
REPORT

Gene, cell type, and drug prioritization analysis
suggest genetic basis for the utility
of diuretics in treating Alzheimer disease

Daria Pinakhina,1,2 Alexander Loboda,1,3 Alexey Sergushichev,1 and Mykyta Artomov1,4,5,6,7,8,*
Summary
We introduce a user-friendly tool for risk gene, cell type, and drug prioritization for complex traits: GCDPipe. It uses gene-level GWAS-

derived data and gene expression data to train a model for the identification of disease risk genes and relevant cell types. Gene priori-

tization information is then coupled with known drug target data to search for applicable drug agents based on their estimated func-

tional effects on the identified risk genes. We illustrate the utility of our approach in different settings: identification of the cell types,

implicated in disease pathogenesis, was tested in inflammatory bowel disease (IBD) and Alzheimer disease (AD); gene target and drug

prioritization was tested in IBD and schizophrenia. The analysis of phenotypes with known disease-affected cell types and/or existing

drug candidates shows that GCDPipe is an effective tool to unify genetic risk factors with cellular context and known drug targets. Next,

analysis of the AD data with GCDPipe suggested that gene targets of diuretics, as an Anatomical Therapeutic Chemical drug subgroup,

are significantly enriched among the genes prioritized by GCDPipe, indicating their possible effect on the course of the disease.
There is a common recognition that genome-wide associa-

tion studies (GWASs) could be a powerful tool for drug

development, as well as for drug repurposing.1,2 The latter

enables an effective transition of existing therapies into

new applications in clinical practice. Several approaches

to leverage GWAS data for drug discovery and repurposing

have already been proposed.1–13

GWAS data are used as a source of the candidate genes to

serve as targets for drug repositioning.1 However, its utility

is limited by the small yield of drug candidates from top as-

sociations in GWAS, as only a modest fraction (22%) of

protein-coding genes is currently druggable.2 Tools, such

as Gentrepid,14 use diverse information on pathway, pro-

tein-protein interaction, and/or protein domain homology

to extend candidate gene lists and overcome this limita-

tion. The other solution to candidate gene list extension

is provided by pipelines for gene prioritization; however,

the utility of such methods for drug and drug-target

prioritization remains understudied.15,16

In addition to gene identification, GWAS findings can

inform development of therapies by providing evidence

for identification of disease-relevant cell types and tissues.

This information could guide the development of drugs

with increased cell type specificity to minimize potential

side effects.17,18 Despite a rapid increase in the amount

of single-cell RNA sequencing data, aligning GWAS results

with cell-type-specific expression patterns is the area of

active development.11,19–22 Most of the existing ap-

proaches are based on the linkage of variant-level associa-
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tion signals from GWAS to cell-type-specific expression

through eQTL properties.

The complexity of direct implication of disease-causal

genes fromGWAS variant data remains themain challenge

in understanding disease biology through genetic studies,

indicating that more flexible solutions without a tight link-

age to variant-level statistics would be required.

Here, we introduce a user-friendly random forest-based

tool, GCDPipe, for GWAS-derived gene-level results anal-

ysis, which extends the list of disease gene candidates

through the estimation of probability to influence disease

risks; identifies gene expression profiles across cell types

and tissues with the highest importance for the putative

disease genes identification; and prioritizes drugs based

on their affinity to the putative disease genes using drug-

gene interaction databases.

Two types of disease-specific input are required to run

GCDPipe: a feature matrix with expression values across

cell types/tissues that can be constructed from awide range

of publicly available gene expression atlases (Table S1,

Figure 1) and a gene list for training and testing of the

classifier. The latter could be either a set of genes that are

marked as ‘‘likely causal’’ and ‘‘likely non-causal’’ for

training the model, alternatively a list of GWAS loci with

the ‘‘likely causal’’ genes could be provided and GCDPipe

will construct the training gene set automatically (supple-

mental methods).

