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SUMMARY

Lithium-ion battery technologies have conquered the current energy storage
market as the most preferred choice thanks to their development in a longer life-
time. However, choosing themost suitable battery aging modelingmethodology
based on investigated lifetime characterization is still a challenge. In this work, a
comprehensive aging dataset of nickel-manganese-cobalt oxide (NMC) cell is
used to develop and/or train different capacity fade models to compare output
responses. The assessment is conducted for semi-empirical modeling (SeM)
approach against a machine learning model and an artificial neural network
model. Among all, the nonlinear autoregressive network (NARXnet) can predict
the capacity degradation most precisely minimizing the computational effort as
well. This research work signifies the importance of lifetime methodological
choice and model performance in understanding the complex and nonlinear Li-
ion battery aging behavior.

INTRODUCTION

Lithium-ion (Li-ion) batteries have become an integral part of our daily electronics devices and the state-of-

the-art choice of e-mobility (Scrosati and Garche, 2010; Hu et al., 2017). The electrification of the automo-

tive sector following the global CO2 footprint has been made possible because of the continuous devel-

opment of Li-ion batteries (Nykvist and Nilsson, 2015). However, the challenge of extending the battery

life and having a reliable and long-lasting battery system is still the bottleneck in expanding the electric

vehicle (EV) fleet. Substantial research has been conducted during the last decade to identify the degrada-

tion mechanisms of different Li-ion technologies to further accelerate battery development and overcome

the range anxiety (Barré et al., 2013; Birkl et al., 2017). Lithium batteries degrade over time within or without

operation most commonly termed as battery cycle life (charge/discharge) and calendar life (rest/storage),

respectively (Palacı́n, 2018). While in use, a battery undergoes plenty of charge-discharge cycles from

shallow to full depth along with several other operating conditions, which result either in capacity fade

and/or internal resistance (IR) growth. Moreover, the storage or rest period of a battery over the lifetime

is also significant, although the degradation impact is lesser, comparatively (de Hoog et al., 2017). The

diversified and interconnected aging mechanisms result in the nonlinear degradation process during

the lifetime (Birkl et al., 2017; Palacı́n, 2018). The different stress factors contributing to battery aging

have varying limits of degradation impacts, while accelerated and unexpected events can also lead to

faster battery failure (Palacı́n and Guibert, 2016).

Battery life has been a crucial subject of investigation since its introduction to the commercial vehicle, dur-

ing which different Li-ion batteries are cycled and/or stored to identify the degradation mechanisms sepa-

rately (Käbitz et al., 2013; Ecker et al., 2014) or together. Most commonly laboratory-level tests are per-

formed to understand the battery aging behavior under different operating conditions, and then the

generated data are either fed or used to develop lifetime models. The performance-based predictive

models are often built with fitting mathematical equations or trained with advanced algorithms such as ma-

chine learning (ML), etc. (Berecibar et al., 2016; Li et al., 2019). These different modeling approaches can

forecast the whole life in terms of battery capacity fade and/or IR growth (Jafari et al., 2018; Hu et al.,

2020). However, the model performance heavily relies on the quality and quantity of the investigated data-

set and the selection of themodelingmethodology. The performance-based and black boxmodels require

little or no knowledge of the battery chemistries, but a significant amount of characterization data is
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necessary to outline the model response (Lucu et al., 2018). On the contrary, battery physics-based models

can identify the loss of lithium inventory and active materials by analyzing the key degradation mechanisms

such as solid-electrolyte interphase, lithium plating, etc. (Christensen and Newman, 2005; Yang et al., 2017;

He et al., 2018). Figure 1 illustrates the comparison of different lifetime modeling methodologies. In this

research work, model development and assessment are investigated focusing on the less complex and per-

formance-based methodologies, which include the semi-empirical approach and ML algorithms. The

objective is to evaluate the developed data-driven model methodologies that are constructed from a com-

mercial cell aging dataset and can be implemented in real life.

