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1  | INTRODUC TION

Working memory (WM) refers to the temporary holding, pro‐
cessing and manipulation of information in one's mind. Dopamine 

transmission in the prefrontal cortex (PFC) is critically involved in 
WM, as evidenced from electrophysiological and pharmacological 
studies in animals (Brozoski, Brown, Rosvold, & Goldman, 1979; Levy 
& Goldman‐Rakic, 2000) and neuroimaging (Cropley, Fujita, Innis, & 
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Abstract
Dopamine transmission in the prefrontal cortex (PFC) supports working memory 
(WM), the temporary holding, processing and manipulation of information in one's 
mind. The gene coding the catechol‐O‐methyltransferase (COMT) enzyme, which 
degrades dopamine, in particular in the PFC, has a common single nucleotide pol‐
ymorphism leading to two versions of the COMT enzyme which vary in their en‐
zymatic activity. The methionine (Met) allele has been associated with higher WM 
performance and lower activation of the PFC in executive function tasks than the 
valine (Val) allele. In a previous study, COMT genotype was associated with perfor‐
mance on verbal and visuospatial WM tasks in adults, as well as with performance 
on a novel social WM paradigm that requires participants to maintain and manipulate 
information about the traits of their friends or family over a delay. Here, data col‐
lected in children and adolescents (N = 202) were compared to data from the adult 
sample (N = 131) to investigate possible age differences in genetic associations. Our 
results replicate and extend previous work showing that the pattern of superior WM 
performance observed in Met/Met adults emerges during development. These find‐
ings are consistent with a decrease in prefrontal dopamine levels during adolescence. 
Developmentally moderated genetic effects were observed for both visuospatial 
and social WM, even when controlling for non‐social WM performance, suggesting 
that the maintenance and manipulation of social information may also recruit the 
dopamine neurotransmitter system. These findings show that development should 
be considered when trying to understand the impact of genetic polymorphisms on 
cognitive function.
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Nathan, 2006; Fischer et al., 2010; McNab et al., 2009; Ziermans et 
al., 2012) and pharmacological studies in humans (e.g. Mehta et al., 
2000; Müller, von Cramon, & Pollmann, 1998). This research has led 
to the suggestion that prefrontal dopamine facilitates the stabiliza‐
tion of information in WM (Cools & D’Esposito, 2011; de Frias et 
al., 2010), and that PFC functioning and WM performance follow 
an inverted U‐shaped function, whereby both deficient and exces‐
sive amounts of prefrontal dopamine activity predict poor task per‐
formance (Arnsten, 1997; Cools & D’Esposito, 2011; Vijayraghavan, 
Wang, Birnbaum, Williams, & Arnsten, 2007).

Another approach to study the role of neurotransmitter systems 
in cognition is through the study of common genetic polymorphisms. 
The gene coding for the catechol‐O‐methyltransferase (COMT) 
enzyme, which mediates the degradation of catecholamines, in 
particular dopamine, has been a gene of particular interest in the 
study of WM and executive functions more broadly. The rs4680 
Valine158Methionine (Val158Met) single nucleotide polymorphism 
(SNP) leads to a reduction in COMT enzymatic activity in Met carri‐
ers (Chen et al., 2004; Männistö & Kaakkola, 1999; Weinshilboum, 
2006). The Met allele has been shown to be associated with supe‐
rior WM performance (Diaz‐Asper et al., 2008; Dumontheil et al., 
2011; Goldberg et al., 2003), and reduced PFC activation has been 
observed during executive function tasks (Dickinson & Elvevåg, 
2009; de Frias et al., 2010; Mier, Kirsch, & Meyer‐Lindenberg, 2010; 
Tunbridge, Harrison, & Weinberger, 2006; Witte & Flöel, 2012), al‐
though no meta‐analytic support was found for these neuroimaging 
findings (Nickl‐Jockschat, Janouschek, Eickhoff, & Eickhoff, 2015). 
Interestingly, pharmacologically increasing dopamine concentra‐
tions by administrating amphetamine (which increases dopamine 
release), or tolcapone (a COMT inhibitor) to healthy adults leads to 
worsened WM performance and increased PFC activation in Met/
Met individuals, while performance improves in Val/Val individ‐
uals (Giakoumaki, Roussos, & Bitsios, 2008; Mattay et al., 2003). 
These pharmacological manipulation studies suggest that Met/Met 
individuals have dopamine levels enabling optimal PFC function‐
ing, while the lower dopamine levels of Val/Val individuals may be 
suboptimal (Meyer‐Lindenberg & Weinberger, 2006). However, the 
association between rs4680 and WM performance has not always 
been consistently observed (e.g. Blanchard, Chamberlain, Roiser, 
Robbins, & Müller, 2011) and depends on the population studied and 
the specific paradigm used (see Barnett, Scoriels, & Munafò, 2008, 
for meta‐analysis, and Dickinson & Elvevåg, 2009; Witte & Flöel, 
2012, for reviews).

Research in the past has typically distinguished between ver‐
bal and visuospatial WM, referring to the nature of the information 
being maintained. Social WM is the ability to store and manipulate 
information about other people (Meyer, Spunt, Berkman, Taylor, & 
Lieberman, 2012; Meyer, Taylor, & Lieberman, 2015). While verbal 
and visuospatial WM tasks are associated with increased activa‐
tion in the lateral fronto‐parietal cortex (Owen, McMillan, Laird, & 
Bullmore, 2005; Rottschy et al., 2012; Van Overwalle, 2009), so‐
cial cognition tasks, in particular those requiring the processing of 
one's own or other's mental states (mentalizing) are associated with 

increased activation in the medial PFC, temporal cortex, and precu‐
neus or posterior cingulate cortex (Van Overwalle, 2009), a network 
of brain regions often referred to as the “social brain” (Frith & Frith, 
2010). Using neuroimaging, Meyer and colleagues (Meyer et al., 
2012, 2015) have demonstrated that, during a social WM task, both 
the medial and lateral fronto‐parietal systems show WM load‐de‐
pendent increases in activation, suggesting that the social brain and 
typical WM systems work in parallel to support social WM.