There are two key steps in gene classification within

GCDPipe. First, a random forest classifier is trained to
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Figure 1. A general pipeline scheme for joint risk gene identifi-
cation, cell/tissue type ranking, and drug prioritization for a dis-
ease based on GWAS variant-to-gene mapping results
*Adjustable parameter; **Is split into training and validation sets
for cross-validation during hypermarameter optimization; a
custom fraction of genes can also be allocated for the test set.
distinguish between risk and non-risk genes. The

classifier training involves hyperparameter tuning with

GridSearchCV using fivefold cross-validation (Figure S1A).

Second, the performance of this classifier is estimated to

ensure the proper quality of training. An original set of

input genes is initially split into two parts: a training and

a testing set. The first one is used solely for the classifier

training and the other is set aside for future performance

estimation (Figures S1A and 1).

The identification of the disease-relevant expression pro-

files, representing cell types and tissues, is performed using

a modification of the feature importance analysis with

SHAP (SHapley Additive exPlanations), which assigns

each feature an additive importance value (SHAP value)

for a particular prediction.23 The expression profile score

is computed as follows:

Sf ¼
corðSHAPcls2; f Þ$

�
jSHAPcls2j

�

jcorðSHAPcls2; f Þj ;

where Sf is a score for feature f , SHAPcls2- SHAPvalues for the

class 2 (the class of risk), and f - values of the feature f (sup-

plemental methods: GCDPipe implementation and

testing). The Sf score could be positive or negative depend-

ingonwhether theputative riskgenesarehighlyor lowlyex-
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pressed in the selected expressionprofile. The greater the ab-

solute value of Sf , themore important the expressionprofile

is for the discrimination between disease and non-disease

genes in the GCDPipe model based on the SHAP values.

Next, GCDPipe returns the drug prioritization: the drugs

are arranged bymean probability of their gene targets to be

assigned to the risk class. As an additional input for this

step, GCDPipe requires a matrix with drug identifiers and

their gene targets. Optionally, the pipeline will automati-

cally estimate the quality of gene and drug ranking

(supplemental methods).

GCDPipe returns: a range of quality metrics for the ob-

tained classifier and their receiver operating characteristic

(ROC) curves; a matrix with gene probabilities to influence

disease risk and their risk class assignment using the prob-

ability threshold corresponding to the largest difference

between true positive and false positive rates; and a matrix

with the scores of gene expression profiles. If a drug anal-

ysis was performed, a matrix with drug scores is returned

(supplemental methods).

We assembled the sets of genes for classifier training and

testing based on variant-to-gene mapping from GWASs on

inflammatory bowel disease (IBD), schizophrenia (SCHZ),

and Alzheimer disease (AD) (supplemental methods). The

feature matrices were obtained using publicly available

expression datasets, and the information on drug targets

was obtained from DrugCentral.24 Only the drugs with

DrugBank IDs were considered (Table S1).

The resultant risk gene classifier returned area under the

curve-ROC of 0.91, 0.82, 0.82 for the test set in the studies

of SCHZ, IBD, and AD, respectively (Figures S1B–S1D). The

observed estimated quality of the classifiers suggests that

current advancements in variant-to-gene mapping for

GWAS provide sufficient gene-level data to achieve signif-

icant disease gene discrimination even in supervised

training contexts.

To illustrate the practical utility of GCDPipe output, we

compared it with the sets of genes that are differentially

expressed across eight conditions. We performed an

enrichment analysis of 500 top-scoring genes with top

200 differentially expressed genes for each phenotype

(Table S1). As another source of independent information,

a list of 200 genes with the lowest Q-values obtained from

the SCHZ exome sequencing project (SCHEMA)25 was

included into this comparison (Table S1). Significant overlap

between prioritized genes and independently assembled

gene sets from differential expression analysis/exome

sequencing was observed for all three case studies (SCHZ:

SCHEMA - Padj. ¼ 9.23 3 10�9, GSE25673 - Padj. ¼ 1.36 3

10�3; IBD: GSE179285 - Padj. ¼ 3.13 3 10�8, GSE98820 -

Padj. ¼ 7.52 3 10�8, GSE134025 - Padj. ¼ 4.45 3 10�2; AD:

GSE97760–5.323 10�3, Figures S1E–S1G).

