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Clostridium perfringens is an opportunistic pathogenic bacterium that infects both animals 
and humans. Clostridium perfringens genomes encode a diverse array of toxins and 
virulence proteins, which continues to expand as more genomes are sequenced. In this 
study, the genomes of 44 C. perfringens strains isolated from intestinal sections of diseased 
cattle and from broiler chickens from diseased and healthy flocks were sequenced. These 
newly assembled genomes were compared to 141 publicly available C. perfringens 
genome assemblies, by aligning known toxin and virulence protein sequences in the 
assemblies using BLASTp. The genes for alpha toxin, collagenase, a sialidase (nanH), 
and alpha-clostripain were present in at least 99% of assemblies analyzed. In contrast, 
beta toxin, epsilon toxin, iota toxin, and binary enterotoxin of toxinotypes B, C, D, and E 
were present in less than 5% of assemblies analyzed. Additional sequence variants of 
beta2 toxin were detected, some of which were missing the leader or signal peptide 
sequences and therefore likely not secreted. Some pore-forming toxins involved in intestinal 
diseases were host-associated, the netB gene was only found in avian isolates, while 
netE, netF, and netG were only present in canine and equine isolates. Alveolysin was 
positively associated with canine and equine strains and only present in a single 
monophyletic clade. Strains from ruminant were not associated with known virulence 
factors and, except for the food poisoning associated clade, were present across the 
phylogenetic diversity identified to date for C. perfringens. Many C. perfringens strains 
associated with food poisoning lacked the genes for hyaluronidases and sialidases, 
important for attaching to and digesting complex carbohydrates found in animal tissues. 
Overall, the diversity of virulence factors in C. perfringens makes these species capable 
of causing disease in a wide variety of hosts and niches.

Keywords: Clostridium perfringens, necrotic enteritis, hemorrhagic bowel syndrome, avian, ruminant

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology
www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2021.649953&domain=pdf&date_stamp=2021--09
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2021.649953
https://creativecommons.org/licenses/by/4.0/
mailto:xandra.smith@churchdwight.com
https://doi.org/10.3389/fmicb.2021.649953
https://www.frontiersin.org/articles/10.3389/fmicb.2021.649953/full
https://www.frontiersin.org/articles/10.3389/fmicb.2021.649953/full
https://www.frontiersin.org/articles/10.3389/fmicb.2021.649953/full
https://www.frontiersin.org/articles/10.3389/fmicb.2021.649953/full
https://www.frontiersin.org/articles/10.3389/fmicb.2021.649953/full


Geier et al. Comparative Genomics of Clostridium perfringens

Frontiers in Microbiology | www.frontiersin.org 2 June 2021 | Volume 12 | Article 649953

INTRODUCTION

Clostridium perfringens is a Gram-positive facultative anaerobic 
bacterium that is a normal inhabitant of the soil as well as 
the gastrointestinal tracts of healthy animals. However,  
C. perfringens is also an opportunistic pathogen known for 
its ability to cause gas gangrene/clostridial myonecrosis of the 
skin (Buboltz and Murphy-Lavoie, 2020) as well as food-
poisoning in humans that costs the United States approximately 
$343  million annually (ERS-USDA, 2014). In cattle, it can 
cause hemorrhagic bowel syndrome (HBS), enterotoxaemia, 
and abomastitis (Nowell et  al., 2012; USDA, 2018; Diancourt 
et  al., 2019). In poultry, it causes necrotic enteritis (NE), a 
disease that has seen an increase with decreased antibiotic use 
in the poultry industry and results in approximately 2  billion 
US dollars globally in losses annually (Van der Sluis, 2000). 
Other enteric diseases in which C. perfringens are implicated 
are canine acute hemorrhagic diarrhea syndrome (AHDS) and 
foal necrotizing enteritis (FNE; Gohari et  al., 2015).

The first C. perfringens genome sequence, published in 2002, 
greatly expanded our understanding of the vast array of virulence 
genes and toxins (Shimizu et  al., 2002). In 2018, the toxin 
typing scheme for C. perfringens was expanded to include the 
pore-forming toxin, NetB, shown to be  relevant to NE (Rood 
et al., 2018). The toxinotyping scheme is based on the presence 
of alpha toxin, beta toxin, epsilon toxin, iota toxin, enterotoxin, 
and NetB toxin. These toxins are used for typing but are not 
the only factors important to disease as C. perfringens is known 
to produce multiple additional toxins and virulence factors 
(Revitt-Mills et  al., 2015; Kiu and Hall, 2018).

Alpha toxin is the most conserved and well-known toxin. 
It hydrolyzes membrane phospholipids (lecithin, 
phosphatidylcholine, and sphingomyelin) in blood, skin, and 
muscle cells, and it often acts synergistically with other toxins 
(MacFarlane and Knight, 1941; Titball, 1993; Songer, 1996; Awad 
et al., 2001; Hickey et al., 2008; Uzal et al., 2010). Recent reviews 
summarize the knowledge on the pore-forming toxins (beta 
toxin, beta2 toxin, epsilon toxin, enterotoxin, NetB, NetE, NetF, 
NetG, perfringolysin, and alveolysin) and intracellular toxins 
which break down the actin cytoskeleton (iota toxin) or disrupt 
cell signaling (TpeL toxin; Kiu and Hall, 2018; Uzal et al., 2018).