The PFC undergoes prolonged structural and functional changes 
during adolescence (Crone & Dahl, 2012), and is associated with the 
continued maturation of a range of PFC‐mediated cognitive pro‐
cesses, including both WM and social cognition (Burnett, Sebastian, 
Cohen Kadosh, & Blakemore, 2011; Dumontheil, 2016; Luna, 
Padmanabhan, & O’Hearn, 2010). Behavioural and neuroimaging 
studies of the development of complex aspects of social cognition, 
such as perspective‐taking (Dumontheil, Hillebrandt, Apperly, & 
Blakemore, 2012; Dumontheil, Küster, Apperly, & Blakemore, 2010) 
and social decision‐making (Blakemore & Robbins, 2012; Burnett et 
al., 2011; Magis‐Weinberg, Blakemore, & Dumontheil, 2017), sug‐
gest that developments in executive functions and social cognition 
mutually influence each other. Thus, the improved integration of so‐
cial cognitive and fronto‐parietal systems in adolescence may also 
contribute to developmental advances in other aspects of cognition 
that require the integration of social cognition with more domain‐
general cognitive control processes, such as social WM.

Little is known of the role of dopamine in social cognition 
(Skuse, 2006; Skuse & Gallagher, 2011). However, we have pre‐
viously shown that the rs4680 variant of COMT was associated 
with individual differences in performance of a social WM task in 
adults (Dumontheil et al., 2014). Importantly, the association was 
maintained when performance on standard verbal and visuospa‐
tial WM tasks was covaried out. These results, in parallel with the 

Research Highlights
•	 A group of 220 children and adolescents were compared 

to a previously studied sample of 131 adults on three 
working memory (WM) tasks.

•	 Participants were genotyped for the common rs4680 
variant of gene coding the catechol‐O‐methyltrans‐
ferase (COMT) enzyme, which affects prefrontal dopa‐
mine transmission.

•	 The association between COMT genotype and visu‐
ospatial WM performance emerged during ado‐
lescence, replicating previous findings, a pattern 
consistent with decreasing prefrontal dopamine levels 
during development.

•	 We further observed that the association between so‐
cial WM and COMT genotype also changes during de‐
velopment, demonstrating a possible involvement of 
dopamine neurotransmission in social cognition.
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neuroimaging studies by Meyer and colleagues (Meyer et al., 2012, 
2015), provide tentative evidence that the dopamine neurotrans‐
mitter system may also be involved in supporting social WM pro‐
cessing within the social brain.

Animal studies have suggested that there are significant 
changes occurring in the dopamine neurotransmitter system during 
development. Dopamine cell density in the rhesus PFC decreases 
by up to 50% from the onset of adolescence to late adulthood 
(Goldman‐Rakic & Brown, 1981), and basal dopamine levels, do‐
paminergic turnover and dopaminergic input in the PFC peak in 
early adolescence and decline thereafter in other animal studies 
(Andersen, Dumont, & Teicher, 1997; Rosenberg & Lewis, 1994, 
1995; Teicher et al., 1993). Research has also suggested that there 
are peaks in D1 and D2 dopamine receptor expression around pu‐
berty in rats, with a decline in receptor numbers that occurs later 
in the PFC than in the striatum (see McCutcheon & Marinelli, 2009, 
for review). There are very few studies investigating developmen‐
tal changes in the dopamine neurotransmitter system in humans. A 
post‐mortem study has shown a very early peak (age 2 years) in D1 
receptor density in the striatum, with a slow decrease in density 
during subsequent decades (Seeman et al., 1987). Another post‐
mortem study found that linear decreases with age in mRNA ex‐
pression and/or protein levels of dopamine receptors D2, D4 and 
D5, tyrosine hydroxylase and COMT in the dorsolateral PFC were 
driven by early decreases in the first few months or years of life 
(Rothmond, Weickert, & Webster, 2012). The only differences ob‐
served in later development were increases in dopamine receptor 
D1, monoamine oxidase (MAO)‐A and MAO‐B protein levels be‐
tween 6–12 and 14–17 years of age or adulthood, and an increase 
in MAO‐B mRNA expression between 14 and 17 years of age and 
adulthood (Rothmond et al., 2012). A positron emission tomogra‐
phy study showed a decrease in D1 binding potential during adoles‐
cence in the dorsolateral PFC, while no changes were observed in 
the ventral or dorsal striatum (Jucaite, Forssberg, Karlsson, Halldin, 
& Farde, 2010). Overall, these studies suggest there are changes 
in the dopamine neurotransmitter system during development, but 
that the pattern of changes is complex and does not appear to be 
consistent across species. It has been argued, mostly based on the 
animal data, that there may be a peak in dopamine availability in 
the human pubertal period, relative to inhibitory serotonin levels, 
and that this may explain adolescent specific behaviours such as 
heightened impulsivity and novelty‐seeking (Chambers, Taylor, & 
Potenza, 2003; Luna, Marek, Larsen, Tervo‐Clemmens, & Chahal, 
2015; Padmanabhan & Luna, 2014; Wahlstrom, Collins, White, 
& Luciana, 2010; Wahlstrom, White, & Luciana, 2010). However, 
more research is needed in humans.

