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Abstract: Polycyclic aromatic hydrocarbons (PAHs), 33 methylated PAHs (Me-PAHs), and 14 nitrated
PAHs (NPAHs) were measured in wastewater treatment plants (WWTPs) to study the removal
efficiency of these compounds through the WWTPs, as well as their source appointment and potential
risk in the effluent. The concentrations of ∑PAHs, ∑Me-PAHs, and ∑NPAHs were 2.01–8.91, 23.0–102,
and 6.21–171 µg/L in the influent, and 0.17–1.37, 0.06–0.41 and 0.01–2.41 µg/L in the effluent,
respectively. Simple Treat 4.0 and meta-regression methods were applied to calculate the removal
efficiencies (REs) for the 63 PAHs and their derivatives in 10 WWTPs and the results were compared
with the monitoring data. Overall, the ranges of REs were 55.3–95.4% predicated by the Simple Treat
and 47.5–97.7% by the meta-regression. The results by diagnostic ratios and principal component
analysis PCA showed that “mixed source” biomass, coal composition, and petroleum could be
recognized to either petrogenic or pyrogenic sources. The risk assessment of the effluent was also
evaluated, indicating that seven carcinogenic PAHs, Benzo[a]pyrene, Dibenz[a,h]anthracene, and
Benzo(a)anthracene were major contributors to the toxics equivalency concentrations (TEQs) in the
effluent of WWTPs, to which attention should be paid.

Keywords: PAHs; wastewater treatment plant; model prediction; ecological risk assessment

1. Introduction

Polycyclic aromatic hydrocarbons (PAHs) are a type of contaminant with terato-
genicity and carcinogenicity, which are discovered in various places, such as wastewater
treatment [1]. Sixteen PAHs have been enlisted for priority pollutants by the United States
Environmental Protection Agency (U.S. EPA) and seven carcinogenic polycyclic aromatic
hydrocarbons were selected as possible human carcinogens [2]. Recently, some typical
alternative aromatic hydrocarbons, particularly methylated polycyclic aromatic hydro-
carbons (Me-PAHs) and nitrated polycyclic aromatic hydrocarbons (NPAHs), have been
of great interest due to their higher toxicity than polycyclic aromatic hydrocarbons [3].
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NPAHs have a higher molecular weight (MW), octanol-air partition coefficients (KOA),
less water solubility (S), vapor pressure (VP), sorption partition (KOC), an octanol-water
partition coefficient (Kow), than their related PAHs [4]. NPAHs and Me-PAHs may be re-
leased from similar sources of PAHs, for instance, incomplete combustion, vehicle engines,
and spillage oil [5]. The derivatives can also be produced through the transformation of
polycyclic aromatic hydrocarbons equivalent to different rings by chemical and biological
processes [6]. NPAHs present in the aquatic environment could also be obtained from
atmospheric deposition and urban drainage [7].

PAHs can enter wastewater treatment plants (WWTPs) after release from fuel spillage
or atmospheric deposition to the system by domestic WWTPs, industrial discharge, or
runoff through urban drainage [8]. Recent research reported that sewage water was the
main origin of PAHs, and its derivatives in the rivers, receiving sewage water in Beijing [9].
The removal of polycyclic aromatic hydrocarbons within activated sludge can be related
to three biotic or abiotic methods: (1) volatilization through abstraction governed by the
physical characteristic of micro-pollutants by Henry’s law constant; (2) absorption into
sludge as a result of hydrophobic reactions between pollutants and suspended solids that
may lead to their removal through sludge waste; and (3) biotic transformation, including
both complete degradation and transformation into byproducts, leading to the effective
elimination of organic compounds [10]. Furthermore, the removal efficiency of WWTPs
can face difficulties including their low aqueous solubility and bioavailability. PAHs are
resistant to degradation and are difficult to be removed by conventional physicochemical
techniques such as coagulation, flocculation, sedimentation, and filtration [11]. However,
adsorption processes are efficient in removing persistent organic pollutants and, as a result
to their efficiency, recyclability, and feasibility [12]. Therefore, adsorption techniques can
be used to remove both hazardous and less soluble organic molecules, such as PAHs, from
water [13].

