°C overnight [64]. The
dual-labelled antibody was purified using a 50K MWCOAmicon
filter (Merck, Millipore), and the degree of labelling was
measured by a NanoDrop UV–visible spectrophotometer.

4.3. Internalization assay
SHIP internalization assays were performed by incubating the
cells with dual-labelled anti-TFR antibody in DMEM containing
0.1% FBS at 37°C for different time points. After incubation, cells
were washed thrice with cold PBS and resuspended in
propidium iodide with or without quencher (1 μM), as described
previously [64]. Cells were analysed using a Stratedigm
S1000EON flow cytometer and FlowJo 10.8.0.

Data accessibility. Code and data are available on GitHub at https://
github.com/ap-browning/internalisation.

The data are provided in electronic supplementary material [65].
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