Findings consistent with changes in neurotransmitter systems 
during development have come from cognitive and neuroimaging 
studies using genetic polymorphisms of the serotonin and dopa‐
mine system. In a sample of 48 participants aged 9–19  years, ac‐
tivity in the amygdala and connectivity between the amygdala and 
the medial ventral PFC differed as a function of age and serotonin 
transporter genotype, with the low expressing genotype showing 

increasing activity and decreasing connectivity with age (Wiggins 
et al., 2014). In another study, Wahlstrom et al. (2007) estimated 
WM in 9–17  year olds using a composite score combining perfor‐
mance in digit and spatial forward and backward span tasks and 
a delayed visuospatial response task. COMT Val carriers showed 
poorer WM performance than Met homozygotes, in contrast to 
previous findings in adults (Diaz‐Asper et al., 2008; Goldberg et al., 
2003). Dumontheil et al. (2011) later demonstrated in a longitudinal 
sample that the adult pattern of lower WM capacity and higher lat‐
eral PFC recruitment during a visuospatial WM task in Val carriers 
emerged during development, rather than being stable over child‐
hood, adolescence and early adulthood. These data were considered 
to support the presence of higher levels of basal dopamine in late 
childhood and adolescence than in adulthood, leading to a shift of 
the position of the COMT genotypes on the inverted U‐shape func‐
tion linking PFC functioning and dopamine levels (Dumontheil et al., 
2011; Wahlstrom et al., 2007; Wahlstrom, Collins, et al., Wahlstrom, 
Collins, et al., 2010; Wahlstrom, White, et al., 2010).

The present study used genetic variation in COMT to further 
investigate the dopamine neurotransmitter system during develop‐
ment. Data were collected from a sample of children and adoles‐
cents aged 9–18  years old and compared to previously collected 
and published data from a sample of adults aged 20–39 years old 
(Dumontheil et al., 2014; Kilford, Dumontheil, Wood, & Blakemore, 
2015; Magis‐Weinberg et al., 2017). We first aimed to replicate pre‐
vious findings of an interaction between age and COMT genotype on 
the performance of a visuospatial WM task (Dumontheil et al., 2011). 
Second, we investigated whether this interaction was also observed 
in a verbal WM task, as suggested by results in a sample of 9–17 year 
olds (Wahlstrom et al., 2007), following up the genetic effects we 
previously observed in an adult sample (Dumontheil et al., 2014; 
Kilford et al., 2015). Finally, we investigated whether a similar pat‐
tern would be observed in a social WM task, over and above genetic 
effects on standard WM, as this would suggest that the influence of 
dopaminergic genetic variation on social WM also changes between 
childhood, adolescence and adulthood.

2  | METHODS

2.1 | Participants

We recruited 161 healthy adult participants (20–39  years old, 83 
males) via University College London (UCL) volunteer databases; 218 
child and adolescent participants (9–18 years old, 97 males) were re‐
cruited in schools in and around London. The study was approved by 
the UCL Research Ethics Committee, all adult participants gave writ‐
ten informed consent, while written informed consent was obtained 
from the parent or guardian of the child and adolescent participants 
and verbal assent was obtained from these participants themselves. 
Participants were individually tested in a quiet room either in the 
laboratory or in the participant's school on a battery of tests, which 
included the WM tasks and the vocabulary subtest of the Wechsler 
Abbreviated Scale of Intelligence (WASI; Wechsler, 1999). The adult 
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data were previously analysed and published in Dumontheil et al. 
(2014) and Kilford et al. (2015).

2.1.1 | Participant exclusions

Two adolescent participants were excluded because of a diagnosis 
of a developmental disorder: one had Turner syndrome, the other 
had Asperger Syndrome. A further nine adolescents were excluded 
because of missing genetic data (six did not provide a saliva sample, 
DNA extraction failed for two, and genotyping failed for one partici‐
pant), and seven adults were excluded because of failed genotyping. 
The frequency of many genetic variants, including COMT, varies con‐
siderably across populations (Palmatier, Kang, & Kidd, 1999). Global 
allele frequency distributions reveal that the Val allele at COMT is 
significantly more frequent in East Asian populations (including 
China and Japan) compared to European, African and Southwest 
Asian populations (Palmatier et al., 1999). Thus, East Asian popula‐
tions may have a different ancestral haplotype of COMT (DeMille et 
al., 2002). East Asian participants in our sample (n = 6 adolescents, 
n = 22 adults) had indeed a greater frequency of the COMT Val allele 
than the other ethnicities, and were therefore excluded to make the 
distribution of genotypes more homogeneous. This gave a sample 
of 333 participants (202 adolescents, 131 adults; see Table 1), al‐
though final sample sizes were slightly smaller for individual tasks 
and measures because of task‐specific exclusions (described in 2.3 
Behavioural assessments).

2.1.2 | Matching of age and genotypic groups

Effects of COMT genotype were investigated using the Val allele 
dominant genotype grouping (0: Met/Met, 1: Val carriers) that was 
found to show association with performance in our analyses of the 
adult data (Dumontheil et al., 2014), and has been shown in previous 
studies to be the most effective model for explaining the influence 
of COMT variance on behaviour (Barnett et al., 2008; Dumontheil 
et al., 2011). Effects of age were explored by comparing adolescent 
(age range: 9.0–18.0  years) and adult (age range: 20.3–39.4  years) 

participant groups, to minimize the need to match genotype and gen‐
der groups at the finer grained scale needed for continuous analyses 
of age effects. Additional exploratory post hoc analyses are presented 
in the Supplementary Materials, in which all three COMT genotypes 
are compared (Met/Met; Val/Met; Val/Val), or age is modelled as a 
continuous variable across the whole sample or within the adolescent 
sample only, to facilitate comparison with the results of other studies.

