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The pharmaceutical industry is currently trying to develop new bioactive compounds
to inactivate both enveloped and non-enveloped viruses for therapeutic purposes.
Consequently, microalgal and macroalgal bioactive compounds are being explored
by pharmaceutical, as well as biotechnology and food industries. In this review, we
show how compounds produced by algae include important candidates for viral control
applications. We discuss their mechanisms of action and activity against enveloped and
non-enveloped viruses, including those causing infections by enteric, parenteral, and
respiratory routes. Indeed, algal products have potential in human and animal medicine.
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INTRODUCTION

Many significant zoonotic pathogens are viruses and they have substantial infection-related impacts
on public health worldwide. Non-enveloped enteric viruses are persistent in the environment (in
water, soil and sewage, and on surfaces), resisting pH ranges of up to 3 to 9, temperature variations,
and radiation (Evans, 1982; Taylor et al., 2001; Olival et al., 2017). Such viruses are a common cause
of foodborne contamination (Carter, 2005; Elizondo-Gonzalez et al., 2012), which is responsible
for 1.1 million hospitalizations and 218,000 deaths/year of children in countries with poor sanitary
conditions (Patel et al., 2008). Enveloped viruses, with their environmental dissemination by air and
aerosols, are responsible for pandemic events such as those involving Influenza and Coronavirus
(Medina and García-Sastre, 2011; Chiu et al., 2012; Wang et al., 2018; Glass et al., 2020). Some
enveloped viruses demonstrated high capability to cause epidemic episodes, such as Dengue virus
on 2019 infecting 6,162,394 and causing death of 3,930 people. Ebola virus on Uganda/Congo
region between 2018/2020, causing 3,453 infections and 2,273 deaths, other viruses as Nipah,
Yellow fever and Zika caused epidemics through the worldwide (Agca et al., 2021; Anand et al.,
2021; Yoon et al., 2021).

Enteric and respiratory viruses present enormous challenges both for human and animal
medicine, and there is therefore a need for new antiviral solutions for fighting viruses with
their worldwide economic and social consequences. Recent respiratory viral epidemics such as
the worldwide outbreaks of swine flu, avian flu, and coronavirus has increased interest in the
development of antiviral drugs (Prasse et al., 2010; Feng et al., 2018; Ye et al., 2020). Exploring
natural compounds is an important approach to obtaining new virucides and antivirals. Macroalgal
marine polysaccharides are potential candidates for human and animal medicine and have attracted
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the attention of the scientific community for applications in
biotechnology (Dias et al., 2012; Wang et al., 2012).

Macroalgae are a phylogenetically artificial group of
multicellular, macroscopic, eukaryotic, photoautotrophic
organisms, mostly benthic (many being commonly known
as seaweed), which are classified into three large groups:
Chlorophyta (green algae), Rhodophyta (red algae), and
Phaeophyceae (brown algae) (Leandro et al., 2019).

The components of macroalgae vary from simple to complex
compounds, including polysaccharides (e.g., fucoidan, alginate,
laminarin, carrageenan), phenolics and phlorotannins (e.g.,
flavonoids, lignans, tannins), protein and peptides (themselves
made up of amino acids including leucine, glutamic acid,
tryptophan), lipids, terpenoids and steroids (e.g., carotenoids),
vitamins and minerals (Spolaore et al., 2006; Onofrejová et al.,
2010; Balboa et al., 2013). Freshwater and marine microalgae
contain compounds of high relevance to health, for example
vitamins, proteins with essential amino acids, fatty acids,
polysaccharides, minerals, enzymes, fibers and photosynthetic
pigments such as carotenoids and chlorophylls (Montalvão et al.,
2016; Silva et al., 2018). Various bioactive compounds from
algae are attracting growing interest because of their antitumor,
antiviral, anticoagulant, and antioxidant properties (Wang et al.,
2012; Wang et al., 2018).