There are other enzymes that may not be essential for disease 
but contribute to virulence. Some of these are proteases that 
degrade proteins into available forms of amino acids. Clostridium 
perfringens is unable to de novo synthesize many amino acids 
and thus, must obtain them from the environment (Sebald 
and Costilow, 1975; Shimizu et  al., 2002). These proteases are 
likely important for degradation of host tissue which enables 
C. perfringens to both obtain nutrients and facilitate toxin 
diffusion (Matsushita et  al., 1994; Awad et  al., 2000). 
Carbohydrate-active enzymes (CAZymes) are also important 
for the virulence of C. perfringens. For instance, the release 
of sialic acid by C. perfringens sialidases has been shown to 
increase the activity of toxins (alpha and epsilon), increase 
adhesion to host cells by altering the charge of the cell surface, 
and can be  used as a carbon source (Severi et  al., 2007; 
Almagro-Moreno and Boyd, 2009; Chiarezza et  al., 2009;  

Li et  al., 2011, 2016; Therit et  al., 2015; Juge et  al., 2016; 
McClane and Shrestha, 2020; Wang, 2020).

Previous genome sequencing studies of clinical C. perfringens 
strains from equine, canine, and poultry have revealed specific 
host-associated virulence factors (Gohari et  al., 2017; Lacey 
et  al., 2018). Strains from human, food, environmental, and 
ruminant sources were also included in comparative genome 
studies (Kiu et  al., 2017; Lacey et  al., 2018), however, only 
four ruminant isolates were available in public databases. To 
increase the diversity of sequenced C. perfringens genomes 
and improve our understanding of potential host-related virulence 
factors, 22 C. perfringens isolated from healthy and diseased 
poultry flocks and 22 C. perfringens isolated from dairy cow 
intestinal tracts with HBS were sequenced. These genomes were 
compared to 141 publicly available genomes and analyzed for 
the presence of the major known virulence factors to ascertain 
associations with host and diseases and determine 
evolutionary relationships.

MATERIALS AND METHODS

Strain Isolation
Intestinal tracts or fecal samples were obtained in the 
United  States from commercial broiler operations and dairy 
farms. All animal facilities were operated under the standards 
for humane care and treatment for commercial animals set 
in the Animal Welfare Act (AWA; USDA, 2020) and the National 
Dairy Farmers Assuring Responsible Management animal care 
program (National Milk Producers Federation Board of Directors, 
2019). Live broilers were obtained from flocks during NE 
outbreaks and from healthy flocks. The broilers were sacrificed 
on farm by cervical dislocation in accordance with the integrator’s 
animal welfare practices. The gastrointestinal tracts from the 
duodenal loop to the cloaca were removed, placed into sterile 
Whirl-pak® bags (B01297, Nasco, Fort Atkinson, WI, 
United  States), and sent to the laboratory in Waukesha, WI 
overnight, on ice. For each broiler, 6  cm sections of the 
duodenum, jejunum, and ileum were dissected, and luminal 
contents removed by rinsing with sterile 0.1% peptone (Bacto™ 
Peptone, Becton, Dickinson and Company, Sparks, MD, 
United States). The three sections from each bird were combined 
in a filtered Whirl-pak® bag (B01348, Nasco, Fort Atkinson, 
WI, United  States). Fecal grabs or the infected portion of the 
gastrointestinal tract (discoloration, blood clotting within the 
jejunum) from cows that had suffered a digestive death were 
collected within 6  h of death. The samples were placed in a 
zip-top freezer bags and sent to the laboratory in Waukesha, 
WI overnight, on ice.

Intestinal tracts or fecal samples were diluted 1:9 with sterile 
0.1% peptone and masticated at 300  rpm, for 1  min in a 
Stomacher (Model 400 circulator, Seward, England). Serial 
dilutions prepared from the filtered side of the Whirl-pak® 
bags were pour-plated in duplicate with tryptose sulfite cycloserine 
(TSC) agar (Thermo Fisher Scientific, Waltham, MA, 
United States), and incubated at 37°C with anaerobic gas packs 
(R681001, Remel, Lenexa, KS) overnight. Up to 20 representative 
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isolates per sample were grown in Reinforced Clostridial Medium 
(Thermo Fisher Scientific, Waltham, MA, United States) before 
storage at −80°C.

Strain Selection
In general, one isolate per  animal was included and isolates 
from the same animal were included only if they produced 
differential randomly amplified polymorphic DNA (RAPD) 
typing banding patterns (Power, 1996). Primers and PCR 
conditions were as described previously (Baker et  al., 2010) 
with the only difference being that amplicon fragments were 
separated on a 5300 Fragment Analyzer System (Agilent, Santa 
Clara, CA, United States). Nineteen C. perfringens isolates were 
from broiler chicken intestinal samples collected during NE 
outbreaks, however, the presence of NE lesions was not recorded 
for these intestinal tracts, while three isolates were from healthy 
broiler chicken intestinal samples. Twenty-one isolates were 
from dairy cow intestinal samples with HBS, and one isolate 
was from a fecal sample of a dairy cow with HBS.