Group‐matching analyses were performed on the final sample 
with genetic data but without considering task‐specific exclusions 
(n = 333). One‐way ANOVAs on age data indicated that the genotype 
groups (Met/Met vs. Val carriers) were matched in the adolescent 
group (F(1,200) = 0.203, p = .653), while Val carriers were significantly 
older than Met/Met individuals in the adult group (F(1,129) = 5.120, 
p  =  .025; Table 1). Previous analyses of the adult sample showed 
that these age differences did not affect genetic association results 
(Dumontheil et al., 2014; Kilford et al., 2015), and therefore age 
was not included as a covariate. However, for completeness, we in‐
clude an additional analysis in which the adult COMT groups were 
matched for age in the Supplementary Materials. Gender distribu‐
tion was matched between the age groups (adolescents vs. adults; 
χ2(1) = 0.172, p = .678), and within each age group there was no dif‐
ference in gender distribution between the genotype groups (ado‐
lescents: χ2(1) = 1.565, p = .211; adults: χ2(1) = 2.918, p = .088). The 
same pattern of results was observed in the smaller social WM task 
sample.

A 2 (age group)  ×  2 (genotype) ANOVA on the verbal IQ data 
indicated no main effect of age group (p = .405, ηp

2 = 0.002), no main 
effect of genotype (p = .854, ηp

2 < 0.001), and no significant interac‐
tion (p = .431, ηp

2 = 0.002). This was also the case in the smaller so‐
cial WM task sample. The age and genotype groups were therefore 
considered sufficiently matched and IQ was not included in further 
analyses.

In terms of ethnicity, 154 of the adolescents were Caucasian, 
44 were not (7 Black (African or Caribbean), 26 Asian (not East 
Asian), 10 Mixed Asian (not East Asian) and Caucasian, two Other 
(not specified) and three did not provide ethnicity information). 
In the adult sample, 87 were Caucasians, 43 were not (13 Black 

Age group COMT genotype n (male/female) Age M (SD)
Verbal IQa 
M (SD)

Adolescents Met/Met 49 (19/30) 13.13 (1.99) 113.7 (12.7)

Val carriers 153 (75/78) 13.28 (2.05) 115.2 (11.8)

All 202 (94/108) 13.24 (2.03) 114.8 (12.0)

Adults Met/Met 38 (23/15) 25.22 (3.19) 113.6 (12.0)

Val carriers 93 (41/52) 26.90 (4.09) 112.7 (12.9)

All 131 (64/67) 26.41 (3.91) 112.9 (12.6)

Total Met/Met 87 (42/45) 18.41 (6.56) 113.6 (12.3)

Val carriers 246 (116/130) 18.43 (7.26) 114.2 (12.3)

All 333 (158/175) 18.42 (7.07) 114.1 (12.3)

Note: The n was smaller for individual tasks and measures because of task‐specific exclusions.
aFour adults were missing Verbal IQ data (1 Met/Met, 3 Val carriers). 

TA B L E  1   Participant demographics
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(African or Caribbean), three Mixed Black and Caucasian, 21 Asian 
(not East Asian), two Mixed Asian (not East Asian) and Caucasian, 
four Other (not specified) and one did not provide ethnicity infor‐
mation). A chi‐square test indicated that there was a significantly 
greater proportion of Caucasians in the developmental (77.4%) 
than the adult sample (66.9%; χ2(1) = 4.394, p = .036). There was 
also a significantly greater proportion of Caucasians in the Met/
Met group (72 vs. 13, 84.7%) than in Val carriers (169 vs. 75, 
69.3%; χ2(1) = 7.674, p = .006). Analyses were therefore repeated 
with the inclusion of ethnicity (Caucasian vs. non‐Caucasian) as 
a covariate (the four participants with missing ethnicity were not 
included in these analyses).

2.2 | Genetic analysis

Saliva samples were collected using OG‐500, Oragene‐DNA self‐
Collection Kit, Oragene.DNA, as per protocol suggested by Oragene.
DNA (DNA Genotek Inc.; http://www.dnage​notek.com/ROW/pdf/
PD-BR-017.pdf). Adult DNA was extracted from saliva samples 
at the Department of Molecular Neuroscience at the Institute of 
Neurology, UCL, while child and adolescent DNA was extracted at 
the Molecular Psychiatry Laboratory, UCL. DNA was extracted using 
the OG‐L2P DNA extraction kit (DNA Genotek Inc.) as per protocol 
suggested by Oragene.DNA (http://www.dnage​notek.com/US/pdf/
PD-PR-006.pdf).

The analysis of the SNP was carried out by AROS, University of 
Aarhus, Denmark. The COMT rs4680 SNP in exon 4 of the gene was 
characterized by an A/G substitution, which causes the Val158Met 
polymorphism. The SNP was determined using the TaqMan‐based 
genotyping technology from Applied Biosystems. Reactions and 
analysis were performed in a 384‐well plate format. All samples 
were normalized to 5 ng/µl of DNA. The reaction components for 
each genotyping reaction were as follows: 2.5  µl TaqMan master 
mix, 0.25 µl TaqMan assay X20, 1.25 µl water resulting in a total 
volume of 4.0 µl + 1 µl template genomic DNA with a concentration 
of 5 ng/µl. The reaction was analysed using an Applied Biosystems 
7900 Fast RT‐PCR instrument. Included in the analysis were three 
negative controls (no template control) and five positive controls 
(known DNA samples and known SNP assays). The genotyping was 
validated using a set of five control samples with genotype data 
available through the Coriell Institute for Medical Research. There 
was a 100% concordance with the data from Coriell Institute for 
Medical Research.

We observed an allele frequency distribution of 0.475 Met and 
0.525 Val in adolescents, 0.515 Met and 0.485 Val in adults, and 
0.491 Met and 0.509 Val in the whole sample, which is comparable 
to previously reported allele frequency distributions of 0.48 Met and 
0.52 Val (Hapmap European sample, http://www.ncbi.nlm.nih.gov/
SNP/snp_ref.cgi?rs=4680). The allelic distribution of COMT was in 
Hardy‐Weinberg equilibrium in adolescents (χ2(1) = 0.91, p = .341), 
adults (χ2(1)  =  1.27, p  =  .260) and the whole sample (χ2(1)  =  2.17, 
p = .140).