Algae have a variety of broad-spectra activities against viruses
and low cytotoxicity, both in vitro and in vivo. However,
their potential is still underexplored by the pharmaceutical
industry, and only 9% of medicines of natural origin come
from algae (Kumar Jha and Zi-Rong, 2004). Besides that, there
are many in vitro studies proving the antiviral effects of algae,
there have been few studies of their efficiency in vivo and in
the environment. Indeed, there is an urgent need for further
investigations of this type (Rosa et al., 2020).

This review presents selected compounds from algae as
candidates for the control of viruses with applications in the
phytochemical, pharmaceutical, and sanitizing sectors.

OBTAINING CRUDE AND
FRACTIONATED EXTRACTS FOR
ANTIVIRAL AND VIRUCIDAL ASSAYS
FROM ALGAE

Bioactive compounds can be extracted from macroalgae or
microalgae using various methods. The most common for
extracting bioactive compounds from marine samples is
solid-liquid extraction (SLE), involving solvents to extract
soluble constituents from a solid or semisolid matrix. The
downside of this method is its long extraction time and
high solvent consumption (Wang et al., 2018; Jacobsen et al.,
2019). Other relevant techniques are solid-phase extraction
(SPE), supercritical fluid extraction (SFE), ultrasound-assisted
extraction (UAE), microwave-assisted extraction (MAE), and
pressurized liquid extraction (PLE); SFE, UAE, and MAE are the
most commonly used for macroalgae (Kaufmann and Christen,
2002; Ciko et al., 2018).

Obtention of compounds of interest from marine macroalgae
and microalgae involves the following major steps: (1) collection
and taxonomic identification of samples; (2) drying; (3)
extraction through the use of solvent; (4) filtration and
concentration by evaporation (Fayzunnessa et al., 2011; El-Baz
et al., 2013; Choi et al., 2014).

Cytotoxic, antivirus, and virucide assays and other cell culture
techniques are used to screen candidates. Cytotoxic assays
identify compounds that are toxic to healthy cells. A typical
protocol is to cultivate an appropriate cell line in an Eagle
medium at 30◦ with 5% of CO2 in a layer in a 96-well plate, and
applying serial dilutions of compounds of interest. After 7 days
of incubation, viable cells are revealed by using chemicals such as
sulphorhodamine B and tetrazolium dye 3-(4,5-dimethylthiazol-
2-yl)-2,5-diphenyltetrazolium bromide (MTT) (Chacon et al.,
1996; Vichai and Kirtikara, 2006).

Antiviral assays identify compounds that for example inhibit
viral replication. Such assays generally involve placing viruses in
contact with permissive cells and allowing the cycle of replication
to begin. The antiviral compound being tested is then applied
and successfully replicated viruses counted as plaque-formed
units (PFU) after revelation by staining cells with crystal violet.
Percentages of viral inhibition and of cells free of infection can
then be calculated.

Virucidal assays identify compounds that kill viruses, by for
example, inactivating recognition proteins. Viruses are exposed
to the sample under study and then a known quantity of virus is
used to inoculate cells in 6-well plates; in some protocols, agarose
is use to stabilize neighboring cells to favor the transmission of
viruses. Viral neutralization is quantified by counting PFU after
viable cells are colored with crystal violet (Jothikumar et al.,
2005). This assay is important for evaluating compounds that
may be able to inactivate viruses in the environment (Victoria
et al., 2009; Rigotto et al., 2011; Célia da Silva Lanna et al., 2019).

DISCUSSION

Algae and their extracts have numerous applications and have
historically stimulated significant economic interest, mainly as a
source of new drugs such as antivirals. therefore, we report crude
extracts and compounds isolated from algae that showed antiviral
activity against both enveloped and non-enveloped viruses. Some
examples of these compounds and extracts from algae with
antiviral activity are listed in Table 1.

Crude Extracts From Algae Against
Viruses
Red seaweed Osmundaria obtusiloba has been reported to have
higher antiviral and virucidal effects against the Chikungunya
virus (CHIKV) than ribavirin, which is used as a drug to control
the virus (Cirne-Santos et al., 2019). The λ- and ι-carrageenans
obtained from Osmundaria obtusiloba have potent antiviral
activity against dengue virus type 2 (DENV-2) and type 3 (DENV-
3) (Talarico and Damonte, 2007).