The purposes of this research are: (1) to investigate the occurrence of PAHs, Me-PAHs,
and NPAHs in the influents and effluents of the 10 WWTP treatment plants; (2) to find out
the sources of PAHs, Me-PAHs, and NPAHs in WWTPs; and (3) to compute the impact of
internal (chemical-related) and external (WWTP-related) factors on removal efficiencies
(REs) of a group of compounds to obtain comprehensive and specific data on their removal
in WWTPs. The results will provide basic information for the wastewater treatment plant
to upgrade treatment processes and assess the water quality and risk assessment of the
receiving river.

2. Materials and Methods
2.1. Samples Collection

Ten urban wastewater treatment plants (WWTP 1–10) were selected in the warm
(June–July) and cold (October–November) seasons in 2017 along the Songhua River in
Heilongjiang Province, China (Figure 1). The biological treatment effluent mainly flowed
into the Songhua River. To examine the regular variation with an influent and effluent
concentration of PAHs, Me-PAHs, and NPAHs, 24 h influent wastewater samples were
collected from the 10 WWTPs. Raw influent was collected with the ISCO 3700 composite
autosampler (Teledyne ISCO, Lincoln, NE, USA) for 24-h, compositing 24 subsamples
of ~200 mL in each collection vessel to form a homogeneous sample. The effluent and
sludge samples were collected using sampling tools. To reduce the uncertainty related to
sampling, the samples were collected three times throughout a 24-h period, resulting in 3
samples being collected in one day. All the collected wastewater samples were kept in 1 L
glass bottles. After collection, samples were sent to the laboratory at a low temperature of
4 ◦C within 24 h to avoid microbial degradation. Basic information for the ten WWTPs are
presented in Table S1.
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Figure 1. Sampling locations for 10 wastewater treatment plants in the Songhua River Basin, Northeast China.

2.2. Pretreatment and Instrumental Analysis

Due to the high concentrations of the target compounds, the influent samples were
processed by diluting 50 to 500 mL using purified water. The 500 mL effluent samples
were processed without dilution, and all wastewater samples were unfiltered. The target
compounds were extracted by solid-phase extraction (SPE) as described previously [14].
C18 tandem linked with HLB cartridges (500 mg 6 cc−1) (Waters–MILFORD–MA–USA)
was noticed of DCM with 5 mL and 5 mL of MeOH, accompanied by ultrapure water
(5 mL) at a rate of approximately 1 mL.min−1. After that, water samples (500 mL) were
loaded at a rate of about 5 mL min−1. Then drying for 60 min with a gentle stream of N2,
the SPE cartridges were fully clarified from the sorbent as follows: (i) into 15 mL tubes
with 7 mL DCM and (ii) into 7 mL MeOH at a flow rate of 1 mL/min. A gentle stream of
N2, around 1 mL, was used to extract the extracts, and the solvent was changed to 1 mL
with toluene until being shifted to 1.5 mL.

The detection of PAHs was performed by use of Agilent 7890A-7000B gas chromatography-
tandem triple-quadrupole mass spectrometry applied to an EI ion source (GC-EI-MS/MS).
Agilent 19091J-433E (30 m × 250 µm × 0.25 µm) HP-5MS chromatographic column was
employed in GC, and Multiple Reaction Monitoring (MRM) chromatogram. The parame-
ters were as follows: (i) inlet temperature was 320 ◦C for PAHs, 280 ◦C for Me, N-PAHs; (ii)
the injection pulse pressure was 40 psi until it reached 0.8 min; (iii) one microliter of the
aliquot was injected in with pulsed splitless mode; (iv) then the flow rate was 1 mL/min;
(v) while the gas saver was 20 mL min−1; after 3 min, (vi) afterward the septum purge
flow 3 mL min−1; and finally (vii) the purge flow to split vent 50 mL min−1 at 1.2 min.
All the transition collision energy and retention time parameters are listed in Table S3 and
Figures S1–S3.