2.3 | Behavioural assessments

Participants were tested on the three WM tasks in this order: (a) 
social trait‐ranking WM task (Meyer et al., 2012), (b) visuospatial 
WM grid task (Dumontheil et al., 2011); and (c) backwards digit 
span task. The social trait‐ranking WM task and visuospatial WM 
were computerized and developed in MatLab with experimental 
stimuli designed in Cogent graphic (http://www.vislab.ucl.ac.uk/
cogent_graph​ics.php). Two additional computerized tasks, not 
described here, were performed by the participants between the 
first two WM tasks (see Kilford et al., 2015; Magis‐Weinberg et al., 
2017 for analyses of these tasks). The testing session ended with 
the completion of the vocabulary subtest of the WASI (Wechsler, 
1999) and collection of the saliva sample, taking approximately 
1 hr in total.

2.3.1 | Backwards digit span task

The backwards digit span task measures verbal WM for numerical 
information. Participants were presented with sequences of digits 
of increasing load (number of digits in the sequence), which they had 
to repeat in the reverse order. There was a maximum of four trials 
at loads 3, 4 and 5 and two trials at load 7. Correct reversal of three 
of four trials was required to start the next load level. The score was 
the total number of correct reversals, out of a total of 14 trials. One 
adult participant had a score of 0, which was further than 3 SD away 
from the mean score over the whole sample, and was therefore ex‐
cluded (final n = 332).

2.3.2 | Visuospatial WM task

The visuospatial WM task measures spatial WM for visually pre‐
sented stimuli and was adapted from the Dot Matrix test of the 
Automated WM Assessment (Alloway, 2007). The task required 
participants to remember and replicate the order and location of 
sequences of dots presented one by one in a four by four grid. 
Each dot was presented for 600  ms, with a 300  ms interval be‐
tween dots. Each sequence of dots was followed by a short delay 
(1.5 s), after which participants reproduced the sequence using a 
computer mouse. Trials varied in load depending on the number 
of dots in a sequence (between three and eight). There were four 
trials of each load condition and correct reversal of three trials 
was required to start the next load level. The score was the total 
number of correct sequence reproduction, out of a total of 24 tri‐
als. Reaction time (RT) was recorded from the beginning of the 
response phase to the last response and divided by the number of 
dots in the trial. Data were overwritten and lost for one adolescent 
participant. There were no outliers on the visuospatial WM score 
(final n = 332), however, three participants (two adolescents, one 
adult) were slower than 3 SD above the mean visuospatial WM 
RT and were excluded from analyses including this measure (final 
n = 329).

http://www.dnagenotek.com/ROW/pdf/PD-BR-017.pdf
http://www.dnagenotek.com/ROW/pdf/PD-BR-017.pdf
http://www.dnagenotek.com/US/pdf/PD-PR-006.pdf
http://www.dnagenotek.com/US/pdf/PD-PR-006.pdf
http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs=4680
http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs=4680
http://www.vislab.ucl.ac.uk/cogent_graphics.php
http://www.vislab.ucl.ac.uk/cogent_graphics.php
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2.3.3 | Social trait‐ranking WM task

The social trait‐ranking WM task is a recently developed task that 
uses social stimuli within a standard WM task paradigm (Meyer et al., 
2012). Prior to the study, participants completed a questionnaire in 
which they named and rated 10 friends on 10 predefined personal‐
ity traits (e.g., funny, clever, helpful), using a rating scale from 0 to 
100. Forty trials were generated by combining the names of friends 
whose ratings varied by at least five points on a given personality 
trait. Trials were equally distributed between load 2 (two names) and 
load 3 (three names). On each trial, participants were first presented 
with a list of names, followed by a personality trait (e.g., “happy”). 
During a delay period, participants were asked to order, in a decreas‐
ing manner, in their head, the names on the list according to how 
much the personality trait applied to each of the names (i.e., the hap‐
piest friend would be at the top of the list; see Figure 1). We then 
collected a measure of participants’ WM manipulation by presenting 
a question such as “Second happy? Chloe”, which required a yes/no 
response using a right/left index finger key press. Participants were 
asked to answer as quickly and accurately as possible. Measures of 
accuracy (consistency between questionnaire and responses in the 
task) and RT (mean response time to the final question, averaged 
across loads 2 and 3) were calculated. Data were lost for 15 adoles‐
cent participants, not collected for six adolescent participants who 
did not complete the necessary initial questionnaire (one of whom 
also did not provide a saliva sample), and incomplete for one adoles‐
cent participant because of a computer malfunction (final n = 312). 
In addition, there were no outliers on accuracy, but two adult partici‐
pants responded on average faster than 3 SD below the mean RT and 
were excluded (final n = 310).

2.4 | Statistical analyses

Statistical analyses were carried out in SPSS version 24. Univariate 
ANOVAs were performed to investigate the effects of genotype 
(Met/Met, Val carriers) and age group (children and adolescents, 
adults) on task performance. Analyses were limited to the three 
measures which showed associations with COMT genotype in the 
adult sample (Dumontheil et al., 2014) to reduce the number of tests 
performed. Thus, the dependent variables were backwards digit 

score, visuospatial WM score and social WM mean RT. Bonferroni 
correction for three analyses led to a statistical threshold of p < .016. 
Gender was included as a between subject factor in all analyses. In 
addition, analyses were repeated by including ethnicity (Caucasian/
non‐Caucasian) as a covariate. All genetic effects remained signifi‐
cant (see Table 2), therefore, we report in the text and plot in rel‐
evant figures the estimated standardized means and standard errors 
obtained from the original ANOVAs (M ± SE).