In addition, we performed Kyoto Encyclopedia of Genes

and Genomes (KEGG)26 pathway enrichment of 500

top-ranking risk genes and of the ‘‘true’’ genes from

the classifier training and testing sets for SCHZ to

assess the applicability of the GCDPipe for uncovering



disease-relevant molecular mechanisms. The top signifi-

cantly enriched KEGG pathways among the 500 best-

scoring risk genes, excluding those used for training and

testing, were dopaminergic synapse (Padj. ¼ 1.00 3 10�11,

hypergeometric), retrograde endocannabinoid signaling

(Padj. ¼ 6.59 3 10�10, hypergeometric), nicotine addiction

(Padj. ¼ 2.383 10�9, hypergeometric), and MAPK signaling

pathway (Padj. ¼ 4.22 3 10�9, hypergeometric) (overall,

there were 71 significantly enriched pathways), while the

only enriched pathway for risk genes used for training

and testing was GnRH secretion (Padj. ¼ 4.54 3 10�5, hy-

pergeometric) (Figure S2). Alterations in dopaminergic

neurotransmission are considered as one of the most

robust pathophysiological observations in SCHZ pa-

tients.27,28 Another contributor to SCHZ pathogenesis,

proposed as a prospective target for its treatment and mea-

surement, is the endocannabinoid system, and retrograde

endocannabinoid signaling is the second most enriched

pathway in the top-ranking genes.29–33 Nicotine addiction

is the third most enriched KEGG gene set, and it complies

with the observation of an association between SCHZ and

tobacco smoking.34 These pathways are interconnected

with other enriched gene sets, including glutamatergic

synapse and calcium signaling. Further analysis of the

resultant gene-pathway network could reveal how these

mechanisms are interconnected at the molecular level.

None of these pathways is enriched in the GWAS-derived

risk gene set used for model development.

We also tested the pipeline performance with varying

training risk gene count for SCHZ. It was run with 2, 5,

14, and 24 risk genes; enrichment of the top-ranking genes

with the genes of the SCHEMA gene set and the enrich-

ment of the gene ranking with SCHZ drug targets were

estimated as performance metrics. In this assessment,

enrichment with SCHEMA genes and with SCHZ drug tar-

gets is robust with respect to the size of the training gene

set (Figure S3).

The scheme of the control experiments to assess

GCDPipe utility for cell type, drug target, and drug priori-

tization is presented in Figure 2A. Two types of control

data were used: the expression profile and gene scores ob-

tained from training GCDPipe on the random training sets

of the same size as original training data, and randomly

generated gene ranking, implying no model training.

For IBD data, the ranking of the 490 expression profiles

used for classifier training obtained with GCDPipe was

significantly enriched with CD4þ T cells (GSEA enrich-

ment p¼ 0.02), and the leading prioritized expression pro-

file belonged to this cell type. No enrichment with CD4þ

T cells was observed when GCDPipe was trained on a

random training gene set analogous in size (GSEA enrich-

ment p ¼ 0.55) (Figure 2B).

For the AD, microglia expression profile ranked first

among 137 features used for training (GSEA enrichment

p ¼ 8 3 10�3), while no enrichment was found in the con-

trol experiment (GSEA enrichment p ¼ 0.72) (Figures 2C,

3A, and 3B). For SCHZ, themost relevant expression profile
Hu
was obtained from the inhibitory L6 LHX6 GLP1R neu-