Genome Sequencing and Assembly
RNA-free DNA was isolated using a phenol-chloroform method 
with RNase treatment and precipitated with ethanol. Genomic 
DNA integrity was evaluated on a 0.75% agarose gel and 
quantified using Qubit (Thermo Fisher Scientific, Waltham, 
MA, United  States). The 16S rRNA gene was PCR amplified 
and Sanger sequenced to confirm identity. Shotgun libraries 
were prepared with Nextera Flex kits (Illumina, San Diego, 
CA, United  States) and sequenced for 251  cycles from each 
end on a MiSeq using a MiSeq  500-cycle sequencing kit v3 
(Illumina, San Diego, CA, United  States) or sequenced for 
151  cycles from both ends on an iSeq  100 using iSeq  100 i1 
Reagent (Illumina, San Diego, CA, United  States). For some 
genomes, shotgun libraries were prepared with Hyper Library 
Construction Kit (Kapa Biosystems, Wilmington, MA, 
United  States) and sequenced for 300  cycles from each end 
on a MiSeq using a MiSeq 600-cycle sequencing kit v3 (Illumina, 
San Diego, CA, United  States). All reads were demultiplexed 
using bcl2fastq Conversion Software (Illumina, San Diego, CA, 
United  States). Draft genome assemblies were generated using 
SPAdes 3.13.1 using default parameters (Bankevich et al., 2012). 
Reads were aligned to genome assemblies with bwa mem 
v0.7.17 (Li and Durbin, 2009). Bam files were converted to 
sam files with samtools, and coverage was calculated using 
bedtools (Quinlan and Hall, 2010).

Bioinformatic Analysis
Draft genome assemblies were compared with all 141 publicly 
available C. perfringens genome assemblies from NCBI RefSeq 
as of February 25, 2020. All available metadata for genomes 
were collected and host information was categorized into relevant 
groups to improve statistical power (e.g., chicken and turkey 
were classified as avian; Supplementary Table  1). Taxonomy 
of genome assemblies was confirmed by aligning the 16S 
ribosomal RNA gene sequence to the 16S database in NCBI. 
Assembly statistics (Supplementary Table  1) were generated 

using QUAST v5.0.2 (Gurevich et  al., 2013). A maximum 
likelihood tree was generated by performing SNP calling on 
genome assemblies with CSI Phylogeny using the reference 
strain C. perfringens ATCC 13124 (Kaas et  al., 2014). The 
phylogenetic tree was visualized and annotated using iTol v5.6.2 
(Letunic and Bork, 2016). Genomes were annotated using Prokka 
v1.14.6 (Seemann, 2014). A BLAST protein database was made 
from virulence factor protein sequences (Supplementary Table 2) 
using makeblastdb (BLAST+ v2.9.0). Prokka protein annotations 
were aligned to protein databases using BLASTp (BLAST+ 
v.2.9.0, -evalue 1 -max_target_seqs 1 -qcov_hsp_perc 50; Camacho 
et  al., 2009). Both consensus and atypical variants of beta2 
were used. These parameters set a threshold of 50% alignment 
length, which is appropriate for draft genome assemblies to 
reduce false negatives. We  chose a threshold of 80% identity 
to allow for the detection of variants. For known variants (PfoA-
Alv and NetB-NetF), we increased the percent identity threshold 
to 90% to distinguish between these closely related proteins. 
A binary matrix of virulence gene presence or absence was 
created from the BLASTp results. Beta2 protein sequences were 
analyzed for signal peptide content using SignalP v5 (Armenteros 
et  al., 2019) and aligned with Clustal Omega v1.2.4 (Sievers 
et al., 2011). In silico PCRs of previously published beta2 primers 
were done using the -search_pcr function of USEARCH v10.0.240 
with the following settings -strand both -maxdiffs 2 -minamp 30 
-maxamp  2000 (Edgar, 2010).

The virulence gene presence within a category and the 
associated lift (Tufféry, 2011) was computed for each category. 
Lift is common measure in data mining algorithms to identify 
the strength for pairwise association of outcomes or even 
possibly sets of outcomes where outcomes are defined in terms 
of presence or absence. The lift is defined as the rate of joint 
occurrence of the pair of outcomes/sets of outcomes in the 
dataset relative to the product of the rate of each outcome, 
i.e., for outcomes X and Y, lift = Prob(X & Y)/[Prob(X)*Prob(Y)]. 
The lift provides an indication of the relative magnitude of 
presence or absence of the gene within a category as compared 
to the presence across all isolates. Lift values greater than 1 
indicate a higher presence in the category compared to the 
presence in all strains and, conversely, lift values less than 
indicate lower prevalence in the category. A 2 × 2 contingency 
table was created for each virulence gene (presence/absent) 
and category (yes/no by strain) and tested for significant 
association using Fisher’s Exact test for independence (Agresti, 
2002). A Bonferroni adjustment was implemented to provide 
an overall 0.05 error rate across all comparisons. All computations 
were performed using R version 3.5.0.