Two‐way interactions between age group and genotype, the 
interaction of interest, were followed up using simple effects anal‐
ysis (Howell, 1997), with the prediction of an absent or inverted 
direction of the genotype effect in the developmental sample 
compared to the adult sample. We also split the sample by gen‐
otype to explore whether there were differences between age 
groups for each genotype. Finally, in order to investigate whether 
genetic effects on the social WM mean RT could be accounted 
by genetic effects on standard WM tasks, we repeated the social 
WM mean RT analyses and entered backwards digit span score, 
visuospatial WM score and visuospatial WM RT as covariates 
(Dumontheil et al., 2014).

3  | RESULTS

3.1 | Backwards digit span task

A univariate ANOVA with backwards digit span score as the depend‐
ent variable and age group, genotype and gender as independent 
variables revealed main effects of age group and gender (Table 2) 
with better performance in adults (10.82  ±  0.26; estimated mar‐
ginal means  ±  SE) than adolescents (8.06  ±  0.22) and in females 
(9.79 ± 0.24) than males (9.09 ± 0.24). There was no significant main 
effect of genotype and the interaction between age group and geno‐
type was not significant (Table 2, Figure 2a).

3.2 | Visuospatial WM task

The same analysis was performed for the visuospatial WM task data. 
Results showed again a significant main effect of age group, with better 
performance in adults (10.52 ± 0.35) than adolescents (8.51 ± 0.30) but 
no main effect of gender. The predicted interaction between age group 

F I G U R E  1   Social trait‐ranking working 
memory paradigm. Schematic description 
of the four phases of a load 3 trial, 
including timings
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and genotype was significant (Table 2). Simple effects analysis, indi‐
cated that the simple main effect of genotype was significant in adults 
(F(1,324) = 8.95, p =  .003, ηp

2 = 0.027, see Dumontheil et al., 2014), 
with better performance in Met/Met individuals than Val carriers, but 
not in adolescents (F(1,324) = 2.64, p =  .106) where the direction of 
effects was in the opposite direction (Figure 2b). Analysis of the simple 
main effect of Age group indicated that Met/Met adults had higher 
visuospatial WM scores than Met/Met adolescents (F(1,324) = 20.14, 
p < .001, ηp

2 = 0.059), while Val carriers adults and Val carriers adoles‐
cents did not differ (F(1,324) = 1.04, p = 0.308).

3.3 | Social trait‐ranking WM task

Analyses of the mean RT on the social trait‐ranking WM task 
showed very similar results to the analysis of the visuospatial WM 
task. There was a main effect of age group (Table 2), with faster RTs 
in adults (1,840 ms ± 34) than adolescents (2,085 ms ± 31), and a 
significant interaction between age group and genotype (Table 2). 
Similar to visuospatial WM, analysis of simple effects indicated that 
the effect of genotype was significant in adults (F(1,302)  =  7.12, 
p = .008, ηp

2 = 0.023, see Dumontheil et al., 2014), with faster RTs 

TA B L E  2  Results of univariate ANOVAs including age group, genotype and gender as independent variables for the key measure of each 
of the three tasks

 
Backwards digit span score 
(n = 332)

Visuospatial WM score 
(n = 332)

Social WM mean RT 
(n = 310)

Homogeneity of variance (Levene's test) n.s., p = .060 n.s., p = .616 n.s., p = .851

Age group F(1,324) = 67.00, p < .001, 
ηp

2 = 0.171
F(1,324) = 19.16, p < .001, 

ηp
2 = 0.056

F(1,302) = 28.67, p < .001, 
ηp

2 = 0.087

Genotype n.s., p = .242 n.s., p = .223 n.s., p = .230

Gender F(1,324) = 4.24, p = .040, 
ηp

2 = 0.013a
n.s., p = .804 n.s., p = .517

Age group × genotype n.s., p = .091b F(1,324) = 11.09, p = .001, 
ηp

2 = 0.033b
F(1,302) = 7.51, p = .007, 

ηp
2 = 0.024b

Age group × gender n.s., p = .411 n.s., p = .571 n.s., p = .812

Genotype × gender n.s., p = .430 n.s., p = .562 n.s., p = .980

Age group × genotype × gender n.s., p = .808 n.s., p = .927 n.s., p = .134

aThe main effect of gender does not survive Bonferroni correction for three analyses (p < .016). 
bWhen ethnicity (Caucasian/not Caucasian) was entered as a covariate the results were as follow: backwards digit span score: n.s., p = .083; visuospa‐
tial WM score: F(1,319) = 9.87, p = .002, ηp

2 = 0.030; social WM mean RT: F(1,297) = 7.03, p = .008, ηp
2 = 0.023. 

F I G U R E  2   Performance in the (a) backwards digit span task, (b) visuospatial working memory (WM) task and (c) social trait‐ranking WM 
task as a function of age group and COMT genotype. Shown here are estimated means and SE from the univariate ANOVAs, which included 
gender as a factor. The interaction between age group and COMT genotype was significant for the visuospatial (b) and social (c) WM tasks. 
Significant interactions were followed up by analysing the simple main effects. On both the visuospatial (b) and social (c) WM tasks, adult 
Met/Met individuals significantly outperformed adult Val carriers, whereas this effect was not observed in adolescents. *p < .05, **p < .01, 
***p ≤ .001
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in Met/Met individuals than Val carriers, but not in adolescents 
(F(1,302) = 1.30, p = .255), where the pattern was in the opposite 
direction (Figure 2c). Simple effects analyses also indicated that the 
difference in social WM RT between Met/Met adults and Met/Met 
adolescents was greater (F(1,302) = 22.10, p <  .001, ηp

2 = 0.068), 
than between adult and adolescent Val carriers (F(1,302)  =  6.60, 
p = .011, ηp

2 = 0.021; Figure 2c), a pattern similar to that observed 
in the visuospatial WM task. The interaction between genotype 
and age group remained significant when covarying for backwards 
digit score (p = .010), visuospatial WM score (p = .028; note this in‐
teraction does not survive Bonferroni correction for three analyses 
at p < .016) and visuospatial WM mean RT (p = .006), as did the main 
effect of age group (p's < .001).