Performance-dependent semi-empirical aging models based on characteristic results are usually developed

andparameterized from long-term lifetime tests (Omar et al., 2014) or accelerated tests (Ecker et al., 2012). An

extensive range of investigation covering crucial cycling parameters of temperature, depth of discharge

(DoD), state of charge (SoC), charge-discharge rate (C-rate), ampere-hour throughput, cycle number, etc.,

and calendar life conditions of storage temperature, storage SoC, storage duration, etc., are often used to

characterize the battery lifetime (Dai et al., 2013; Su et al., 2016; Ecker et al., 2017). The performance of the

constructed model is then evaluated with regular cycling or real-life profiles, i.e., worldwide harmonized

light-duty test cycle (WLTC) by comparing the simulated capacity and power fade against actual measure-

ment (Suri andOnori, 2016; de Hoog et al., 2018; Li et al., 2018). The crucial limitation of semi-empirical aging

models is the prediction accuracy, while the fitting response on unknown profiles depends on the quality of

the generated dataset. Moreover, the operating conditions of the investigated data act as an optimal bound-

ary criterion of this methodology beyond which the prediction response accuracy is compromised.

The development of data-driven methodologies can improve the modeling accuracy significantly by

compromising the simplicity of model construction and computational effort (Lucu et al., 2018; Li et al.,

Figure 1. Battery lifetime modeling methodologies at a glance

The darker shades in the arrows refer to more intensity. The figure in the top panel is adapted from (He et al., 2018).
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2019). Data-drivenmodels have been a preferred choice in estimating battery state of health and remaining

useful life (Saha et al., 2007; Richardson et al., 2017; Li et al., 2018), but recently, it has gained popularity in

lifetime prediction as well thanks to its high accuracy (Liu et al., 2020; Lucu et al., 2020). However, both the

quality and quantity of the training dataset are prerequisites in this methodology, absence of any of which

may impact the model accuracy and effectiveness (Severson et al., 2019). Among the data-driven models

support vector machine, regression algorithms, ensembled models, etc., are regularly used in the field of

battery aging (Nuhic et al., 2013; Xing et al., 2013; Liu et al., 2019). The Gaussian process (GP) regression

(GPR) has been identified as a promising prospect thanks to its nonparametric and probabilistic character-

istics (Liu et al., 2013; Richardson et al., 2019). Moreover, advanced algorithms like artificial neural network

(ANN) mimicking neurons in the biological system is employed for pattern recognition in battery health

prediction (Liu et al., 2010; Eddahech et al., 2012; Wu et al., 2016). However, ANN is not employed in

the full battery life prediction without initial data. One of the promising ANN networks as nonlinear autor-

egressive with exogenous input (NARX) is considered to be quite accurate for dynamic systems and has

been used to develop battery degradation models (Hussein, 2015; Member and Ibe-ekeocha, 2017).

Although using advanced modeling techniques may improve predictive model accuracy, the selection

of a suitable algorithm is not straightforward especially for a complex nonlinear system like batteries.

Furthermore, the rationalization of the performance of different models and algorithms is impractical un-

less identical training data are utilized. One of the most common and free datasets is provided by NASA

Ames Prognostic Center of Excellence (Saha and Goebel, 2007), which has been regularly used by re-

searchers for battery health prognosis (Cheng et al., 2015; Wang and Mamo, 2018; Wang et al., 2019). In

lifetime modeling, public data repositories (Severson et al., 2019) and data from European projects (Batte-

ries2020) (de Hoog et al., 2017) are considered to model the cycle life in separate literature (Zhu et al., 2019;

Lucu et al., 2020). However, the output response of the degradationmodels is usually methodology-depen-

dent and based on a set of specific input parameters. Thus, developing different model types by using a

single dataset and a specific set of stress factors is a rare and challenging task that can facilitate a proper

model performance comparison.

In this research work, the authors have developed a neural network (NARX) model and adapted their devel-

oped semi-empirical (SeM) and data-driven (GPR) models using an in-house-generated comprehensive da-

taset of 40 nickel-manganese-cobalt oxide (NMC) cells. The novel comparison of different performance-

based models constructing all of them from a single dataset is done for the first time. The detailed model

assessment can clarify the choice of different modeling methodologies helping the original equipment

manufacturers to implement the most suitable approaches. Further in this article, the experimental

arrangement is briefly explained in the following section. After that, the model construction process is

described for the selected techniques. The developed models are then validated with static and dynamic

current profiles and assessed, and the performances are compared. Finally, the work is concluded

providing remarks on choosing the most suitable modeling methodology for battery lifetime prediction.