An ethanol extract from the microalgae Spirulina platensis
has antiviral effects against Adenovirus type 40, a non-enveloped
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TABLE 1 | Species and compounds from algae used as antivirals.

Species Compounds Applications References

Macroalgae

– Iota-carrageenan HRV1A, HRV2, HRV8, HRV14,
HRV16,
HRV83, HRV84

Grassauer et al., 2008

Stypopodium zonale Meroditerpene epitaondiol HMPV

Laminaria japonica Sulphated polysaccharide fucoidan H5N1, RSV Cao et al., 2016

Chondrus armatus
Laminaria cichorioides, Laminaria japonica

ι-carrageenans, fucoidan Hantavirus Pavliga et al., 2016

Griffithsia sp. Protein griffithsin SARS-CoV (Urbani strain), HIV,
HCV, HSV-2, JEV, PEDV

Mori et al., 2005, O’Keefe et al., 2009,
O’Keefe et al., 2010, Meuleman et al.,
2011, Ishag et al., 2013, Takebe et al.,

2013, Levendosky et al., 2015

Griffithsia sp. Grifonin-1 HIV-1 Micewicz et al., 2010

Laurencia obtusa Polysaccharide HCV Gheda et al., 2016

Cladosiphon okamuranus Fucoidan DENV-2 Hidari et al., 2008

– λ-carrageenans, ι-carrageenans DENV-2, DENV-3 Talarico and Damonte, 2007

– Fucoidan NDV Elizondo-Gonzalez et al., 2012

Cladosiphon okamuranus Fucoidan CDV Trejo-Avila et al., 2014

Eisenia bicyclis Dieckol/phlorofucofuroeckol-A FCV, murine norovirus Choi et al., 2014, Eom et al., 2015

Nicotiana benthamiana Griffithsin/Carrageenan HSV-2/human papillomavirus Levendosky et al., 2015

Schizymenia binderi Sulphated galactan HSV-1, HSV-2 Matsuhiro et al., 2005

Gracilaria corticata Sulphated galactan HSV-1, HSV-2 Mazumder et al., 2002

Padina pavonica, Sargassum vulgare,
Pterocladia capillace, Laurencia obtusa

Sulphated polysaccharides
HCV Gheda et al., 2016

Microalgae

Chlorella vulgaris Polysaccharide HSV-1 Santoyo et al., 2010

Gyrodinium impudium Sulphated polysaccharide p-KG03 IAV, EMCV Kim et al., 2012

Spirulina platensis Sulphoquinovosyl diacylglycerol Adenovirus 40-7,
Coxsackievirus B4, Astrovirus
type 1, Rotavirus Wa, HSV-1

Abdo et al., 2012; El-Baz et al., 2013

Cochlodinium polykrikoides Sulphated polysaccharides A1 and A2 Influenza A and B viruses,
RSV-A, RSV-B

Hasui et al., 1995

Spirulina platensis Calcium spirulan HIV1, HIV2, HSV1, HSV2,
HCMV, MuV, IAV

Hayashi et al., 1996

Porphyridium cruentum – HH3, VV, ASFV, VHSV Fabregas et al., 1999

Chlorella autotrophica – VHSV, ASFV Fabregas et al., 1999

virus (Abdo et al., 2012). This virus causes gastroenteritis
and mortality especially in children. S. platensis also has
antiviral effects against Adenovirus type 7, Astrovirus type 1,
Coxsackievirus B4 and Rotavirus Wa strain (El-Baz et al., 2013),
all of which cause gastroenteritis in humans.

Gyrodinium impudium is a marine microalga with antiviral
effects against encephalomyocarditis (EMCV) non-enveloped
viruses. EMCV infection causes death among pigs in production
units, primates in research centers, and animals in zoos
(Kim et al., 2012).