2.3. Quality Control/Quality Assurance (QC/QA)

Strict quality control (QC) procedures in this research were observed. Before being
rinsed with distilled water, all glassware was thoroughly washed with soap and water,
and after that, were heated in an oven at 120 ◦C for close to 6 h. Finally, they were rinse
with hexane, as well as acetone, before use. To monitor method recovery and interferences,
matrix-spiked samples and duplicates were analyzed, two levels of matrix-spiking (100 µL
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solution with 50 or 500 ng of native standards in acetone) were spiked into the influent and
effluent samples for triplicates tests, waited for 30 min stabilization, and then followed the
SPE procedures as above. The calibration curve of all the target analytes were prepared
at concentrations ranging from 1 to 500 ng/mL (1, 5, 10, 20, 50, 100, 200, and 500 ng/mL)
for native standards with 100 ng/mL of internal standards; as well as each sample type,
and procedural blanks. The trace levels of the procedural blanks compared to actual
samples can only be recognized at low-ring PAHs. Due to greater background in the
procedural, blanks and a very high detecting rate (Nap) were excluded, and the reported
concentrations in this research were blank-corrected. Analyzed recoveries angled from 70
to 125% in spiked matrix samples, and for duplicate samples, the coefficient of variation
was below 20%. All of the surrogate average recoveries were between 66 and 105%, in all
sample matrices, and for surrogate recovery, all analytical levels have been repaired.

The limits of detection (LODs) were calculated using a signal-to-noise (S/N) ratio of
3 for the standard solutions, while limits of quantification (LOQs) were determined by a
S/N of 10. The data was kept, which were higher than the LOQs. The details are shown in
Table S2, supplied in Supporting Information (SI).

2.4. Statistical Analyses

SPSS 20.0 statistical software packages were used to conduct statistical analyses.
principal component analysis had been used to present relationships and trends within
datasets. Moreover, the diagnostic ratio approach was utilized to discovered potential
sources of PAHs and Me-PAHs in several functional areas, and the independent-sample
t-test analysis was applied to check out the relationship between influent and effluent.

2.5. Modelling

Simple Treat 4.0 was used in this study to evaluate performance and removal effi-
ciency in WWTP treatment plants. The physicochemical characteristics of the substances
are displayed in Table S4. In Simple Treat, the classification of acid, neutral, and base
depends on the ionized form of a chemical-based on pKa as well as pH., signifying the
possibility of organic chemicals occurring in the ionized form [15,16]. Furthermore, only a
classification regarding the Organization for Economic Co-Operation and Development
(OECD) test outcomes were available, rates were appointed corresponding to the Simple
Treat classification arrangement. The sludge loading rate was computed from the study’s
specific sludge retention time (SRT) regarding the Struijs indications [17]. Additionally, the
flow rate of 10 WWTPs was input immediately from our database. The efficiency of Simple
Treat 4.0 was evaluated by the meta-regression model.

Vj
dcj

dt
= −KjCjVj + ∑ ADVijCi + ∑ XCHijCi (1)

Kj = Kbiodeg1.072(TW−288) (2)

where (Ci) system flowing out via, water, air, or suspended solid as well as a concentration
in the medium (i) when the chemical is transported from medium (i) to medium (j),
(XCHi,j) is the flow rate of media from a box (i) to box (j), reversible and diffusive; (Cj) is
the concentration inbox (j), (Kj) is the first-order biodegradation rate, constant inbox (j);
(ADVi,j) is the flow rate of media from the box (i) to box (j). (T): time. (Vj) is a volume of
the box (j) [17].

2.6. Meta-Regression Model

Meta-regression model was estimated the average weighted effect size among all
studies. This value had been transformed back into an overall (RE) removal efficiency of
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the chemicals present in our database systems. The (RE) mean weight was calculated once
for the total number of effect sizes available, as follows:

RR = ln
(

Xceff
Xcin

)
(3)

σ2(RR) =
(SDceff)

2

NceffXceff2
+

(SDcin)
n

NcinXcin2
(4)

RE = 1 − e(RR) (5)

where (SDcin) is the standard deviation of the influent concentration, (σ2) is sampling
variance, (Nceff) is a number of samples for the effluent concentration, (Xcin) is the mean
of the influent concentration, (RR) is effect size response ratio, measured per wastewater
treatment plant WWTP and compound, (SDceff) is the standard deviation of the effluent
concentration, (RE) is removal efficiency, (Ncin) is the number of samples for the influent
concentration and (Xceff) is mean of the effluent concentration [18].

2.7. Mass Loading

The mass loading (ML, g day−1) of the PAHs, Me-PAHs, and NPAHs in the influent
sewage of the studied wastewater treatment plant and the discharge (g day−1) to the
Songhua River during the sampling time was computed as follows [19]:

ML = Cin × FL × CF (6)

Discharge = Cef × FL × CF (7)

where (Cin) is the concentration of PAHs, Me-PAHs, and NPAHs detected for the influent,
(FL) is the corresponding flow rate of the studied wastewater treatment plants (L day−1),
(CF) is the conversion factor (10−6 mg ng−1), and (Cef) is the concentration of PAHs,
Me-PAHs, and NPAHs detected for the final effluent.