RESULTS AND DISCUSSION

Overview of C. perfringens Genome 
Assemblies
Between 199,762 and 3,020,471 paired reads were generated 
for each of the 44 strains sequenced resulting in a range of 
23- and 433-fold coverage for each strain 
(Supplementary Table  3). Assembly statistics were generated 
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using QUAST, and the number of coding sequences was counted 
from Prokka annotations (Supplementary Table  1). The 
minimum and maximum number of contigs, total length, and 
percent GC, N50, and L50 all fell within the range for RefSeq 
strains, except the length of strain CHD30685R, which was 
33  kb shorter than the shortest RefSeq assembly.

The isolate metadata are shown in Supplementary Table  1. 
The largest group was of avian strains (n  =  61) which were all 
chicken associated, except for one strain isolated from a turkey, 
with 49 of these strains from flocks experiencing NE. A total 
of 34 isolates were isolated from ruminants: 25 from cattle, 
four from lamb and sheep, four from llamas, and one strain 
was isolated from a bison. The NCBI database contained 29 
human-associated strains, most (n = 12) of which had no known 
disease associations, while the rest were from healthy humans 
(n = 5), necrotizing enterocolitis (n = 3), food poisoning (n = 5), 
gas gangrene (n  =  2), diarrhea (n  =  1), necrotizing enteritis 
(NCTC8081; Deguchi et  al., 2009), and an ICU patient (n  =  1). 
There were 17 canine isolates, 16 of which were isolated from 
canine AHDS. The 16 equine isolates were all isolates from 
FNE. The 15 food-associated isolates have very little disease 
information deposited with them but are likely food poisoning 
strains. Lastly, five environmental isolates from river water, soil, 
or sludge, three porcine intestinal disease-associated isolates, and 
one mouse isolate were downloaded from the NCBI database. 
Four of the strains had no host or disease metadata.

Toxins and Virulence Factors
The toxin and virulence factor profiles were determined using 
BLASTp for all 185 C. perfringens strains used in the analysis 

(Supplementary Table  1). The prevalence of each gene varied 
from less than 1 to 100% (Table 1). Alpha toxin (plc), collagenase 
(colA), the small intracellular sialidase (nanH), and alpha-
clostripain (ccp) presence were highly conserved and were 
present in at least 99% of assemblies analyzed. All 185 alpha 
toxin protein sequences were at least 96% identical to the 
type strain ATCC 13124, although it should be  noted that the 
JFP992 sequence was split over two contigs and the predicted 
alpha toxin protein sequence for UDE_95-1372 was truncated 
at the N-terminus. Very few strains encoded beta toxin (3%), 
epsilon toxin (3%), and iota toxin (2%).

Toxinotypes
We classified the strains into toxinotypes using the BLASTp 
toxin profiles. Approximately, 94% of the strains analyzed 
were type A, F, or G (Table  2). Toxinotype A encodes alpha 
toxin while the other typing toxins, other than cpe in some 
strains, are all plasmid encoded. Toxinotype A strains comprised 
43.8% of the strains and were present in all host categories. 
Toxinotype F strains encode enterotoxin (cpe) either on the 
chromosome or plasmids and were the predominant toxinotype 
in isolates from canine, equine, and food. One avian strain 
and seven of the 29 human isolates were also Toxinotype F. 
Toxinotype G strains encode netB, which is plasmid-borne 
(Lepp et al., 2010, 2013) and was only present in avian isolates 
and in 76% of the NE associated isolates. The NetB pore 
forms in chicken hepatocytes and red blood cells of duck, 
chicken, and goose, and is important for the development 
of NE (Keyburn et  al., 2008, 2010; Yan et  al., 2013;  
Lacey et al., 2018; Yang et al., 2019b). Based on epidemiological 

TABLE 1 | Prevalence of toxin and virulence genes in 185 Clostridium perfringens genomes together with information on location [chromosome (C) or a plasmid (P)] as 
well as the type of protein encoded [membrane-damaging phospholipase (PLC), pore-forming toxin (PFT), intracellular toxin (I), protease (P), or carbohydrate-active 
enzyme (CAZyme)].

