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Abstract
Background: This study was conducted in order to develop a model for predict-
ing response to neoadjuvant chemotherapy (NAC) in patients with locally advanced 
breast cancer (LABC) using pretreatment quantitative ultrasound (QUS) radiomics.
Methods: This was a multicenter study involving four sites across North America, 
and appropriate approval was obtained from the individual ethics committees. 
Eighty-two patients with LABC were included for final analysis. Primary tumors 
were scanned using a clinical ultrasound system before NAC was started. The tumors 
were contoured, and radiofrequency data were acquired and processed from whole 
tumor regions of interest. QUS spectral parameters were derived from the normalized 
power spectrum, and texture analysis was performed based on six QUS features using 
a gray level co-occurrence matrix. Patients were divided into responder or nonre-
sponder classes based on their clinical-pathological response. Classification analysis 
was performed using machine learning algorithms, which were trained to optimize 
classification accuracy. Cross-validation was performed using a leave-one-out cross-
validation method.
Results: Based on the clinical outcomes of NAC treatment, there were 48 respond-
ers and 34 nonresponders. A K-nearest neighbors (K-NN) approach resulted in the 
best classifier performance, with a sensitivity of 91%, a specificity of 83%, and an 
accuracy of 87%.
Conclusion: QUS-based radiomics can predict response to NAC based on pretreat-
ment features with acceptable accuracy.
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1  |   INTRODUCTION

Locally advanced breast cancer (LABC) includes tumor larger 
than 5 cm, an extension to the chest wall or skin (regardless of 
tumor size), and with extensive lymph node involvement.1,2 
Neoadjuvant chemotherapy (NAC) is the standard of care for 
patients with LABC, which can downstage tumors leading 
to breast conservation surgery.3 Also, pathological complete 
response (pCR) is associated with better clinical outcomes 
compared to nonresponders in certain molecular subgroups. 
However, only 20%-40% of patients achieve pCR follow-
ing NAC4 with 40%-60% having partial responses. Several 
clinical and molecular features have been identified to be 
associated with higher rates of response, which include ini-
tial tumor size, human epidermal growth factor receptor 2 
(HER2) expressing, or triple-negative tumors.

Image-based biomarkers have shown success as prognostic 
and predictive markers for different malignancies and treat-
ment modalities. With the introduction of computer vision in 
imaging and sophisticated interpretation made possible using 
machine-learning classifiers, the application of imaging in 
oncology has expanded beyond the traditional role of staging 
and response evaluation.5 The establishment of the field of 

“radiomics” has proven its potential in the noninvasive bi-
ological characterization of tumors. The use of ultrasound, 
magnetic resonance imaging (MRI), computed tomography 
(CT), and positron emission tomography (PET) for assessing 
response in patients with breast cancer undergoing NAC have 
been reported with variable efficacy to date.6–8

Quantitative ultrasound spectroscopy (QUS) has been 
used to predict and monitor treatment response in several 
clinical studies.8–10 Ultrasound has the benefit of being a 
relatively inexpensive imaging modality in comparison to 
MRI and PET and does not emit ionizing radiation or re-
quire contrast agents. The conventional use of ultrasound 
imaging involves “B-mode” images that are constructed 
from raw radiofrequency (RF) data. While these images 
can show some qualitative and quantitative information, 
much of the frequency-dependent information is lost with 
the conversion of RF data. QUS imaging retains this RF 
data and applies a fast Fourier transform (FFT) to display 
the data as a frequency spectrum. The analysis of the power 
spectrum leads to various features like spectral slope (SS), 
spectral intercept (SI) at 0 MHz, mid-band fit (MBF), av-
erage scatterer diameter (ASD), average acoustic concen-
tration (AAC), attenuation coefficient estimate (ACE), and 
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spacing among scatterers (SAS). In previous studies, it has 
been demonstrated that QUS features can represent tissue 
architecture based on scatterer properties reflecting tumor 
biological behavior as well as ongoing changes associated 
with treatment.9 The QUS values can be obtained from 
smaller units within the target volume similar to the pixels 
obtained in cross-sectional imaging like CT or MRI, which 
can help in characterizing tumor heterogeneity. Further 
texture analysis of the QUS parametric maps can unfold 
valuable information which had been shown to improve 
the classification performances in predicting treatment 
response.11

In this multi-institutional study, including four institutions 
from Canada and the United States, we further explore the ef-
fectiveness of QUS-radiomics in predicting response to NAC 
for general application.