2.8. Potential Cancers Risk Assessment

The potential cancer risk for (PAHs) was calculated as per Equations (8) and (9), by
multiplying the concentration of each chemical compound by its corresponding (TEF)
value [20]. ∑16 PAHs, total carcinogenic potency was calculated by summing the BaP-
equivalent concentration of all compounds [21].

∑ BaPeq = ∑ PAHsi × TEFi (8)

TEQCCARC = ∑ Ci × TEFi (9)

where (TEF) is the toxic equivalent factor provided, (Bapeq) is the carcinogenic potency of a
congener evaluated dependent on (BaPeq) concentration, (Ci) is the concentration (µg/L),
(TEQ) represents toxic equivalence quotient [22,23].

3. Results
3.1. Occurrence and Profiles of PAHs, Me-PAHs, and NPAHs
3.1.1. PAHs, Me-PAHs, and NPAHs in the Influent

The 16 PAHs, 33 Me-PAHs, and 14 NPAHs were detected in the influent and effluent
of the 10 WWTPs. The total concentrations were from 2.01 to 8.91 µg/L, with a mean
of 4.58 µg/L, for PAHs, from 23.0 to 102 µg/L, with a mean of 46.6 µg/L for Me-PAHs,
and from 6.21 to 171 µg/L, with a mean of 47.3 µg/L, for NPAHs (Table 1). The total
concentration of NPAHs was greater than PAHs and Me-PAHs, which was consistent with
these observed in a preceding study [24].
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Table 1. Concentrations (µg/L) of ∑16 PAHs, ∑33 Me-PAHs, and ∑14 NPAHs from 10 wastewater
treatment plants (WWTPs).

Compound
Influent (µg/L) Effluent (µg/L)

Range Mean Median Range Mean Median

∑PAHs 2.01–8.91 4.58 3.97 0.17–1.37 0.54 0.48
LMW PAHs 1.24–6.05 3.13 2.63 0.13–1.01 0.39 0.34
HMW PAHs 0.75–2.85 1.44 1.33 0.04–0.35 0.15 0.13
LMW/HMW 1.65–2.12 2.17 1.97 3.25–2.90 2.6 2.61
∑Me-PAHs 23.0–102 46.6 38.5 0.06–0.41 0.18 0.16

LMW Me-PAHs 19.3–67.9 36.8 31.5 0.06–0.26 0.11 0.09
HMW Me-PAHs 3.76–34.6 10.22 7.16 BDL-0.15 0.06 0.06

LMW/HMW 1.96–5.13 3.60 4.37 118–1.74 1.82 1.54
∑NPAHs 6.21–171 47.3 31.0 0.01–2.41 0.30 0.76

LMW NPAHs 6.21–171 47.3 31.0 0.01–0.37 0.30 0.76
BDL, below the detection limit. PAHs, polycyclic aromatic hydrocarbons. Me-PAHs, Methylated polycyclic
aromatic hydrocarbons. NPAHs, Nitrated polycyclic aromatic hydrocarbons. LMWPAHs/HMW PAHs = ∑2 to 3
rings/∑4 to 6 rings.

Associated with the analyzed PAHs, Nap was the most abundant compound in
influent samples, accounting for about 32% of the total PAHs concentration, followed by
Phe, Acy, and Flu. The most abundance for Nap might be because Nap is the only one used
for the production of both dyes and moth-killer products, which have been widely applied
in the textile industry and people’s daily lives. Among investigated Me-PAHs, 2-MNAP,
1-MNAP, and 1,3-DMNAP were the major compounds in influent. The most abundant
2-MNAP displayed 14% of the total Me-PAHs concentration. The higher concentrations of
2-MNAP in the influent of the WWTPs have been reported [5,25]. For NPAHs, 2-N, 2-NAN,
and 9,10-DNAN were the most abundant in influent, with 2-N representing 36% of the
total concentration.

In general, compounds with low molecular weight, considered more toxic than those
with high molecular weight, were prevailing in PAHs, Me-PAHs, and NPAHs in influent
WWTPs. On average averagely, low molecular weight PAHs, Me-PAHs, and NPAHs
concentrations were 3.13, 36.8, and 47.3 µg/L, respectively, and high molecular weight
PAHs and Me-PAHs concentrations were 1.44 and 10.2 µg/L, respectively.