4  | DISCUSSION

This is the first study using a common genetic polymorphism affect‐
ing the function of the COMT enzyme to probe the development 
the dopamine neurotransmitter system, through its involvement in 
social and non‐social WM. In a previous study, we demonstrated 
that variation at COMT was associated with performance on verbal 
and visuospatial WM tasks in adults (Dumontheil et al., 2014), find‐
ings consistent with the suggestion that Met/Met individuals have 
levels of dopamine in the PFC suitable for optimal WM performance 
(Meyer‐Lindenberg & Weinberger, 2006). Using a novel social WM 
paradigm, which requires participants to maintain and manipulate 
information about the traits of their family and friends over a delay, 
in our previous study we further demonstrated that social WM per‐
formance was also associated with variation at COMT, and that this 
association was not fully accounted for by individual differences 
in verbal or visuospatial WM (Dumontheil et al., 2014). Here, data 
collected in children and adolescents were compared with the data 
from this adult sample to investigate whether the genetic associa‐
tions were observed across ages. Our results replicate and extend 
previous work showing that the pattern of better WM performance 
in Met/Met individuals observed in adulthood emerges during 
development, which is consistent with a decrease in the levels of 
prefrontal dopamine during adolescence (Dumontheil et al., 2011; 
Jucaite et al., 2010; Wahlstrom et al., 2007).

Our first aim was to replicate the finding that the association 
between COMT genotype and visuospatial WM performance is 
not stable throughout childhood, adolescence and adulthood 
(Dumontheil et al., 2011; Wahlstrom et al., 2007; Wahlstrom, 
Collins, et al., Wahlstrom, Collins, et al., 2010; Wahlstrom, White, 
et al., 2010), reflecting underlying changes in the dopamine neu‐
rotransmitter system (Jucaite et al., 2010; Wahlstrom, White, et 
al., 2010). Indeed, we observed an interaction between COMT gen‐
otype and age group on the visuospatial WM task score, whereby 
while the Val allele was associated with poorer visuospatial WM 
in adulthood, this was not the case in childhood and adolescence. 
While performance of Val carriers did not differ between age 
groups, visuospatial WM performance was better in Met/Met 

adults than Met/Met children and adolescents. These results 
replicate those observed in a previous study using the same task 
in a longitudinal and cross‐sectional sample of participants aged 
6–25 years old (Dumontheil et al., 2011), where steeper improve‐
ments in performance with age were observed in Met/Met indi‐
viduals than Val carriers, leading to the emergence of the adult 
pattern of better visuospatial WM performance in Met/Met in‐
dividuals. It is also consistent with the neuroimaging results from 
that study, which again showed an interaction between genotype 
and age, and a gradual emergence of the adult pattern of COMT 
genotype differences in brain activation during executive func‐
tions task (e.g. de Frias et al., 2010; Dickinson & Elvevåg, 2009; 
Mier et al., 2010; Tunbridge et al., 2006; Witte & Flöel, 2012, but 
see null results of meta‐analysis by Nickl‐Jockschat et al., 2015). 
The pattern of findings observed in the current study, consistent 
with previous findings (Dumontheil et al., 2011; Wahlstrom et al., 
2007), is that children and adolescents who are Val carriers do 
not show deficits in visuospatial WM, in line with the improve‐
ment in performance observed in Val/Val adults administered 
amphetamine (Mattay et al., 2003). These results are therefore 
consistent with a decrease in prefrontal basal dopamine levels 
during adolescence (Dumontheil et al., 2014; Wahlstrom et al., 
2007; Wahlstrom, Collins, et al., Wahlstrom, Collins, et al., 2010; 
Wahlstrom, White, et al., 2010).

The second aim of the present study was to assess whether a 
similar developmental difference in COMT genotype effect could be 
observed for a verbal WM task. Although the pattern was similar 
overall, the genotype by age group interaction was not significant 
for the backwards digit span task. This may reflect the fact that the 
verbal and visuospatial WM tasks rely on partially distinct aspects 
of the PFC, which may differ in their dopaminergic innervation. A 
meta‐analysis of neuroimaging studies of WM has shown that the 
caudal superior frontal sulcus appeared specifically sensitive to spa‐
tial content, while a left mid‐lateral inferior frontal gyrus region was 
more sensitive to non‐spatial, in particular verbal, content (Nee et 
al., 2013). Alternatively, as both human pharmacological studies re‐
viewed above used verbal n‐back WM tasks to demonstrate differ‐
ential effects of tolcapone or amphetamine as a function of COMT 
genotype (Giakoumaki et al., 2008; Mattay et al., 2003), it is possi‐
ble that updating verbal information in WM, which is necessary in 
n‐back tasks, may be more dependent on the dopaminergic system 
than the maintenance and manipulation (with no updating) of verbal 
information, which is required in the backwards digit span task.