2  |   METHODS

2.1  |  Patient selection and treatment

The prospective observational study was approved by the in-
dividual, institutional ethics committees: Sunnybrook Health 
Sciences Centre (Toronto, Canada), MD Anderson Cancer 
Center (Texas, USA), Princess Margaret Cancer Centre 
(Toronto, Canada), and St. Michael's Hospital (Toronto, 
Canada). The study had been registered with the clinicaltri-
als.gov registry (NCT04134780).

All the participants enrolled in the study were required 
to have histological confirmation of primary breast malig-
nancy without distant metastasis and a decision to undergo 
NAC by the treating physician. After obtaining appropriate 
consent, the patients were accrued, treated, and followed 
up according to standard clinical practice. The study ac-
crual was done from June 2015 to June 2018. NAC con-
sisted primarily of anthracycline and taxane-based drugs. 
Following NAC, the decision regarding the type of surgery 
(breast conservation vs mastectomy) patients underwent 
was made by the surgeon and oncologists and according 
to the patients’ wishes. Adjuvant radiotherapy, endocrinal 
therapy, and targeted therapy were guided by standard in-
stitutional protocols.

2.2  |  Response assessment

Participants were classified as either responder (R) or nonre-
sponder (NR) based on results from the surgical specimens 
by a dedicated breast-pathologist following mastectomy or 
lumpectomy using modified RECIST criteria. For this study, 
participants were identified as responders if they had a pCR 
or had less than 1% cellularity in the tumor bed (including 

both invasive and in situ disease). Participants with cellular-
ity greater than 1% but a decrease in size greater than 30% 
were also classified as responders. Participants with disease 
progression or a primary tumor size decrease of less than 30% 
were classified as nonresponders.

2.3  |  Instrumentation and Data Acquisition

Ultrasound imaging was performed before the participant re-
ceived the first dose of NAC. Participants were scanned with 
a Sonix RP clinical system (Analogic Medical Corp.) using 
an L14-5/60, linear array transducer with a bandwidth range 
of 3.0-8.5 MHz and a 6.5 MHz center frequency (n = 63). 
Nineteen patients were scanned using a GE LOGIC E9 
system (GE Healthcare) using an ML6-15 broad-spectrum 
linear matrix array transducer with a bandwidth range of 4.5-
9.9 MHz and a center frequency of 6.9 MHz. B-mode images 
were also acquired simultaneously. Further details have been 
discussed in previous work, and no significant difference 
was witnessed between the two systems in terms of clinical 
utility.8

2.4  |  QUS data processing

Tumors were contoured to define a region of interest (ROI) 
from where the QUS parameters were extracted. A sliding 
window analysis was performed within the ROI involving a 
2 mm × 2 mm sliding window with an overlap of 92% in the 
axial and lateral directions. For each window, an FFT was 
applied to the RF signal and then normalized to a tissue-mim-
icking phantom to produce a normalized power spectrum.