Lifetime model development

Aging characteristics and data processing

The prerequisite of any performance-based model development includes detailed analysis and pre-pro-

cessing of the generated data. Thus, the stress factors are analyzed to understand the battery degradation

behavior. Figure 2 shows the capacity fade of different cells that are cycled following the test flow displayed

in Figure S1. Figure S1 is related to the studied lifetime cycling and relaxation procedure to degrade the

battery. The results indicate that the capacity decay is significantly dependent on the cycling temperature

(cell surface) irrespective of the relaxation temperature. The aging is also affected by the storage SoC espe-

cially at room temperature. The authors have thoroughly investigated all the crucial impact factors and have

identified the following parameters that contribute to the total capacity fade.

� Cycling parameters: number of cycles, temperature, and C-rates for charge and discharge direction.

� Calendar aging parameters: rest temperature and rest SoC.

Relaxation time is found to have no clear effect on degradation but is still considered to have common

parameterization. While going forward to the model development phase, all these parameters are consid-

ered to maintain a common platform to justify the comparison among the adapted model performance.

ll
OPEN ACCESS

iScience 24, 102060, February 19, 2021 3

iScience
Article



Semi-empirical model

This type of statistical model merely depends on diverse battery characteristics and contexts. A wide range

of operating condition results are manifested with mathematical equations simplifying different degrada-

tion aspects. Authors have developed such a parameterized model for NMC batteries in their previous

research, which has been validated for different dynamic applications (Hosen et al., 2020). The baseline

of the model is adapted for the investigated cell in this work, and the outline framework is depicted in Fig-

ure 3. The developed model consists of two main sections separated by cycle life and calendar life contri-

butions to total degradation.

Battery cycle life deteriorates over time as it is impacted by multiple factors and interconnected degrada-

tion mechanisms (Birkl et al., 2017; Palacı́n, 2018). Thus the variation of cycling operating conditions plays a

vital role in identifying the influential parameters. In the investigated campaign, NMC cells are cycled within

the entire voltage range meaning the full DoD is utilized during charge-discharge over the first life period.

So, the number of cycles (NoC) is considered as the common parameter, while the cycling ambient temper-

ature (10�C, 25�C, and 45�C) and the C-rate (0.33C, 1C, and 2C) are other crucial variables. The cycling ca-

pacity degradation can be expressed as the following general equation:

Cycling capacity loss ðNoC;aÞ =
Xn;m

i = 0;j = 0

�
Ai � ðNoCÞi +Bj � ðaÞj

�
(Equation 1)

In Equation (1), Ai and Bj are constant coefficients, n and m are orders of the 3D surface fit equation, and a

represents either the cycling operating temperature or the C-rates. The coefficients and the surface fit or-

ders are for the X and Y axes, respectively. This cycling degradation equation is formulated from in-house

NMC battery datasets generated in Batteries2020 (Batteries2020, 2013) and BATTLE (BATTLE, 2013) pro-

jects and adapted for the investigated NMC cell, whereas the calendar life capacity fade fitting equations

are inherited from the author’s previous work (Hosen et al., 2020). The polynomials are represented by Ar-

rhenius equation and the fitting equations relating the calendar life capacity fade to the function of the tem-

perature, SoC, and time. The Arrhenius equation is used to fit the relaxation data to identify the aging rate

Figure 2. The capacity degradation of different cycling scenarios with 1C charge-discharge rate and relaxed for

5 days after every round

(A–C) (A) Room temperature relaxation at various rest SoC, (B) 10�C relaxation at 30% SoC, and (C) 45�C relaxation at 30%

SoC.
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dependency at different temperatures, which is common in the literature (Broussely et al., 2001). To add the

impact of the storage SoC, Equation (3) is used as a surface fitting equation. Both the contributions are then

summed up to have the total calendar life capacity fade.

Calendaring degradation1

�
Temperature

�
= a � exp �Ea

R � Temperature
(Equation 2)

Calendaring degradation2 ðtime; SoCÞ = x � ðtimeÞy � ðSoCÞz +�z � time � SoC (Equation 3)

In Equations (2 and 3), a, x, y, z, and �z are coefficients; Ea is the activation energy, and R is the gas constant. In

the case of the dynamic profile analysis, the current is first separated by zero and non-zero events to analyze

the load and no-load situations, respectively, by the main model scripts (Figure 3). These events are then

processed by different influential scripts quantifying the resultant capacity drop. For the investigated data-

set, the additional relaxation phases are input to the calendar life model so that the total capacity fade can

include all the considerable aspects. In this methodology, a theoretical pure cycling capacity fade can be

quantified by subtracting the calendar life results from total degradation as the latter includes calendar life

impact during cycling as well. MATLAB platform is used to develop the robust model with several en-

sembled scripts.