Finally, the third aim was to assess whether there was also an 
interaction between age and COMT genotype on the performance 
of a social WM task, and the extent to which associations between 
COMT genotype and social WM performance could be accounted 
for by COMT’s association with non‐social WM skills, as opposed 
to skills specific to the processing of social information. The results 
show that there was indeed an interaction between COMT geno‐
type and age group in the social trait‐ranking WM task, with the 
adult pattern of faster RT in Met/Met individuals (Dumontheil et al., 
2014) emerging with age. As in the visuospatial WM task, this result 
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reflected steeper improvements over development in Met/Met in‐
dividuals than Val carriers, which may be limited by their basal do‐
pamine levels. Importantly, the interaction between genotype and 
age group in the social WM task was not fully mediated by individual 
differences in verbal or visuospatial WM, which is similar to what 
was observed in the adult sample (Dumontheil et al., 2014).

There were some limitations to this study. First, the adolescent 
sample included six sibling pairs, which means that the correspond‐
ing genetic data cannot be considered as independent. However, 
these few cases are unlikely to have impacted the results. Second, 
due to the time constraints of school‐based testing participants only 
completed the vocabulary subtest of the WASI, which provided an 
estimate of verbal IQ but not total IQ. We were therefore not able 
to control for possible differences between age or genotype groups 
in non‐verbal IQ, which is strongly related, although not identical, 
to WM (Conway, Cane & Engle, 2003). We made the decision not 
to analyse social WM accuracy on the basis that this measure did 
not show an association with COMT genotype in the adult sample 
(Dumontheil et al., 2014). The fact that the main verbal and visuo‐
spatial WM measures were mean accuracy scores while the social 
WM measure was a mean RT may be a limitation to this follow‐up 
analysis. However, we observed the same effect when mean RT on 
the visuospatial WM was included as a covariate in place of visu‐
ospatial WM accuracy. Furthermore, partial correlation analyses 
between WM measures (Supplementary Materials, Supplementary 
Analysis 5) indicated that social WM RT was significantly negatively 
correlated with accuracy scores on both the standard WM tasks.

The social WM trait‐ranking task has been shown to recruit re‐
gions of the social brain, in particular the medial PFC, precuneus and 
temporo‐parietal junction (Meyer et al., 2012, 2015), in addition to 
the typical lateral fronto‐parietal regions typically observed in stan‐
dard verbal or visuospatial WM tasks (Nee et al., 2013; Owen et 
al., 2005; Rottschy et al., 2012; Van Overwalle, 2009). Our results 
therefore suggest that similar changes in basal dopamine levels are 
occurring in the social WM specific brain regions, in particular the 
medial PFC, as those occurring in the lateral PFC regions support‐
ing non‐social WM. The present finding of parallel developmental 
changes in WM and social cognition fits with the observation of the 
prolonged development of cognitive control and social cognition 
during adolescence (Burnett et al., 2011; Dumontheil, 2016; Luna 
et al., 2010). More specifically, our results are in line with evidence 
suggesting that the social and non‐social higher cognitive brain sys‐
tems tend to be recruited in parallel rather than showing interactions 
during development (e.g. Dumontheil et al., 2012; Magis‐Weinberg 
et al., 2017).

There was a main effect of gender on performance in the ver‐
bal WM task (although it did not survive Bonferroni correction), 
however no other main effect and no interaction with age group 
or genotype was observed. There is some evidence that rs4680 
associations with behaviour, brain structure and the incidence of 
psychiatric disorders may interact with gender (Gogos et al., 1998; 
Harrison & Tunbridge, 2008). Oestrogens, which are thought 
to downregulate COMT activity, may be behind these gender 

differences (Gogos et al., 1998; Harrison & Tunbridge, 2008). 
Studies with larger numbers and puberty measures may be needed 
to detect gender differences and to further our understanding of 
the possible role of gender differences in the development of the 
dopamine neurotransmitter system.

Future studies could also demonstrate a greater specificity of the 
association between COMT genotype and social WM by including a 
non‐social WM task more closely matched to the social trait‐rank‐
ing task (Meyer et al., 2015). By including an updating verbal WM 
task, such as the n‐back task, they could also assess whether updat‐
ing verbal information in WM is more dependent on the dopamine 
neurotransmitter system than the maintenance and manipulation of 
verbal information measured in the backwards digit span task. The 
results of the present study suggest that the range of WM tasks used 
in the literature, as well as differences in the age of participants, may 
account for some of the inconsistencies in findings previously ob‐
tained (Barnett et al., 2008; Dickinson & Elvevåg, 2009; Witte & 
Flöel, 2012).

In sum, the present study shows that associations between 
COMT genotype and task performance change during development 
in a range of WM measures. Met/Met individuals show steeper 
improvements in performance between age groups than Val carri‐
ers, suggesting that the progress of Val carriers may be limited by 
their basal dopamine levels. In line with this, previous neuroimag‐
ing data suggest that top‐down excitation from frontal to parietal 
cortex may be increased during adolescence in Val/Val individuals 
to compensate for suboptimal levels of dopamine and parietal func‐
tioning (Dumontheil et al., 2011; Edin et al., 2009), leading to the 
increased PFC activation observed, although inconsistently, in ex‐
ecutive function tasks in Val carriers compared to Met/Met individ‐
uals in adulthood (Dickinson & Elvevåg, 2009; de Frias et al., 2010; 
Mier et al., 2010; Nickl‐Jockschat et al., 2015; Tunbridge et al., 2006; 
Witte & Flöel, 2012). Many psychiatric conditions first appear during 
adolescence (Paus, Keshavan, & Giedd, 2008) and have been asso‐
ciated with atypical functioning of the dopamine neurotransmitter 
system and genotypic variation in dopamine‐related genes (Meyer‐
Lindenberg & Weinberger, 2006). It is therefore important to better 
understand how genetic variation affects the development of brain 
and cognition during adolescence, as this could in turn inform our 
understanding of adolescent behaviour as well as the emergence of 
psychiatric disorders. Indeed, the findings presented here show that 
development should be considered when trying to understand the 
impact of genetic polymorphisms on the mature higher cognition of 
healthy adult or psychiatric populations.
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