rons, which belong to the PVALB cluster in neuronal cell

taxonomy.24,35

Observed enrichments are concordant with the previ-

ously published results: CD4þ cells are reported to play a

key role in IBD pathogenesis,36,37 whereas proliferation

and activation of microglia in the brain, concentrated

around amyloid plaques, is a prominent feature of AD.38

No consensus exists regarding a specific cell type impli-

cated in SCHZ: a complex cellular architecture may be

involved in the condition, and different molecular sub-

types of SCHZ with various underlying pathological

cellular mechanisms may exist.39 Deficits in the marker

gene product of the leading prioritized cell type, Lhx6 - a

transcription factor, regulating parvalbumin and somato-

statin neuron development and migration, are associated

with GABA-related disturbances in SCHZ.40 The results of

expression profile prioritization provided by GCDPipe

correspond to existing evidence on cellular pathologies

underlying IBD and AD and suggest the role of LHX6-ex-

pressing interneurons in SCHZ, which was previously

mentioned in several reports.41–43

Next, to assess the utility of GCDPipe gene ranking for

drug target search, we performed enrichment analyses of

genes, arranged by the probabilities to affect disease risks,

with targets of the drugs that are currently used for the

four selected diseases (IBD and SCHZ as case studies; coro-

nary heart disease [MIM: 607339] (CHD) and asthma

[MIM: 600807] as a comparison, Figures 2D and 2E). The

disease-specific drug sets were obtained from DrugBank.44

We observed the most significant enrichment with

the drugs for the corresponding conditions in both IBD

and SCHZ cases compared with the other phenotypes

(Figures 2D and 2E).

The prioritization of disease-specific drug targets in the

GCDPipe output was assessed. The positions of gene drug

targets for all disease-relevant drugs in the ranked list of

genes provided by GCDPipe were averaged and compared

with the same values obtained with training GCDPipe on

the random set of genes or no training at all. Training

GCDPipe on GWAS data allowed to obtain gene ranking

with significantly highermean drug-target ranks compared

with the control experiments (Figures 2F and 2G).

An analogous comparison was performed for drugs that

were ranked by the average of their gene targets’ GCDPipe

scores. A significant difference between GWAS-based

training and both of the control cases was observed in

this assessment (Figures 2H and 2I).

In the application study for the AD, we wanted to use

GCDPipe to identify a drug ATC subgroup, relevant for

the disease, based on target diversity. We ranked 82 drug

ATC subgroups (second level) by enrichment of their target

sets in the genes, arranged by probability to be assigned to

the risk class provided by GCDPipe. We then prioritized

the drugs within the leading ATC subgroup by enrichment

of their targets in this gene profile, and selected the drugs

with the highest NES scores among them as candidate
man Genetics and Genomics Advances 4, 100203, July 13, 2023 3



Figure 2. Assessment of GCDPipe performance in cell type/tissue, drug target, and drug prioritization
(A) A scheme of control experiments used to evaluate significance of GCDPipe usage for cell type/tissue, drug target, and drug
prioritization.
(B) CD4þ T cell enrichment of expression profiles, arranged by GCDPipe scores, obtained in the IBD and control experiments.
(C) Microglia enrichment of expression profiles, arranged by GCDPipe scores, obtained in the IBD and control experiments.
(D) Comparison between significance of enrichment of the genes arranged by their probabilities to be assigned to the risk class with drug
targets across a range of diseases in the IBD experiment.
(E) Comparison between significance of enrichment of the genes arranged by their probabilities to be assigned to the risk class with drug
targets across a range of diseases in the schizophrenia experiment.
(F) Comparison between mean ranks of gene targets of IBD drugs in the IBD case study with control experiments.
(G) Comparison between mean ranks of gene targets of schizophrenia drugs in the schizophrenia case study with control experiments.
(H) Comparison of drug ranks of IBD drugs in the IBD case study with control experiments.
(I) Comparison of drug ranks of schizophrenia drugs in the schizophrenia case study with control experiments.
(F–I) Error bars represent standard deviation.
disease-relevant drugs (blood-brain barrier penetration

potential was not assessed) (Figure 3). Interestingly, the

leading enriched drug target category for AD appeared to

be diuretics. The use of diuretics has been shown to be

associated with a reduced risk of AD, and diverse experi-

mental and real-world evidence appeared supporting

the repurposing of diuretics for the treatment of the

disease.45–47

Indapamide and furosemide displayed the highest

normalized enrichment scores in the gene prioritization

among all the drugs in this category considered in the

study. Interestingly, indapamide was reported to suppress
4 Human Genetics and Genomics Advances 4, 100203, July 13, 2023
amyloid-b production in cellular models of AD as well as