Gaussian process regression model

The GPR is a Bayesian probabilistic ML method (Rasmussen, 2003) that has recently been used in lifetime

prognosis due to its flexible and non-parametric nature (Liu et al., 2020; Lucu et al., 2020). The highly

nonlinear battery behavior during lifetime is sensitive to GPR performance; however, a suitable kernel

and high-quality data could confirm stable response resulting in lower prediction error. The authors em-

ployed several different kernels to train the dataset and found the exponential kernel to be the best fit,

thus it has been implemented to construct the robust lifetime model using the GPR. Figure 4 displays

the excellent distribution of the predicted data to the actual cell degradation by the GP. The GP is defined

as a probabilistic distribution function and in relation with mean and covariance functions as the following

equations:

mðxÞ = �Eðf ðxÞÞ (Equation 4)

kðx; x0Þ = �E½ðf ðxÞ�mðxÞÞ � ðf ðx0Þ �mðx0ÞÞ� (Equation 5)

f ðxÞ � GPðmðxÞ; kðx; x0ÞÞ (Equation 6)

In Equations (4–6), É is the expected value, although mean m(x) is considered as a constant basis function.

Kernel function k(x,x’) explains the relevant difference between the predictive response and the actual ca-

pacity. The covariance function or the kernel is the most crucial part of a GPR model, but there is no

Figure 3. The developed semi-empirical model framework
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standardized selection process (Duvenaud et al., 2013). However, using the exponential kernel, the model

is trained with the complete dataset by selecting eight degradation features. They include cycling cell sur-

face temperatures (charge-discharge) and C-rates during charge-discharge, the number of cycles, rest

temperature, rest SoC, and the rest time. These features are formatted from the huge battery dataset as

a pre-processing step to prepare the training dataset. Although the data processing and the model

training took significant computational effort, remarkable prediction accuracy could be achieved by

GPR. This constructed and already validated ML model is compared in this work together with the other

developed models for better evaluation.

Artificial neural network model

In this work, a recurrent neural network (RNN) type architecture is used to develop the lifetimemodel. For a

highly nonlinear system like batteries, a nonlinear autoregressive dynamic network with external inputs

(NARX) can be very suitable, and it has been used for time series modeling as well (Boussaada et al.,

2018; Lipu and Member, 2018). A standard feedforward NARX network (NARXnet) is used to predict the

output response through regression of past output and exogenous input values. The NARX model output

can be formulated as the following equation:

mðtÞ = F½mðt� 1Þ;mðt� 2Þ;.;mðt� ymÞ;nðt� 1Þ;nðt� 2Þ;.;nðt� ynÞ� (Equation 7)

In Equation (7), F[] is the mapping function of the m(t) output response that is regressed by the previous

series values and past values of exogenous input data (n) and ym and yn are time delays, respectively. A dou-

ble-layered open-loop feedforward neural network is selected for the modeling framework because of 2-

fold reasons. First, the true past values are available for the time series, which are quite accurate to be used

as the input of the network. Second, purely feedforward architecture enables the use of static backpropa-

gation training. Figure 5 shows the selected NARXnet with tapped-delay lines and the detailed diagram.

Under this framework, the NARXnet is trained with the same eight input parameters (used in the GPRmodel

training) by a training algorithm. Levenberg-Marquardt (LM) is used in this case as it requires less memory

meaning very low computational effort. Compared with LM, Bayesian Regularization trains the model in

44 s providing a slight improvement in the performance. Ten hidden neurons are used in the NARXnet

and the training, validation, and testing percentile of data are used as 90%, and 5% each, respectively.

The validation data is used to evaluate the network generalization, and when it stops improving the training

is stopped. The testing of the network is an independent measurement during and after training which has

Figure 4. Trained GPR model prediction responses with the exponential kernel
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no impact on the process. All the training, validation, and testing processes are performed using the MAT-

LAB environment.