Name Gene Location Type Strains %

Alpha toxin plc C PLC 185 100.0%
Alpha-clostripain ccp C P 185 100.0%
Sialidase nanH C CA 184 99.5%
Collagenase colA C P 183 98.9%
Hyaluronidase nagH C CA 161 87.0%
Sialidase nanI C CA 160 86.5%
Sialidase nanJ C CA 159 85.9%
Hyaluronidase nagJ C CA 156 84.3%
Hyaluronidase nagI C CA 154 83.2%
Perfringolysin pfoA C PFT 151 81.6%
Hyaluronidase nagK C CA 140 75.7%
Hyaluronidase nagL C CA 115 62.2%
Beta2 toxin cpb2 P PFT 109 58.9%
Enterotoxin cpe C/P PFT 56 30.3%
NetB toxin netB P PFT 38 20.5%
Alveolysin alv C PFT 35 18.9%
NetE toxin netE P PFT 28 15.1%
NetF toxin netF P PFT 28 15.1%
Large cytotoxin tpeL C/P I 19 10.3%
NetG toxin netG P PFT 16 8.6%
Beta toxin cpb P PFT 6 3.2%
Epsilon toxin etx P PFT 5 2.7%
Iota toxin iap & ibp P I 4 2.2%
Binary enterotoxin becA & becB P I 1 0.5%
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data, there is debate in the literature whether NetB is necessary 
to cause NE (Martin and Smyth, 2009; Tolooe et  al., 2011; 
Yang et  al., 2018). In a challenge model, two of three netB 
positive strains produced disease at a high rate (79–89%), 
but a netB negative strain still affected 44% of challenged 
birds (Cooper and Songer, 2010). A necrotic enteritis induction 
model would be necessary to determine if the 12 NE associated 
strains that did not encode netB are commensals or can 
cause disease.

Strains of Toxinotypes B, C, D, and E only made up  3% 
or fewer of the total strains analyzed. These toxinotypes are 
acknowledged to be  associated with many livestock diseases 
(Songer, 1996; Billington et al., 1998; Filho et al., 2009; Munday 
et  al., 2019) and are incorporated into veterinary vaccines 
(Ferreira et al., 2016, 2018), and yet very few have been sequenced.

Beta2 Toxin Variants
Beta2 toxin is cytotoxic for intestinal cells and there is a strong 
association between C. perfringens strains that encode cpb2 and 
gastrointestinal diseases in pigs, although there are at least two 
variants of the beta2 toxin and this diversity is not always 
acknowledged (Gibert et  al., 1997; Garmory et  al., 2000; Waters 
et  al., 2003; Fisher et  al., 2005; Jost et  al., 2005). To investigate 
the sequence variation between the consensus and atypical genes, 
as well as signal peptide variation, we  classified the beta2 toxin 
sequences by amino acid identity and signal peptide content. 
After combining the results of the consensus and atypical beta2 
toxin BLASTp results, cpb2 was identified in 109/185 (59%) of 
strains analyzed, and one strain, JGS 1495, had both the consensus 
and atypical variants located on different contigs. Six types of 
beta2 were identified: five that have been described [three consensus 
(C) types and two atypical (A) types] and one novel type that 
we  designated N1. Only one strain encoded the N1 type, 
1001175st1_F9, a strain isolated from healthy human stool (Yang 
et  al., 2019a). The consensus variant was divided into two types, 
C1 and C2, which are ~92% identical at the protein level. We further 
classified the beta2 sequences by signal peptide content and added 
a -tr designation in Figure  1 for those strains lacking a signal 
peptide. Of the six consensus cpb2, two were the original consensus 
variant, C1, two were the C2 variant described in a 2005 publication 
(Fisher et  al., 2005), and one was a C2-tr variant. Of the atypical 
beta2 toxin sequences, which are approximately 63% identical to 
the consensus variant, 64 (62%) were A1 and 39 (38%) were 
A1-tr. A representative from each of these six variants was selected 
for protein sequence alignment (Figure  2).

Beta2 toxin disease associations are often of a specific type 
and the presence of a signal peptide may play an important 
functional role and it is therefore important to acknowledge in 
disease association studies. We  performed in silico PCR to 
determine which types would have been detected in various 
publications (Supplementary Table  4). The PCR protocol in 
the original Cpb2 paper used to associate cpb2 with intestinal 
disease in horses and piglets would have only detected the C1 
type (Gibert et  al., 1997). Similarly studies associating cpb2 and 
diarrhea in piglets would also have detected the C1 type (Waters 
et  al., 2003). In addition, there is an association between Cpb2 
and autism spectrum disorder, and these studies used primers 
that also would have detected the C1, C2, and C2-tr types, but 
not the atypical variants or the novel variant N1 (Garmory 
et  al., 2000; Alshammari et  al., 2020). In a study by Kircanski 
et al. (2012), when Cpb2 protein levels were quantified in culture 
supernatants by Western blot, 95% of consensus isolates and 
75% of atypical isolates were shown to express the protein. The 
study would have successfully identified C1, A1 (and A1-tr), 
and possibly identified C2 (and C2-tr). They would have been 
able to distinguish between consensus and atypical variants but 
would not have been able to distinguish the presence of the 
signal peptide potentially explaining why 25% of atypical  
C. perfringens and 5% of consensus isolates did not express beta2 toxin.

Of the three strains in the present study which were porcine 
associated, one encoded a C1 type (NCTC 10719), one encoded 
both a C1 and an A1 type (JGS 1495), and one lacked beta2 
toxin (JXJA17). Ruminant, canine, and equine assemblies encode 
only atypical (primarily A1-tr) beta2 toxin. Chicken isolates 
primarily encoded the A1 type. In the first paper describing 
the atypical variant, Jost et  al. (2005) noticed a similar pattern 
that atypical isolates were more often identified in C. perfringens 
strains that were isolated from livestock other than pigs and 
not expressed.