Spectral parameters were determined from the normalized 
power spectrum using linear regression in a −6 dB frequency 
bandwidth window.12,13 Seven parameters were acquired: SS, 
SI at 0 MHz, MBF, ASD, AAC, ACE, and SAS. QUS param-
eters were calculated from each window in the ROI, identi-
fied as sub-ROIs aiding in mapping the spatial heterogeneity. 
Each feature was separately analyzed to produce individual 
parametric maps based on the quantitative characterization 
of the values within the sub-ROI. Texture analysis was per-
formed on the parametric maps using the gray level co-oc-
currence matrix (GLCM) which assessed the relationship 
between a reference pixel and the neighboring pixels (0°, 90°, 
45°, and 135°). Four texture features, contrast (CON), cor-
relation (COR), energy (ENE), and homogeneity (HOM) pa-
rameters, were generated for the study.14

A total of 24 texture parameters were obtained from six 
spectral parameters leading to a total of 31 features (texture 
analysis was not done for ACE). For each patient, the para-
metric and texture parameters were averaged over 3-5 tumor 
slices.
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2.5  |  Statistical analysis

Statistical tests were performed to compare if a feature was 
significantly different between the two groups (R and NR). 
The Shapiro-Wilk test was performed to determine the dis-
tribution of data. An independent t test was performed for 
normally distributed data, while Mann-Whitney U test was 
done for others. A P-value of <.05 was considered sig-
nificant. Patients were classified into the two groups (R vs 
NR) based on their spectral and texture feature values using 
machine learning classifiers: K-nearest neighbors (K-NN), 
support vector machine with radial basis function kernel 
(SVM-RBF), and Fisher's linear discriminant (FLD). For all 
three machine learning methods, up to 4 of the best classify-
ing features out of 31 were chosen, and classifier parameters 
were tuned for the best performance. Due to the lower num-
ber of responding and nonresponding patients compared to 
the total number of features, feature reduction was conducted 
to prevent overfitting and reduce variance. Feature selection 
was performed using a sequential forward feature selection. 
The training involved all 82 patients and cross-validation was 
performed using the leave-one-out method. The predicted 
and actual responses for each patient were compared to de-
termine the confusion matrix. Receiver operator characteris-
tic curves were generated for each classifier, from which the 
area under the curve (AUC) was derived. Feature extraction, 
QUS analysis, and machine learning were performed using 
MATLAB R2016a (MathWorks). Other statistical tests were 
performed using IBM SPSS version 22 (IBM Corporation).

3  |   RESULTS

3.1  |  Clinical characteristics and outcomes

There were a total of 82 patients who participated in this 
study. In total, 50 patients were accrued from Sunnybrook 
Health Sciences Centre (Toronto, Canada), 7 from Princess 
Margaret Cancer Centre (Toronto, Canada), 1 from St. 
Michaels Hospital (Toronto, Canada), and 24 patients from 
MD Anderson Cancer Centre (Texas, United States of 
America). The patient's ages ranged from 27 to 74 years (me-
dian 52 years). Patient, disease, and related treatment charac-
teristics are summarized in Table 1. Forty-nine patients were 
given doxorubicin, cyclophosphamide, and paclitaxel (AC-
T); 30 received fluorouracil, epirubicin, cyclophosphamide, 
and docetaxel (FEC-D). Twenty-seven patients were HER2 
positive, 58 were estrogen receptor (ER) positive, and 17 
were triple-negative. All 27 HER2 positive patients received 
trastuzumab. Forty-eight patients responded to the NAC, and 
34 were classified as nonresponders. A complete pathologi-
cal response was seen in 17 patients. The characteristics of 
individual patients are presented in Table S1.

3.2  |  Feature analysis

Pretreatment B-mode images and parametric maps of 
MBF, SI, SS, SAS, AAC, and ASD for a representative 
responding patient and a nonresponding patient are dis-
played in Figure 1. B-mode images typically demonstrated 
hypoechoic appearing tumors. The parametric maps indi-
cate the pixel intensities for each QUS parameter over the 
entire tumor ROI. Parametric maps appeared as before with 

T A B L E  1   Patient, disease, and treatment characteristics for the 
patients involved in the study