Model evaluation metrics

To assess the model performances, it is necessary to define evaluation metrics. In this work, a couple of

metrics are used to compare the type of models that are constructed. The error calculations are based

on model prediction in terms of capacity values or capacity fade, which is compared with the actual mea-

surement (Li et al., 2018).

Root �mean� squared error

 
RMSE

!
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i = 1
ðY�JÞ2

r
(Equation 8)

Mean� absolute error

 
MAE

!
=
1

n

Xn

i =1
jY�Jj (Equation 9)

In Equations (8) and (9), n is the number of samples, i denotes n number of iterations, c is the actual

discharge capacity, and Y is the model output response. RMSE is commonly used and it compares the dif-

ference between the measured response to the predicted value by putting weight into it. It emphasizes the

deviation and assesses the prediction performance. On the other hand, MAE can be defined as the abso-

lute and average error of all the predicted samples. The identical weight of all the calculated errors means

the prediction accuracy corresponds to smaller MAE values. Both these metrics are used for performance

comparison as there is no perfect fitting that exists. For evaluation purposes, the lower the RMSE value the

better and MAE is the best when the value is close to zero. To have an acceptable target range of the mod-

el’s performance, less than 1 RMSE should be achieved.

Figure 5. The developed NARXnet model structure
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DISCUSSION

Models’ performance assessment

As a rule of thumb, any aging model should only be termed as validated when the model prediction is

compared with a set of unknown inputs and results. The validation or the testing of the model performance

ideally needs to be performed on a completely separate cell based on laboratory-level static or realistic

dynamic conditions. In this work, long-term aging tests are designed for the validation of the developed

models. Two separate cells are studied with the validation profiles as explained in the experimental sec-

tion, whereas the rest of the 38 cells’ aging outputs are used to construct or train the developed models.

In the following sections, the validation results are reported by the profile types (WLTC or static) and the

assessment is done based on different performance criteria.

Model comparison for dynamic WLTC

The semi-empirical model (SeM), the data-driven GPR, and the advanced NARXnet models are validated

with the designed WLTC profile, which is based on a real-life scenario as explained in the ‘‘Data genera-

tion’’ section. The dynamic currents are fed to the SeM model to simulate the life until the capacity fade

reaches the EoL criterion (SoH<75%). The cycle life and calendar life scripts of the model (as shown in Fig-

ure 3) analyze the split current of load and non-load situations, respectively, and process the parameterized

conditions based on mathematical equations. Figure 6 displays the simulated battery life against the

measured capacity fade, which is also found to be related to the IR growth.

The number of performed WLTC cycles is adjusted with a factor of 1.3 as an 80% operating window is

considered for dynamic cycling, while the model is based on full equivalent DoD cycling. Rainflow counter

is used to separate the degradation parameters from signals such as DoD and SoC so that the cycling script

can consider all the crucial impacts. Hence, the calendar life script is simulated taking extra rest into ac-

count. The model prediction results in 0.99 RMSE without considering the last data point, which can be re-

garded as unwanted electrochemical phenomena or an indication of battery failure. It clearly shows the de-

pendency on the increased resistance of the battery termed as the capacity degradation knee point

(Fermı́n-cueto et al., 2020). As only the cycling operating conditions are considered for the parameteriza-

tion of the SeM, the model response could not capture the sudden degradation toward the EoL. This can

be regarded as the limitation of the model, which can be further improved with the inclusion of IR

measurement.

However, in the case of data-driven models, the number of WLTC cycles needs to be readjusted because

the training data includes the conditional number (as per the test matrix) of cycles. Authors have found a

relationship between the capacity fade rate and the IR growth for dynamic WLTC cycling.

Figure 6. Semi-empirical model validation for dynamic WLTC profile
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Cadj = k � Cn�1

 
1 +

Xn

i = 1
IR

!
(Equation 10)

In this equation,Cadj is the adjusted number of cycles; k is the full DoD adjustment factor, which is 1.3 (calcu-

lated against DoD Ah); Cn-1 is the performed WLTC cycles; and i denotes n number of iteration rounds

(WLTC). The training process of the GPR model includes a total of eight aging features, which concedes

the maximum computational effort. The trained model is then tested for the dynamic profile resulting in

a very accurate 0.05 RMSE prediction. Once again, the capacity fade is underestimated toward the end

of life, which is related to the high resistance growth. The model can be further improved with more funda-

mental battery characteristic (i.e., direct voltage, IR measurement, etc.) inputs to capture the EoL trend.