3.1.2. PAHs, Me-PAHs, and NPAHs in the Effluent

Concentrations of the target compounds in the effluent of the ten WWTPs are pre-
sented in Table 1. Concentrations of the total chosen PAHs, Me-PAHs, and NPAHs de-
tected through the sampling duration were in the variety of 0.17–1.37, 0.06–0.41, and
0.01–2.41 µg/L, with means of 0.54, 0.18, and 0.30 µg/L, respectively. Phe and NaP were
the dominant compounds for PAHs, with median concentrations of 0.11 and 0.14 µg/L, re-
spectively. Moreover, 2-MNAP and 1,6-DMNAP were the predominant compounds for Me-
PAHs, with median concentrations of 0.03 and 0.01 µg/L. Among all NPAH compounds,
2-NAN, 4-NBP, and 9,10-DNAN were the prevalent ones, with median concentrations of
0.02 µg/L.

It was interesting to notice that PAHs became higher than Me-PAHs and NPAHs
in the effluent, which probably resulted from their higher log KOW and polarity values;
the log KOW of the investigated Me-PAHs and NPAHs were generally lower than those
of PAHs. From one aspect, the compound was removed by adsorption, resulting in the
lower removal efficiencies of the SPAHs and high removal of PAHs [24]. With a relative
percentage of 25% for Phe, 18% for 2-MNAP, and 23% for 2-NAN. The strong volatility
and biodegradability of Me-PAHs might also result in a low concentration. This change
in relative contribution recommended that the removal efficiency of PAHs was much
greater than Me-PAHs and NPAHs in the effluent of the WWTP. In effluent, the average
concentrations were 0.39, 0.11, and 0.30 µg/L for LMW PAHs, Me-PAHs, and NPAHs,
whereas 0.15 and 0.06 µg/L for HMW PAHs and Me-PAHs, respectively.
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3.1.3. Comparison of PAHs, Me-PAHs, and NPAHs in Sewage Worldwide

Comparisons of concentrations for PAHs, Me-PAHs, and NPAHs in influent and
effluent of WWTPs worldwide are displayed in Table 2. The level of PAHs in this study was
much lower than those in Maresme, Catalonia, Spain (14.29 µg/L) [26], Hefei City, situated
beside Nanfei River, China (5.76 µg/L) [27], and Heraklion, Greece (11.07 µg/L) [28], but
higher than the level in Hong Kong, China (0.30 µg/L) [29], Tai’an, China (1.16 µg/L) [30],
Zhejiang, China (0.45 µg/L) [31], Guangzhou, China (0.93 µg/L) [8], Harbin, China
(4.08 µg/L) [32], Jerez de la Frontera, Spain (1.92 µg/L) [33], Heraklion, Crete, south
Greece (0.79 µg/L) [34], Higashi-Hiroshima City, Japan (0.219 µg/L)[35]. The degree of Me-
PAHs in this research was greater than the Northwest of Beijing (0.22 µg/L) [36]. Daegu,
Korea (1.35 µg/L) [37]. Furthermore, NPAHs in this study were also much greater than
the southeast of Shandong China (1.19 µg/L) [38]. PAHs in the influents of the WWTPs
were impacted by many factors, such as the proportion of industrial wastewater, local
manufacturing, and rubber companies, machinery production [39]. Generally, the concen-
trations of all individual and total PAHs, Me-PAHs, and NPAHs decreased along with
the treatment processes. The concentrations of total PAHs, Me-PAHs, and NPAHs in the
effluent were with different researches as well. The degree of PAHs in this study were
greater than those of Hong Kong, China (0.02 µg/L) [29], Hiroshima City (0.043 µg/L)[35]
Tai’an City China (0.13 µg/L)[30], Zhejiang Province, China (0.01 µg/L) [31], Guangzhou,
China (0.19 µg/L) [8], Nakdong river Korea (0.44 µg/L) [37], Jerez de la Frontera, Spain
(0.50 µg/L) [33], however, lower than those of Hefei City, China (2.24 µg/L) [27], Harbin,
Northeast China (0.86 µg/L) [32], Maresme, Catalonia, Spain (3.91 µg/L) [26], Thessaloniki,
northern Greece (5.64 µg/L) [28]. The degree of Me-PAHs in the effluent in this research
was greater than northwest of Beijing (0.06 µg/L) [36]. NPAHs in effluent in this study
were also much higher than the southeast of Shandong China (0.24 µg/L) [38]. The stage of
PAHs in effluent had a significant effect on microbial degradation, weather conditions [33].
There were strong correlations between the influent and effluent, PAHs (R2 = 0.83, p < 0.01),
Me-PAHs (R2 = 0.51, p < 0.01), but the weak correlation for NPAHs (R2 = 0.13, p < 0.01), as
shown in Figure S4, which, signified that higher concentrations in influents often led to
(very) higher levels in effluents.