Extracts of some algae have been fed to some types of
shrimp to reduce the impact of the white spot syndrome virus
(WSSV); this macroalgae and microalgae diet appears to have
improved innate immunity and increased the resistance of
shrimp to infection by WSSV (Chotigeat et al., 2004; Immanuel
et al., 2012; Sivagnanavelmurugan et al., 2012; Charoonnart
et al., 2019). Seaweed extracts have also been used in fish
diets and have shown promising antiviral effects against the

salmon anaemia virus (ISA) and the enveloped RNA virus
(Lozano et al., 2016).

Biocompounds Isolated From Algae
Against Viruses
A wide variety of compounds obtained of micro and macroalgae
has already been explored and tested against viruses and their cell
infection capabilities.

Several studies of macroalgae compounds have shown
promising antiviral effects against viruses that cause animal
diseases causing serious economic losses. There are no effective
treatments, either antivirals or vaccines, currently available
against many of these diseases. A study in 2012 reported that
the brown algae compound fucoid had an antiviral effect,
albeit weak, against the Newcastle virus (NDV), which causes
serious diseases in poultry and thereby substantial financial loss
(Elizondo-Gonzalez et al., 2012).
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The first seaweed compound with antiviral activity against
Canine Distemper Virus (CDV), a morbillivirus related to the
measles virus that infects dogs and other carnivores (Trejo-Avila
et al., 2014), was reported in 2014. In the same year, another
report showed the antiviral potential of brown algae products
against norovirus infections using the Feline Calicivirus as a
model (Choi et al., 2014).

The Griffithsin protein (GRFT protein), produced by a red
alga called Griffithsin sp., has activity against viruses such as the
human immunodeficiency virus (HIV), hepatitis C virus (HCV),
human papillomavirus, herpes simplex virus 2 (HSV-2) and the
Japanese encephalitis virus (JEV), the most frequent cause of viral
encephalitis in Asia (Ishag et al., 2013; Takebe et al., 2013). GRFT
also shows antiviral activity against respiratory viruses including
SARS-CoV (Urbani strain), coronaviruses (HCoV-NL63 group
and HCoV-OC43 group) and infectious bronchitis virus (IBV;
Mori et al., 2005; O’Keefe et al., 2009, 2010; Meuleman et al., 2011;
Ishag et al., 2013; Takebe et al., 2013; Levendosky et al., 2015;
Lusvarghi and Bewley, 2016). Studies with SARS-COV suggest
that the GRFT also can reduce the overall viral load, and it acts by
binding to the peak glycoprotein at the start of an infection and
as an immunomodulator (O’Keefe et al., 2009, 2010). The GRFT
protein of red algae is also effective against the porcine diarrhoea
virus (PEDV), which causes deaths and large economic losses in
the swine industry (Li et al., 2019).

Human noroviruses cause gastroenteritis and phlorotannins
from macroalgae have been reported to be active against
murine norovirus (MNV), a model for human noroviruses
(Eom et al., 2015).

The red seaweed compound carrageenan prevents the
replication of Rhinoviruses (HRV1A, HRV2, HRV8, HRV14,
HRV16, HRV83, and HRV84), which are more common causes
of infection than any other respiratory virus. Carrageenan has
also been reported to help improve symptoms of common cold
and reduce high viral loads (Grassauer et al., 2008; Eccles et al.,
2010). The meroditerpene epitaondiol extracted from brown
macroalgae has virucidal activity the human metapneumovirus
(HMPV), another respiratory virus, and inhibits the penetration
of viral particles into cells (Mendes et al., 2010).

Fucoidan and another polysaccharide from a brown seaweed
have virucide activity against Influenza A (H5N1), Hantavirus
and Respiratory syncytial virus (RSV), and also other non-
respiratory viruses (Deryabin et al., 2014; Cao et al., 2016; Pavliga
et al., 2016).