These findings add a new dimension to this previous research 
which reveals that the associations are often of a specific Cpb2 
type. Future studies which take this variation of sequence and 
signal peptide content into account are likely to see stronger 
associations between Cpb2 and various diseases.

Clostridium perfringens Phylogeny
Phylogenetic relationships between the strains were determined 
by CSI Phylogeny (Kaas et  al., 2014) which analyzes the SNPs 
across reads using a reference genome. Clostridium perfringens 
ATCC 13124 with 3,256,683 nucleotides was used as the 

TABLE 2 | Toxinotypes of 185 C. perfringens genomes based on the typing scheme of Rood et al. (2018).

Toxinotype Alpha toxin 
(plc)

Beta toxin 
(cpb)

Epsilon toxin 
(etx)

Iota toxin (iap 
and iab)

Enterotoxin 
(cpe)

NetB (netB) Strains %

A + − − − − − 81 43.8%
B + + + − − − 1 0.5%
C + + − − ± − 5 2.7%
D + − + − ± − 4 2.2%
E + − − + ± − 4 2.2%
F + − − − + − 52 28.1%
G + − − − − + 38 20.5%
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FIGURE 1 | Maximum likelihood phylogenetic tree of C. perfringens genome assemblies determined by single nucleotide polymorphisms compared to the 
reference strain ATCC 13124. The reference strain and Clade I are shown in red. Clade II is the food poisoning associated clade and Clade V is the alveolysin clade. 
Host associations are shown on the inner ring, followed by specific virulence factors, the outer three rings indicate the beta2 variant, toxinotype, and health or 
disease association (if known) of each strain. The tree is rooted at the midpoint.

reference strain. The percentage of the reference genome that 
was covered by all isolates was 48.06% with 1,565,015 positions 
found in all 185 genomes. The maximum likelihood tree 
generated is shown in Figure 1, with five clades labeled I through 
V. The reference strain, ATCC 13124 was present in Clade 
I  with 60 strains which contained 43 of the 61 avian isolates, 
five equines, five ruminants, three humans, one canine, and 
two environmental isolates.

Alveolysin Clade
Alvoelysin (alv) was the only toxin limited to a single 
clade as all 35 strains that encoded alv were present in 
Clade V confirming a previous study showing it was clade-
specific (Kiu et  al., 2019). Alveolysin is an understudied 
toxin of C. perfringens that is similar to perfringolysin 

(Kiu et  al., 2019) with both being cholesterol-dependent 
cytolysins, previously known as thiol-activated cytolysins 
(Billington et  al., 2000). Gene duplications are frequent 
mutations in microbes (Reams and Roth, 2015), and 
we  therefore hypothesize that alveolysin may have arisen 
from a gene duplication of perfringolysin followed by 
divergence during evolution as the two toxins are similar 
(~79% similarity) and generally encoded as little as 5  kb 
apart, although lateral gene transfer cannot be  ruled out.

Within Clade V is a sub-clade of 26 strains that contains 
clinical isolates associated with canine AHDS and FNE that 
are all type F. These strains appear almost clonal, but not only 
were they isolated from different host species but also across 
multiple outbreaks between 1999 and 2014  in three different 
countries (Gohari et al., 2017). Of the 26 strains in the sub-clade, 
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23 encoded netE and netF (88%). NetF toxin is very similar 
in structure to NetB, but it has only been identified in isolates 
from canine AHDS and FNE (Gohari et al., 2015, 2016, 2017).

Also, of interest within Clade V is that three of the four 
toxinotype E strains (Q061.2, a515.17, and a508.17) are present. 
These strains contain a variant iota toxin which is 84–87% 
similar to the typical iota toxin sequence. The other toxinotype 
E strain (JGS 1987) is outside this clade and has the typical 
iota toxin sequence. This iota toxin variant has been identified 
in other C. perfringens that lack public genome assemblies 
(PB-1, 3441, TGII002, and TGII003; Miyamoto et  al., 2011). 
The strains in that study and each of the three variant strains 
in the present study also have a variant enterotoxin protein 
sequence (~96% similar to the other 53 sequences) located 
on the same plasmid as the iota toxin genes indicating 
evolutionary divergence of the plasmid within this clade. Further 
studies to obtain complete plasmid sequences need to be  done 
to validate this supposition.

The only strain to encode binary enterotoxin (becA and 
becB), Q135.2 (IQ3), is also in clade V and was isolated from 
a fecal sample obtained from a healthy child (Kiu et  al., 2019). 

The becA and becB genes are plasmid-encoded and seem to 
be  rare (Kiu et  al., 2019; Matsuda et  al., 2019).

Further research is needed of the virulence potential of the 
strains in Clade V due to the presence of alveolysin, an 
understudied chromosomal toxin as well as several variant 
and rare toxins carried on plasmids.