Figure 7 shows how close the output response of the GPR model is compared with the actual capacity

decay during most of the period.

The advanced NARXnet model has shown the best performance when it is validated against the dynamic

WLTC cycles. A second-order polynomial fitting is used at first to generate test data points by interpolating

the number of WLTC rounds. These calculated data points (as named) are then tested with the trained

NARX model, and a precise 0.01 RMSE value is achieved. Figure 8 clearly shows the edge of the NARX

model over the other models. The black box-type NARX model shows the capability of capturing the un-

certain dynamicity of the investigated battery cell at EoL that other models could not.

Table 1 lists the model performances of the developed semi-empirical and data-driven models. The NARX

model outperforms the GPR model and the SeM in terms of accuracy; however, the training process and

data pre-processing of data-driven models require a significant amount of computational effort that can

be compromised to the accuracy. The compared computational cost refers to the averaged running

time of SeM’s simulation and the training time of GPR’s and NARXnet’s data processing. All the simulation,

training, and testing of the models are conducted with Intel Core i7-6820HQ (at 2.70GHz) processor and 16

GB (2,133 MHz) speed.

Static profile validation of ML models

Besides the dynamicWLTC validation, the static profile is selected to test both the trainedMLmodels. To have

a concrete validation, each cycle discharge capacity is simulated in comparison with the measured value.

Figure 9 shows the GPR model performance that is trained with several cycling and relaxation input param-

eters. The constant-current and constant-voltage (CCCV) condition used for this validation type is a sepa-

rate profile and cycled with a new cell. The tested model performs quite accurately with a 0.89 RMSE

Figure 7. Data-driven GPR model validation for dynamic WLTC profile
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predicting each capacity value per cycle. The simulation curve overfits in the first cycling phase (up to 120

cycles) and underestimates in the second with various spikes related to the temperature rise (inserted axes).

Hence, the model could not capture capacity gain during the start of the second phase, which is mainly

because of GPR’s limitation in predicting capacity regeneration (Liu et al., 2013). This is a crucial limitation

that gets accumulated in the total model error. The slow training process of GPR can be compromised by

good model accuracy.

On the contrary, the training of the NARX model is much faster than the GPR, although using a similar

training dataset. Based on the training data, the trained model has responded with a 0.59 MSE (MSE is

a without root version of RMSE) and 0.67 MSE for training and testing. However, it shows an excellent

agreement between the target measurement and the test response with a 0.34 RMSE when it is validated

with the static profile results. Figure 10 shows the capacity decay during the lifetime with error distribution.

The tested model performance depicts underestimation only toward the EoL, which means an excellent

agreement during the majority of the aging period proving the model’s high competency. Table 2 com-

pares the ML model performances tested for a static profile. The NARX model outperforms the GPR in

terms of accuracy and computational effort. It can also capture the capacity regeneration after a rest period

(inserted axis), which proves the robustness of using advanced algorithms.

Evaluation and assessment

The modeling of battery life has several challenges to overcome such as accuracy, computational effort,

model complexity, etc. A robust and efficient aging model not only explains the battery degradation

behavior but also helps to perform prognosis and diagnosis. Thus, it is crucial to select a suitable method-

ology to predict the capacity decay during the whole life. In this work, three different lifetime models (SeM,

GPR, NARX) have been developed and compared on similar terms to provide a valid assessment of the

Figure 8. ANN model validation for dynamic WLTC profile considering intermediate data points

Table 1. Model assessment of dynamic validation based on the normalized capacity fade

Semi-empirical model GPR model NARX model

RMSE 0.9916 0.0458 0.0099

MAE 0.8016 0.0253 0.0053

Simulation/training time 14 s 213 s <1 s
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performances. A comprehensive NMC aging dataset is used to construct and/or train all the models be-

sides validating them with an unknown set of measurements.