Features Frequency

Age

Mean 50

Median 52 years

Range 27-74 years

Sex

Female 80

Male 2

Initial tumor size

Median: 3.6 cm

Range: 1.2-11.6 cm

Molecular markers

ER+ 58

PR+ 48

HER2+ 27

TNBC 17

Histological type

IDC 66

ILC 7

IMC/Other 8

Chemotherapy

AC-T 49

FEC-D 30

Taxol, no anthracycline 1

Trastuzumab 27

Cisplatin 1

Carboplatin, Taxol 1

Treatment response

Responder 48

Non-responder 34

Abbreviations: AC-T, doxorubicin (Adriamycin) and cyclophosphamide 
followed by Taxol; ER+/PR+, estrogen/progesterone-receptor positive 
status; FEC-D, 5-fluorouracil, epirubicin, cyclophosphamide, and docetaxel, 
trastuzumab: monoclonal antibody (Herceptin); HER2+, human epidermal 
growth factor receptor 2 positive status; IDC, invasive ductal carcinoma; ILC, 
invasive lobular carcinoma; IMC, invasive mammary carcinoma; TNBC, triple-
negative breast cancer.
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obvious differences between responders and nonrespond-
ers in addition to obvious heterogeneity within the tumor 
ROIs.

Table 2 presents the results of statistical tests performed 
on the pretreatment QUS spectral and texture data, which 
compare the difference in QUS values for responding patients 

F I G U R E  1   Pretreatment parametric 
maps of a responder (left panel) and 
nonresponder (right panel). The top row 
displays B-mode images for the responder 
and nonresponder with the tumor region 
of interest (ROI) outlined in red. The color 
images below represent the corresponding 
spectral parametric maps for two patients 
(responder vs nonresponder). MBF (dB): 
mid-band fit, AAC (dB/cm3): average 
acoustic concentration, ASD (µm): average 
scatterer diameter, SS (dB/MHz): spectral 
scope, SAS (mm): spacing among scatterers, 
ACE (dB/cm-MHz): attenuation coefficient 
estimate, SI (dB): 0-MHz spectral intercept
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and non-responding patients. The spectral parameters, SS 
(P  =  .010), MBF (P  =  .043), ASD (P  =  .016), and AAC 
(P = .025) were found to be significantly different between 
responders and nonresponders. Also, four texture parameters, 
ASD-CON (P =  .018), AAC-HOM (P =  .023), AAC-ENE 
(P = .047), and AAC-CON (P = .015) had a statistically sig-
nificant difference between responding and nonresponding 
patients. Figure 2 displays scatter plots of the QUS spectral 
and texture values that had a statistically significant differ-
ence. The majority of the parameters determined were not 

statistically significant. Scatter plots of all the QUS spectral 
and texture values are presented in Figure S1. Only tumor 
core parameters were considered in the study here to evaluate 
information derived from the bulk tumor mass only.

3.3  |  Classifier results

The performance results of the classification algorithms 
made are presented in Table 3. For classification purposes, 
a K-NN approach was compared to SVM-RBF and FLD 
methodology. The corresponding receiver operating char-
acteristic curves comparing the three algorithms evaluated 
are displayed in Figure 3. The K-NN algorithm had the best 
performance using three features (AAC-HOM, SI-ENE, and 
SAS-ENE). It produced the greatest sensitivity (91%), speci-
ficity (83%), accuracy (87%), AUC (0.73), and F1-Score 
(0.87). The SVM-RBF algorithm had a lower sensitivity 
(71%), specificity (80%), accuracy (76%), AUC (0.72), and 
F1-score (0.75) compared to K-NN. The FLD algorithm had 
the lowest values of sensitivity (68%), specificity (65%), ac-
curacy (66%), AUC (0.67), and F1-score (0.66).