Food Poisoning Associated Clade
Fourteen of the 15 strains isolated from foods were present 
in Clade II. Seventeen of the human isolates, three from food 
poisoning cases and three from necrotizing enterocolitis were 
also present in Clade II, as were five environmental and five 
avian isolates. The 20 strains in which chromosomal cpe genes 
were detected were present in a sub-clade of 27 strains. Ten 
of these isolates from both food and humans appear clonal 
and were submitted in the same bioproject (PRJNA436899) 
and are therefore most likely from the same clinical outbreak. 
Experimental evidence suggest that strains carrying chromosomal 
cpe are more heat-tolerant allowing them to survive better if 
food is undercooked (Sarker et  al., 2000). Our results confirm 
a previous study where strains that carry cpe chromosomally 

FIGURE 2 | Beta2 (cpb2) toxin clustal alignment of each representative beta2 protein type. Amino acids are colored based on their physical properties: blue 
(acidic), red [small hydrophobic (includes aromatic except Y)], magenta (basic), and green [other (polar, Y)]. The signal peptide sequences are shown in the 
black box.
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are related and that they lack the pfoA gene (Deguchi et  al., 2009). 
The majority (23) of these 27 strains also lacked the hyaluronidase 
and sialidases that enhance a strains ability to colonize the 
intestinal tract (Navarro et  al., 2018).

The alpha toxin protein sequences in the sub-clade of 27 
were divergent with less than 97% similarity to the sequence 
from the type strain, ATCC 13124. The alpha toxin gene is 
located near the origin of replication, which is evidence of 
its importance as it is the first area to be  replicated during 
cell division and is generally highly conserved, thus genetic 
changes in it are likely to reflect evolution (Rood and Cole, 
1991; Uzal et  al., 2010). This chromosomal variation indicates 
that these strains form a distinct evolutionary lineage which 
may be  less adapted to the host environment and more 
opportunistic than other strains. Although necrotizing 
enterocolitis is not associated with food-poisoning, the disease 
most often occurs in premature infants with immature 
gastrointestinal tract microbiota. They appear to be more likely 
to be  transiently present in the gastrointestinal tract, whereas 
the host-adapted strains cause more lethal diseases in 
adult animals.

Host and Environmental Associations
We determined significant associations of virulence genes with 
categorical host metadata using Fisher’s Exact test for 
independence and this data are shown in Figure  3 together 
with the lift that provides an indication of the relative magnitude 
of presence or absence of the gene within a category as compared 
to the presence across all isolates. In comparing avian strains 
(n  =  61) to the other categories of isolates, there was a 
significantly higher proportion of isolates with netB, cpb2-A1, 
tpeL, nanJ, nagJ, and nagH. Avian strains showed lower 
frequencies of cpb2-A1-tr, cpe, netE, netF, and alv. Ruminant 
strains (n  =  34) showed lower prevalence for netB and cpe. 
Canine strains (n  =  17) and equine strains (n  =  16) showed 
higher prevalance for alv, cpb2-A1-tr, cpe, netE, netF, and netG. 
Food (possibly food poisoning) strains were positively associated 
with cpe and showed lower prevalence for pfoA, two sialidases 
(nanI, nanJ), and four hyaluronidases (nagH, nagI, nagK, and 
nagL). There were no significant associations for genes and 
human strains (n  =  29) and environmental strains (n  =  5). 
Unknown (n  =  4), porcine strains (n  =  3), and mouse (n  =  1) 
were not evaluated for associations.

Our results confirmed previous data that netB is associated 
with avian strains (Keyburn et  al., 2008, 2010; Lepp et  al., 
2010, 2013; Lacey et  al., 2018). We  only found one report of 
netB being detected in species other than poultry and that 
was in a ruminant isolate (Martin and Smyth, 2009). The 
other toxin gene associated with poultry is tpeL, which was 
also detected in ruminant and porcine strains. TpeL glycosylates 
cell signaling proteins resulting in apoptosis (Guttenberg et  al., 
2012; Schorch et  al., 2014; Nagahama et  al., 2015) and have 
been shown to be  responsible for increased NE pathogenicity 
(Coursodon et  al., 2012; Shojadoost et  al., 2012; Gu et  al., 
2019). Our data indicate that the A1 beta2 toxin variant with 
the signal peptide is associated with avian strains, although 
this variant is detected in other host strains too.

As in previous reports, the pore-forming toxins, netE, netF, 
and netG, are associated with canine and equine strains (Gohari 
et  al., 2016, 2017, 2020; Sindern et  al., 2019) and these toxins 
were not detected in any other strains. These canine and equine 
strains are unique among the diversity of strains from other 
hosts and environments. They are present in Clades I  and V 
and related strains appear almost clonal even though they are 
from distinct hosts and from epidemiologically unrelated clinical 
isolates collected from the United States, Canada, and Switzerland 
between 1999 and 2014 (Gohari et  al., 2017). Plasmid-borne 
enterotoxin was present across both clades, and the predominant 
beta2 variant in these strains was the A1 variant without the 
signal peptide. Alveolysin, associated with equine and canine 
strains, was also present in strains from other hosts in Clade 
V. Challenge assays either in vitro or in vivo may reveal what 
it is about these strains or the two hosts that cause an almost 
clonal population to be  present across countries and 
disease outbreaks.