A sulfated polysaccharide was isolated from the microalgae
Spirulina platensis and called calcium spirulana (Ca-SP), this
isolate showed antiviral activity against replication of several
enveloped viruses, including Herpes simplex virus type 1, human
cytomegalovirus, measles virus, mumps virus, influenza A virus,
and HIV-1 (Hayashi et al., 1996).

Viral Action Mechanism From Bioactive
Algae
Viruses are obligatorily intracellular parasites; they need to
invade cells and hijack cellular machinery to replicate. Enveloped
viruses tend to fuse their membrane to the cell membrane

to release the genome into the cytoplasm of the host using
cytoplasmic endosomes. Fusogenic peptides active at low pH
facilitate access to cytoplasmic endosomes; thus, preventing pH
lowering by molecules released by cells inhibits virion fusion.
Non-enveloped viruses, such as enteroviruses, accumulate in
endosomes which are highly acidic. Recognition depends on the
activity of receptors on the surface of the cells, where the virus
binds. Most enteroviruses bind α2β1 integrin and adenoviruses
and coxsackieviruses use adenovirus and coxsackie receptors
(Belgerson et al., 1997; Marjomäki et al., 2015). Viruses with
an RNA genome initiate their translation and transcription in
the cytoplasm, such that they are specific potential targets for
viral inhibitors inside the cell. DNA viruses need to penetrate
the nucleus to start the process of replication. During translation
and transcription, there is an abundance of proteins and viral
polymerases, which are also potential targets for inhibition. Non-
enveloped viruses are assembled in the cytoplasm in general, and
this is followed by cell lysis and thus release of infectious viral
particles (Linnakoski et al., 2018).

The antiviral mechanism of compounds obtained from algae
is generally related to their specific structure and type of virus.
Thus, each algae biomolecule may have a distinct mechanism to
inactivate different types of viruses. Some studies suggest that one
of the mechanisms of action involved in viral inactivation by algae
is due to algal cells having a negatively charged surface which,
interacting with the positive charge present in viruses or their cell
surfaces, can prevent entry and cellular virus replication (Buck
et al., 2006; Grassauer et al., 2008; Branyikova et al., 2018; Eccles,
2020). Furthermore, this antiviral mechanism that algae present
is due to the synergistic effect that can occur with the combined
use of different compounds present in these algae (Rosales-
Mendoza et al., 2020). Some mechanisms of action of distinct
and several compounds from algae with antiviral potential are
described below.

Sulphated polysaccharides from seaweed have antiviral effects
by acting at the beginning of the virus infection, interfering
with virus adsorption and internalization (Mazumder et al., 2002;
Talarico et al., 2004; Matsuhiro et al., 2005; Wang et al., 2012).

The antiviral action of fucoidan consists of blocking viral
adsorption, inhibiting viral penetration and replication, and
heavily suppressing virus-induced syncytium (Ponce et al., 2003;
Mandal et al., 2007; Trejo-Avila et al., 2014).

Iota-carrageenan from red marine algae acts against infection
by influenza virus through direct binding of the polymer to
the viral particles, thereby preventing adsorption onto cell
receptors and subsequent internalization, iota-carrageenan
has a long chain of negatively charged molecules that attract
and capture positively charged viruses and prevent them
infecting cells (Leibbrandt et al., 2010; Eccles, 2020). Iota-
carrageenan also can bind to the surface of the rhinovirus
and causes inhibition of the virus’s binding to cell receptors
(Grassauer et al., 2008). Iota-carrageenan has an inhibitory
effect also after the virus enters the cell, blocking mandatory
conformational changes of rhinovirus, Iota-carrageenan
acts on the occlusion of the virion surfaces involved in
binding to the cellular proteins involved in the infectious
process, which can prevent replication and also generate
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defective viral particles (Buck et al., 2006; Grassauer et al.,
2008).

Carrageenan from red seaweed adsorbs Enterovirus 71
particles, consequently preventing the viruses from entering cells
(Chiu et al., 2012). Both λ- and ι-carrageenans can effectively
interfere with the adsorption and internalization of DENV when
added at the same time as the virus or shortly after infection.