Table 2. The concentrations (µg/L) of the target compounds of different places worldwide.

Country Sampling Sites
Concentrations of PAHs

N of PAHs Reference
Influent Effluent

China Heilongjiang, Province 4.58 0.55 16 PAHs This study
China Hong Kong 0.30 0.02 16 PAHs [29]
China Tai’an City 1.16 0.13 16 PAHs [30]
China Zhejiang Province 0.45 0.01 16 PAHs [31]
China Hefei City 5.76 2.24 16 PAHs [27]
China Guangzhou, China 0.93 0.19 16 PAHs [8]
China Harbin, Northeast 4.08 0.86 16 PAHs [32]
Spain Maresme, Catalonia 14.29 3.91 16 PAHs [26]
Korea Daegu, Korea 1.35 0.44 16 PAHs [37]
Spain Jerez de la Frontera 1.92 0.50 10 PAHs [33]

Greece Heraklion, Crete, South 0.79 - 16 PAHs [34]
Greece Thessaloniki, northern 11.07 5.64 16 PAHs [28]
China Southeast of Shandong 1.19 0.24 5 NPAHs [38]
Japan Higashi-Hiroshima City 0.219 0.043 16 PAHs [35]
China Heilongjiang, Province 46.60 0.18 33 Me-PAHs This study
China Heilongjiang, Province 47.70 0.11 14 NPAHs This study

3.2. Removal Efficiencies of PAHs, Me-PAHs, and NPAHs by Model Prediction

In this research, both models, Simple Treat 4.0 and Meta-Regression, were applied
to estimate removal efficiencies of PAHs, Me-PAHs, and NPAHs in the ten wastewater
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treatment plants, and the detected mean removal efficiencies, as displayed in Figure 2.
Corresponding to Simple Treat 4.0, mean removal efficiencies of PAHs, Me-PAHs, and
NPAHs ranged from 55.3% (NaP) to 95.4% (Acy) (Figure 2a), from 62.2% (2-MNAP) to 94%
(9-MANT) (Figure 2b), and from 73% (2-NAN) to 91% (5-NAC) (Figure 2c), respectively.
The mean removal efficiencies of PAHs, Me-PAHs, and NPAHs predicted by the meta-
regression model ranged from 47.5% for NaP to 97.7% for Acy (Figure 3a), from 40.4% for
5,8-DMBcPH to 94.8% for 2,6-DMNAP, and from 32.2% for 2-NDB (Figure 3b) to 85.0% for
9,10-DNAN (Figure 2c). The model results recommended that the 2–3 ring PAHs (Acy, Ace)
can be removed more effectively than NaP, Phe, and Ant. The volatility of NaP could be an
attainable description for the excessive NAP concentration in this effluent [40]. The 4–6
ring (BbF, BaP, and IcdP) had been removed, much less contrasted to BaA, Chr, BkF, DahA,
and BghiP. The less removal effectively for LMW PAHs, Me-PAHs, and NPAHs in contrast
to HMW PAHs and Me-PAHs at WWTPs signifies the importance of biodegradation and
evaporation of PAHs fraction. In contrast, high molecular weight PAHs are less soluble
and volatile, so they are mainly associated with particles and less available for degradation
in the water [41].
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Figure 3. Plots showing PAHs and Me-PAHs isomeric ratios (a) Flu/(Flu+Pyr) vs. InP/(InP + BghiP) and (b) BaA/(BaA +
Chr) vs. (MPhe/Phe).