There were no positive associations with any of the 
investigated toxins or virulence factors with strains from 
ruminants. Ruminant strains were defined by the absence 
of enterotoxin and netB genes. Previous experimental induction 
of disease in a calf ileal loop model indicated that diverse 
C. perfringens strains from ruminant, chicken, and human 
origins could cause necrohaemorrhagic lesions (Valgaeren 
et al., 2013), and alpha and perfringolysin toxin were sufficient 
to cause lesions in this model (Verherstraeten et  al., 2013). 
Novel toxin genes were not detected in the genome of a 
bovine clostridial abomasitis isolate strain F262, however, 
the strain did produce perfringolysin O, alpha-toxin, and 
beta2-toxin (Nowell et  al., 2012). Clostridium perfringens 
Type D are associated with ruminant enterotoxaemia, mostly 
in lambs, but also in sheep and goats (Popoff, 2011), however, 
epsilon toxin was not commonly present in the sequenced 
genomes. To date, therefore, no specific toxins or virulence 
factors are associated with the 26 sequenced clinical  
C. perfringens strains of ruminant origin, however, it may 
be  dependent on the type of disease, and the 22 strains 
sequenced in this study were all associated with HBS. There 
is genetic diversity in the strains from ruminants as they 
are present in all clades except for Clade II, however, 20 
of the 32 ruminant strains were present in Clade III. Therefore, 
further analysis of these genomes may reveal genes promoting 
colonization or growth in the intestine that could affect 
pathogenesis in ruminants.

Our results have confirmed previous data that certain toxin 
genes are host-associated such as netB in avian strains (Keyburn 
et  al., 2008, 2010; Lepp et  al., 2010, 2013; Lacey et  al., 2018) 
and netE, netF, and netG in canine and equine strains (Gohari 
et  al., 2016, 2017, 2020; Sindern et  al., 2019). In addition, our 
data indicate that there are differences in beta2 toxin variants 
between hosts with the A1 variant with the signal peptide 
being associated with avian strains and the A1 variant without 
the signal peptide associated with canine and equine strain. 
However, considering the role that C. perfringens has in multiple 
livestock and human diseases there is still limited data on the 
virulence factors and host specificity of these pathogens. 
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Clostridium perfringens are found in a wide variety of hosts 
and environments; however, most of the strains selected for 
study and genome sequencing are associated with a handful 
of diseases and may not represent the diversity present in 
both hosts and environment. More specifically, few strains 
acknowledged to be  associated with livestock diseases, such 
as Types B, C, D, and E have been sequenced. Vaccination 
efforts for livestock have focused on these toxinotypes (Ferreira 
et  al., 2016) which may be  why they are absent from recent 
studies, however, strains should be present in culture collections 
that could be sequenced to aid in understanding this pathogen. 
A better understanding of this opportunistic pathogen that is 

a member of the gut microbiota can lead to more targeted 
preventative measures to reduce factors that can lead to 
overgrowth and clinical diseases.

CONCLUSION

This is the most comprehensive comparative genomics study 
of C. perfringens virulence factors to date. Only four of the 
24 virulence factors were highly conserved and were present 
in at least 99% of assemblies analyzed. Types A, F, and G 
represent 93% of sequenced isolates, while Type B, C, D, and 

FIGURE 3 | The percentage of isolates within each category for each of the individual toxins and virulence factors and whether they are significantly associated 
with the category are marked with a red circle. The number of strains per category is as follows: avian (61); ruminant (34); human (29); canine (17); equine (16) food 
(15), and environmental strains (5). Unknown (4), porcine strains (3), and mouse (1) are shown, but were not evaluated for associations. Cells are colored by lift: 
values greater than 1 indicate a higher presence in the category compared to the presence in all strains and, conversely, lift values less than indicate lower 
prevalence in the category.
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E are underrepresented in publicly available genome sequences 
even though they are associated with many livestock diseases. 
The sequence variation of beta2 toxin was expanded to include 
a new beta2 toxin (N1) and primers to detect beta2 sequence 
variants should be redesigned to detect all variants and identify 
the presence of the cpb2 signal peptide, although PCR results 
should ideally be  compared with protein expression data, 
especially from non-porcine isolates. Although avian strains 
were not all associated with netB, those isolated from NE 
outbreaks were more likely to contain netB, confirming previous 
studies. The plasmid cpe, netE, and netF genes were again 
confirmed to be  associated with equine and canine strains. 
We  show that alveolysin, a recently described protein, 
we hypothesize arose through a gene duplication of perfringolysin, 
is also associated with these strains and is only present in a 
single monophyletic clade, Clade V. A distinct evolutionary 
lineage of C. perfringens associated with food poisoning lacks 
perfringolysin, hyaluronidases, and sialidases which 
we  hypothesize are important host-associated genes 
for colonization.

In future studies, we  will perform pan genome analysis to 
potentially identify genes other than the known toxin and 
virulence genes that may be  host-associated. Due to the 
importance of plasmids in C. perfringens pathogenicity it would 
be  beneficial to obtain complete plasmid sequences for 
comparative purposes and determine co-location of virulence 
factors. Most of the strains selected for genome sequencing 
are associated with disease and may not be  representative of 
the diversity existing in both the host and the environment, 
therefore, further effort should be made to isolate and sequence 
a wider diversity of strains.
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