4  |   DISCUSSION

The groundwork for using QUS to predict and monitor 
treatment was established by a preclinical study showing 
that cells undergoing apoptosis and exhibiting effects such 

T A B L E  2   Mean and SEM of QUS spectral and texture features 
with a statistically significant difference between responders and 
non-responders

Parameter
Mean ± SEM 
(R)

Mean ± SEM 
(NR)

P-
value

MBF (dB) 5.13 ± 1.92 −1.17 ± 1.78 .043

SS (dB/MHz) −3.00 ± 0.18 −3.70 ± 0.20 .010

ASD (µm) 104.80 ± 5.36 124.40 ± 4.20 .016

AAC (dB/cm3) 49.10 ± 5.04 33.54 ± 2.52 .025

ASD-CON (AU) 3.43 ± 0.26 2.58 ± 0.23 .018

AAC-HOM (AU) 0.795 ± 0.010 0.829 ± 0.011 .023

AAC-ENE (AU) 0.20 ± 0.01 0.24 ± 0.02 .047

AAC-CON (AU) 5.52 ± 0.93 2.58 ± 0.54 .015

Abbreviations: AAC (dB/cm3), average acoustic concentration; ASD (µm), 
average scatterer diameter; CON, contrast; ENE, energy; HOM, homogeneity; 
MBF (dB) , mid-band fit; SEM, standard error of the mean; SS (dB/MHz), 
spectral slope.

F I G U R E  2   Scatter plots of four spectral and four texture parameter values for responders and nonresponders that were found to have a 
statistically significant difference from one another (P < .05). MBF (dB): mid-band fit, SS (dB/MHz): spectral slope, ASD (µm): average scatterer 
diameter, AAC (dB/cm3): average acoustic concentration, ASD-CON: contrast of the average scatterer diameter, AAC-HOM: homogeneity 
of the average acoustic concentration, AAC-ENE: energy of the average acoustic concentration, AAC-CON: contrast of the average acoustic 
concentration
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as nuclear condensation and fragmentation had a 25-fold 
increase in ultrasound backscatter intensity compared to 
normal cells.15 Further studies followed, incorporating a 
greater number of acoustic features used for detecting cell 
death and allowing for prediction of response to chemo-
therapy and radiation therapy in vivo.16–18 The use of this 
methodology has included differentiating benign from ma-
lignant tissue, characterizing tumor grade, and predicting 
tumor response to treatment in LABC and head and neck 
cancer patients.19

The work here demonstrates that pretreatment QUS-
radiomics can be used as a biomarker for predicting response 
to NAC. The participation of patients from different institu-
tions increases the robustness of the model and reliability. 
The K-NN classifier was found to be the best performing 
classifier for the pretreatment QUS data. The SVM-RBF was 
slightly less accurate than K-NN methodology, which may 
indicate that the data does not exhibit a distribution that can 
be well separated using a hyperplane. The FLD classifier had 
the lowest accuracy, which could be due to its reliance on a 
linear distribution for data that cannot be separated using a 
linear hyperplane.

The results here, in this multi-institutional study, were 
found to be equivalent to single-institution work reported 
previously.8 The work here used a smaller multi-institutional 
set of data collected within a set period of time. The analysis 
focused on tumor core alone, not incorporating rim features 
to focus on the performance of the tumor-alone analysis. The 
work did not use a balancing approach used in larger data sets 
given the limited number of patients in the multi-institutional 
data here.

Using K-NN methodology, the best features to clas-
sify responders and nonresponders were identified as 
the AAC-HOM, SI-ENE, and SAS-ENE parameters. The 
AAC is related to the number density of scatterers and the 
relative acoustic impedance of scatterers in the medium. 
The SI is related to the composition and distribution of 
scatterers, and the SAS is related to the distance between 
regularly spaced scatterers. This suggests that the spatial 
organization and composition of tumor constituents are 
important response predictors. Tumor environments are 
known to be heterogeneous and chaotic compared to nor-
mal tissue.20,21 A tumor is comprised of a variety of cell 
types, including fibroblasts, immune cells, adipocytes, 