Griffithsin protein from the macroalga Griffithsia sp. has the
ability to bind to specific oligosaccharides in the glycoproteins in
the virus envelope and block viral entry, GRFT was active against
SARS-CoV and HCoV-NL63 using protein-protein interactions
for viral targeting, and for HCoV-OC43 and IBV-CoV utilize
protein-carbohydrate interactions for viral attachment (O’Keefe
et al., 2010).

An extract from the brown algae Laminaria japonica has
a polysaccharide that efficiently inhibits RSV replication, and
the mechanism of action depends on interferon regulatory
factor 3 (IRF-3)-mediated interferon-alfa (IFN-α) secretion
(Cao et al., 2016).

The antiviral effects of macroalgae extracts against the HMPV
virus involve interaction with the viral particles outside the
cells and thereby preventing infection. Meroditerpenoids of this
species have both virucidal effects and the capacity to inhibit the

penetration of viral particles into cells. The binding of HMPV
to heparan sulfate involves charge-charge, heparan sulfate blocks
the binding of HMPV to the receptor and this occlusion inhibits
infection of cells (Klimyte et al., 2016).

Many groups who have demonstrated that compounds and
extracts from macroalgae have antiviral effects report the need
for studies to elucidate the mechanisms of action of the bioactive
compounds (Choi et al., 2014; Eom et al., 2015). Figure 1
illustrates various mechanisms of antiviral activity of compounds
derived from algae.

Antiviral Drugs From Algae as Alternative
to Synthetic Drugs
Algae are a natural source of compounds with antiviral
properties, have proven efficiency against enveloped and non-
enveloped viruses, this compounds and extracts from algae have
inexpensive to obtain, especially those of marine origin (Alam
et al., 2021). Furthermore, algae are an alternative resource to
synthetic drugs, because algae have very low toxicity and some
are non-toxic at doses that have a broad antiviral spectrum
against several viruses and minimal side effects (Besednova et al.,
2021). Among the benefits of algae, we can still mention that due

FIGURE 1 | The mechanisms of the action of natural compounds can be divided into two phases: before and after viral entry. 1-A: GRFT Protein from the Griffithsia
sp. macroalgae binds to specific oligosaccharides in the virus envelope glycoproteins and block viral entry (O’Keefe et al., 2010). 1-B: Polysaccharides from
Laminaria japonica enhance the expression level of IRF3 and the secretion of IFN alpha that results an antiviral activity against RSV. 1-C: The binding of HMPV to
heparan sulfate involves charge-charge interactions; this blocks the binding of HMPV to the receptor and consequently inhibits the infection of cells (Klimyte et al.,
2016) 0.1-D: Iota-carrageenan from red algae has a long chain of negatively charged molecules that attract and capture positively charged viruses and prevent them
from infecting cells (Leibbrandt et al., 2010; Eccles, 2020). 1-E: Iota-carrageenan binds to the surface of rhinovirus and inhibits virus binding to cell receptors
(Grassauer et al., 2008). 2-A: Viral entry. 2-B Iota-carrageenan also has an inhibitory effect after the virus enters the cell, blocking the conformational changes of
rhinovirus necessary for infection (2-B: uncoating and 2-C: replication) Iota-carrageenan acts occludes virion surfaces involved in binding to cellular proteins required
for the infectious process; this prevents replication and results in the viral particles produced being defective (Buck et al., 2006; Grassauer et al., 2008). 2-D: Exit of
defective viral particles.
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to the diversity of molecules and their mechanisms
of action, it inactivates viruses and block their action
without causing resistance or selection of these organisms
(Hamed et al., 2015).

CONCLUSION

Various compounds from algae have potent activities against
viruses, and are strong candidates for the control and treatment
of viruses that affect humans and animals. These bioactive
compounds should be further explored for health applications,
both in clinicals and the environmental. They are also promising
for use as low toxicity sanitizers of high virucidal capacity.
More studies are required both for prospecting algae for active
molecules and for the development of products suitable for
applications in viral control.
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