All the models have shown quite accurate results in predicting capacity degradation, resulting in a very low

RMSE value (<1). The GPR shows better results in dynamic profile validation; however, the NARX model

performs better than the GPR in static profile validation. The NARX model can be considered as the

best performing model overall among all in terms of accuracy. It also requires the least amount of compu-

tational effort when compared with the GPR and the SeM (simulation). The possible reasons for the better

Figure 9. GPR model validation with static CCCV profile

Figure 10. NARX model validation with static CCCV profile
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performing NARXnet could be the learning and adapting ability of the algorithm from the training data,

which distinguishes it from the kernel-dependent GPR and fitting equation-based SeM. The huge amount

of experimental data has further helped the ANN model to perform better.

The models require an extensive amount of measurement data, which is considered as standard in this

work. However, the rigorous task of data processing is significant on top of data generation, which is re-

garded as conventional as well. Regarding model complexity, SeM is a lighter model as it is represented

by simple fitting equations fitting cycling, and calendar life degradation paths, separately. ML models

are more complex as advanced algorithms are used in the training process. Besides, the GPR and NARX

models follow black-boxmodelingmethodology, which has no knowledge of the battery physical-chemical

events. On the other hand, semi-empirical can still represent a little insight into the degradation mecha-

nism following established algorithms like the Arrhenius equation for calendar life fade.

All the comparedmodels can be used as an online prognosis tool implemented in the battery management

system. However, the simplicity of SeMputs it ahead of other complexmodels in this regard. The number of

processed parameters plays a major role, which requires memory and computational considerations, espe-

cially for model training. The trained ML models based on historical data can continuously improve by

learning from the real-life information if implemented in the local device or via cloud simulation. However,

the implementation cost, communication systems, computational delay, etc., are the crucial challenges

that need to be compromised to get the accurate battery states (SoC, lifetime). On the contrary, fewer input

parameters make SeM an undemanding choice with a higher RMSE error.

Figure 11 displays the investigated lifetime modeling methodologies comparison in terms of key assess-

ment criteria. However, the existing limitations still require intensive research in this field, especially,

Table 2. Model assessment of static validation based on relative capacity degradation

GPR model NARX model

RMSE 0.8922 0.3413

MAE 0.7192 0.0083

Simulation/training time 213 s <1 s

Figure 11. Radar chart for the performance evaluation of the investigated models (outer lines mean higher

assessment)

ll
OPEN ACCESS

12 iScience 24, 102060, February 19, 2021

iScience
Article



when there are varieties of Li-ion battery chemistries available of different properties. The highly nonlinear

characteristics of these batteries are the main obstacle to achieving a universal lifetime model. Both the

technology-specific electrochemical models and performance-fitted SeMs are defined to follow a partic-

ular degradation path. Thus, advanced algorithms and self-learning models can be a solution to future life-

time modeling compromising the cost and computational effort. Hence, further material development can

also restrict nonlinearity meaning that a simple model like SeM can be implemented with high accuracy.

CONCLUSION

The lifetime of Li-ion batteries is the key challenge to achieve sustainable battery performance. The applica-

tion-specific usagedominates the degradation path, andanaccurate agingprediction is still a challenge. The

precise forecasting of the battery life has a far-reaching consequence, which can help to understand the bat-

tery behavior under certain circumstances and perform diagnosis accordingly. In this research work, several

lifetime models are developed following different methodologies, and model performances are compared

with each other. The assessment is validated by using a common training dataset and tested/simulated on

completely new cells. It has been found that the data-driven models are more accurate than the SeM. The

NARX model is the most precise with a 0.01 RMSE when validated with a WLTC profile requiring less than

a second for training. On the other hand, the SeM is the simplest of all that can predict the capacity fade

with 0.99 RMSE during the whole life. Hence, the data-driven ML models are validated with a static cycling

profile where the NARX model once again shows the best performance scoring a very accurate 0.34

RMSE. Moreover, the constructed models are scrutinized and differentiated in terms of data requirement,

model complexity, computational effort, applicability, etc., and the pros and cons are explained. It can be

concluded from the discussions that no model is perfect; nevertheless, the best can be useful. The outcome

of the evaluation in this work would help the research community to choose the most suitable lifetime

modeling methodology according to the purpose. Hence, the best model methodology is aimed to flourish

to achieve a chemistry-neutral approach following future research prospects (BATTERY 2030+, 2020).

Limitations of the study

All the developed lifetimemodels in this work can be used as an efficient tool for the investigatedNMC cell.