Classifier %Sn %Sp AUC %Acc
F1-
score Features

K-NN 91.2 83.3 0.726 86.6 0.871 AAC-HOM, SI-
ENE, SAS-ENE

SVM-RBF 70.6 79.2 0.725 75.6 0.746 AAC, SS, SAS-
HOM, SAS-COR

FLD 67.7 64.6 0.670 65.9 0.661 ASD, SAS-COR, 
SAS

Abbreviations: AAC (dB/cm3), average acoustic concentration; Acc, accuracy; ASD (µm), average scatterer 
diameter; AUC, area under curve; COR, correlation; ENE, energy; FLD, Fisher's linear discriminant; HOM, 
homogeneity; K-NN, K-nearest neighbors; SAS (mm), spacing among scatterers; SI (dB), spectral intercept; 
Sn, sensitivity; Sp, specificity; SS (dB/MHz), spectral slope; SVM-RBF, support vector machine with radial 
basis function kernel.

T A B L E  3   Machine learning classifier 
performances for the different algorithms

F I G U R E  3   Receiver operating characteristic curve of pretreatment prediction using three classifiers. FLD: Fisher's linear discriminant, K-NN: 
K-nearest neighbors, SVM-RBF: support vector machine with radial basis function kernel
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and epithelial cells. Due to cell cycles and cell prolif-
eration, these cells will have variable sizes across the 
tumor. There may also be variations in interstitial fluid 
pressure due to the tumor's disorganized and leaky vas-
culature.22 These tumor properties may make it difficult 
to adequately deliver chemotherapeutic drugs through-
out the tumor and could result in poor response.23,24 
Similarly, the expression of molecular features, such as 
ER, progesterone receptor (PR), and HER2, are linked 
to different response rates and different overall survival 
rates for patients receiving chemotherapy.25–27 Response 
prediction using image-based biomarkers has been pre-
viously studied using other imaging modalities. Thibault 
et al used DCE-MRI to determine pharmacokinetic pa-
rameters and semiquantitative metrics from breast tumors 
in patients receiving NAC. Texture features were derived 
from these parameters, and class analysis was used to pre-
dict responders and nonresponders before treatment and 
within one cycle of chemotherapy.6 In another study by 
Lundgren et al, who used texture features derived from 
DCE-MRI parameters to predict patient response to NAC 
after four cycles of chemotherapy.28 Diffusion-weighted 
MRI (DW-MRI) has been used to predict pCR in breast 
cancer patients receiving NAC by detecting changes in 
intra-tumoral cellularity.29 18F-FDG-PET/MRI has also 
been used recently for breast cancer patients receiving 
NAC for response prediction.7 Whereas MRI- and PET-
derived biomarkers have resulted in good results at pre-
dicting patient response to NAC early into treatment, 
compared to QUS, those methodologies are more expen-
sive, have longer image acquisition time, are less porta-
ble, and may require the use of contrast agents.30

Currently, several months are typically required to deter-
mine if a patient is responding to treatment. The pathological 
response is the gold standard for evaluating the ultimate re-
sponse to treatment and can only be assessed after chemo-
therapy and surgery have been completed. QUS methodology 
has been demonstrated to have the ability to predict response 
and potentially can be used to assist patients and oncologists 
in personalizing a course of treatment. Patients who are pre-
dicted to be nonresponders could have a modified chemo-
therapy regime, or proceed directly to surgery, or investigate 
other treatment options. Early knowledge of patient response 
to chemotherapy allows for early intervention and potential 
adaptation for a more personalized therapy.31

While the prediction accuracy of our algorithm using K-
NN is high using an internal cross-validation method, it will 
likely be improved through the incorporation of pretreatment 
QUS data from a higher number of patients for a more ro-
bust prediction algorithm. In addition, with increased patient 
numbers, potentially individual models for each luminal type 
can be created to explore if they can lead to further improve-
ments in the classifier performances.

5  |   CONCLUSION

Pretreatment QUS data from multiple healthcare institu-
tions can be used to predict patient response to NAC with 
an accuracy of 87%. The ability to predict response to 
NAC with high accuracy before treatment initiation can be 
adopted by the clinicians for risk stratification and guid-
ing treatment and will lead its way to precision oncology 
in the future.
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