to improve the clearance of Ab.48 A decrease in activity

of b-site APP-cleaving enzyme 1 (BACE1) in response to in-

dapamide - the rate limiting step in Ab generation, was also

reported.49

The highest-scoring indapamide target, according to

GCDPipe ranking, was potassium voltage-gated channel

subfamily Q member 1 KCNQ1 (Figure 3D). Interestingly,

BACE1, along with another agent important in AD patho-

genesis, presenilin/g-secretase, is found to modulate

proteolytic processing of KCNQ1.50,51 KCNQ channels

are regarded as central plasticity molecules, and are



Figure 3. Application of GCDPipe to Alzheimer disease
(A) A scheme of experiments of application of the pipeline to Alzheimer disease in this study.
(B) Leading 15 expression profiles prioritized by GCDPipe for Alzheimer disease.
(C) Leading 5-second level drug ATC categories by NES scores of enrichment of their targets in the GCDPipe gene prioritization.
(D) Leading diuretic (C03) drugs with significant enrichment of their targets in GCDPipe gene prioritization demonstrating the highest
NES scores within the subgroup, their gene targets with GCDPipe scores>0.90 driving the enrichment, targets present among Alzheimer
disease GWAS-derived risk genes (if present), and studies considering their application to the disease.
reported to be involved in age-related memory impair-

ment: these channels form an M-current that acts as a

brake on neuronal excitability and their expression nor-

mally decreases in aging brains. In Drosophila, KCNQ over-

expression inmushroom body neurons restores age-related

memory impairment.52 Other KCNQ-specific modulators

have also been suggested to alleviate memory deficits asso-

ciated with age-related memory diseases such as AD.53

GCDPipe results also suggest KCNQ as a therapeutic target

for AD and indicate that KCNQ-relatedmechanisms can be

involved in the effect of some diuretics on cognitive

health. Further studies of BACE1-KCNQ interaction mech-

anisms, including modulation of KCNQ with blood-brain

barrier penetrating agents, might thus be of interest to

target cognitive decline associated with AD.

The second most prioritized diuretic, furosemide, was

already proposed as a probe molecule for the treatment

of neuroinflammation in AD by Wang et al.54 These

authors conclude that furosemide has the capacity to

downregulate the proinflammatory microglial M1 pheno-

type and upregulate the anti-inflammatoryM2 phenotype,

a potentially powerful and beneficial pharmacologic effect

for inflammatory diseases, such as AD. In particular, they

have shown that this drug inhibits cellular stress and

proinflammatory cytokine production from LPS-stimu-

lated SIM-A9 microglial cells and promotes their phago-
Hu
cytic activity, rescuing neuronal cells during Ab-induced

neuroinflammation and reducing LPS-induced endo-

plasmic reticulum (ER) stress.

The proposed molecular mechanism of action involves

reduction of LPS-induced upregulation of ER stress marker

genes, including Grp78, Atf4, Chop, tXbp1, and sXbp1.

The gene targets with the highest GCDPipe scores (and

which drive prioritization of this drug among diuretics),

include ABCC4, ATP1A1, ADD1, CISD1, SLC12A2,

and AASDHPPT, and it also happens to interact with the

ACE gene, which is known to be implicated in AD based

on GWASs (Figure 3D). Interestingly, ABCC4, the leading

gene, is also reported to be involved in ER stress reac-

tions.55 GCDPipe thus allows us to link the furosemide ac-

tivity observed by Wang et al. with its known drug targets.

The careful assessment of the overall quality of gene, cell

type, or drug prioritization is impossible due to the incom-

plete knowledge of the disease-relevant instances. Howev-

er, GCDPipe is intended as a user-friendly tool for specific

disease applications to formulate testable hypotheses that

would require further experimental validation. Thus, we

provide a convenient and quick tool to rapidly integrate

many types of data and obtain computational evidence

to design future experiments, rather than a global solution

to complex trait genetics challenges in the identification of

disease genes and cell types.
man Genetics and Genomics Advances 4, 100203, July 13, 2023 5



The results of our analysis show that GCDPipe converges

genetic risk factors for complex traits with findings on their

pathophysiology at various hierarchical levels, and sug-

gests the links between GWAS-derived disease genetic

data with drug activity mechanisms.
Data and code availability

The code, installation and usage instructions, examples, and input

data described in the case studies are available at https://github.

com/ArtomovLab/GCDPipe.
Supplemental information

Supplemental information can be found online at https://doi.org/

10.1016/j.xhgg.2023.100203.
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