However, the developed models could be further optimized to achieve the best possible results. Unfortu-

nately, the models could not be verified against the static profile, which is a scope of improvement of the

work. Also, the models’ adaptability to other types of battery technologies is a challenge. So, more opti-

mization and validation by a quality dataset could be done in the future to further improve the model’s per-

formance and robustness.
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Transparent Methods 

 

In this research work, an aging dataset of 40 NMC cells is used which has been generated during 

one and a half years of lifetime characterization. The discharge nominal capacity of this high-

energy cell varies between 59-62 Ah at room temperature. This plentiful and comprehensive 

dataset is produced by using PEC manufactured ACT type battery cyclers and the ambient 

temperature is controlled by CTS made climate chambers. 

 

Data generation 

The commercial battery cells used in this research are cycled with a constrained structure to 

emulate realistic scenarios. Every cell was sandwiched between two aluminum plates and screwed 

to ensure safety and improved performance (Wünsch, Kaufman and Uwe, 2019). The test 

campaign consists of battery characterization both at the beginning of life (BoL) and the end of 

life (EoL) while a hybrid plan of cycling and rest phases dominates the aging procedure. The self-

explanatory Figure 11 shows the use of combined cycling and relaxation phases which were used 

to age the batteries. The test end criterion in this work is considered when the SoH of the cell falls 

below 75% of the nominal discharged capacity. 

 



 

Figure S1: Battery aging test flow chart. The investigated cells are cycled as per this test 

procedure. Related to the results published in Figure 2. 

 

All but selective BoL/EoL characterization data is used to identify the nominal parameters of the 

cell. The capacity test was performed with the C/3 rate only at BoL and at EoL. All the cycling 

batteries were cycled following the constant-current and constant voltage (CCCV) procedure in 

charge direction and the constant-current (CC) procedure in discharge direction according to the 

specified test conditions. A 10-minute rest was employed between every charge and discharge 

step. Due to the high repeatability of the cell, one cell per condition was studied. The batteries 

were cycled typically 50 times within the operating voltage region (100% DoD) in a single round 

and the last cycle discharge capacity is used as the actual capacity. After every cycling round, the 

required rest was provided to every cell in terms of temperature, SoC, and duration. In this way, 

38 different combinations of operating parameters were studied in the unique experimental phase. 

The circle of cycling and relaxation was continued until the cell reaches the EoL which is 

calculated by the following equation. 



 

* *1( / )*100%i i j iSoH Q Q=         (1) 

 

In equation (1), i refers to the cell number, Q is the discharge capacity and j is the performed 

number of cycles. The very first cycle capacity is considered as the nominal value in the 

calculation. Besides aging tests, two types of validation tests were performed on separate cells. 

The static test was cycled twice with 1C charge-discharge rate at 10°C for 150 full cycles before 

a 1-day rest at 30% SoC at room temperature in between. The same CCCV charge and CC 

discharge procedures are followed for the static test. On the contrary, the dynamic profile is 

designed based on an on-road vehicle (AUDI e-Tron) adjusting the WLTC currents, accordingly. 

The test was performed within 80% DoD (operating window) for 12 days at 10°C before resting it 

at 70% SoC and room temperature after every WLTC round. A capacity and resistance checkup 

were performed after every WLTC round to track the SoH of the cell.  

 

Supplemental References 

Wünsch, M., Kaufman, J. and Uwe, D. (2019) ‘Investigation of the influence of different bracing 

of automotive pouch cells on cyclic lifetime and impedance spectra’, Journal of Energy Storage, 

21(November 2018), pp. 149–155. 

 


	ISCI102060_proof_v24i2.pdf
	Battery lifetime prediction and performance assessment of different modeling approaches
	Introduction
	Lifetime model development
	Aging characteristics and data processing
	Semi-empirical model
	Gaussian process regression model
	Artificial neural network model
	Model evaluation metrics


	Discussion
	Models' performance assessment
	Model comparison for dynamic WLTC
	Static profile validation of ML models
	Evaluation and assessment

	Conclusion
	Limitations of the study
	Resource availability
	Lead contact
	Materials availability
	Data and code availability


	Methods
	Supplemental information
	Acknowledgments
	Author contribution
	Declaration of interests
	References