Compounds with log Kow > 5 were anticipated to be eliminated through sorption at
competences between 60% and 65%, while for a compound with log Kow values between
3.6 and 5, lower removals are expecting 15–50% due to this mechanism [28]. Considering
this mechanism, the Simple Treat and Meta-regression model were plotted against the
compounds with log KOW values, as explained in Figure S5, showing statistically significant
correlations (R2 = 0.64, p < 0.01) by using Simple Treat and (R2 = 0.43, p < 0.01) by Meta-
regression. This connection advocated that compounds with log KOW > 5 had greater
efficacious than the compound with log KOW < 5 in the elimination mechanism for PAHs. It
can be concluded that estimations of two models had contrasted the removal effectivity of
PAHs, Me-PAHs, and NPAHs; model predictions have the ability of standard process-based
models to accurately predict the influence of definite parameters on removal efficiencies,
which high and low removal efficiencies were reported, the physicochemical properties
of the HMW PAHs, Me-PAHs, and NPAHs, their behavior during the treatment process
appeared through removal efficiency. Furthermore, the removal efficiencies range from 55.3
to 95.4% detected by the Simple Treat and from 47.5 to 97.7% by meta-regression, in contrast,
Simple Treat 4.0 was qualified to detect the removal competencies relatively (within a factor
4). In addition, Simple Treat displays actual WWTP conditions, with little physicochemical
information was available and depends on the official wastewater operational.

3.3. Source Apportionment by Principal Component Analysis

The potential sources in this research were recognized by principal component analysis.
Three factors had been extracted in WWTPs, with a total variance of 89.0%. The rotated
component loadings are pointed out in Table S5. Factor PC1 principal component was
consorting with 44.9% of the variance and mainly loading on BbF, BaA, BaP, BkF, and
Chr. The BaA, Chr, and BaP are commonly used to provide facts about PAHs origin and
sources in environmental samples, suggesting excessive loadings of a pyrolytic source [40].
PC2 revealed 30.6% of the variance and obtained excessive loading for IcdP, BghiP, and
DahA, suggesting that the compounds have been released from gas and diesel vehicle
emissions [42]. Eventually, PC3 (13.4% of the variance) was determent by NaP, Ace, Acy,
and Flu, recommending that the prevalence of low molecular weight PAHs signifies the
petrogenic source [22].

Corresponding to PCA analysis, there was a specific combination of PAHs as displayed
in Table S5. Generally, there are several combinations of PAHs in wastewater (LMW 2,3
rings and HMW 4 to 6-rings); thus, we conditionally named PAHs sources in three factors
as “mixed source”. Moreover, in every factor, the character of PAHs should be identified as
both a pyrogenic or petrogenic source.
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3.4. Source Apportionment by Diagnostic Ratios

The diagnostic ratios amongst various PAHs have been utilized extensively to distin-
guishing potential emission sources in the environment [37]. Consequently, characteristic
ratios of Flu/Flu+Pyr, InP/InP+BghiP, and BaA/BaA+Chr, MPhe/Phe were computed to
recognize PAHs and Me-PAHs in the present study (Figure 3a,b). The result confirmed that
ratios of Flu/Flu+Pyr, InP/InP+BghiP were varied from 0.40 to 0.50 and 0.50 to 0.65, 0.25
to 0.50, and 0.50 to 0.65, recommend that mixture of biomass and coal composition and
petroleum composition was a potential major source in the wastewater treatment plant
(Figure 3a), and ratios of BaA/BaA+Chr, MPhe/Phe was ranged from 0.30 to 0.35 and 0.35
to 0.36, 0.30 to 1, and 1 to 7, respectively, point out that mixture of combined source and
biomass and coal composition was a possible major source in the WWTP (Figure 3b). The
outcomes from diagnostic ratios in his study confirmed that “mixed source” biomass and
coal composition and petroleum have been the essential sources in the ten wastewater
treatment plants, Heilongjiang province, North China.

3.5. Ecological Risk Assessment

The PAHs, Me-PAHs, and NPAHs were released from the WWTPs to the Songhua
River, which was closely connected with the lives of the urban resident. The Toxic, carcino-
genic equivalents (TEQs) value of the 10 WWTP effluent target pollutants was calculated.
The TEQs, ∑PAHscarc, and ∑PAHs in different wastewater were pointed out in Table 3. As
proven in the result, the TEQ concentrations of BaP, DahA, and BaA in all the 10 WWTPs
had been much greater than other compounds. Accordingly, the pollution degree of
HMW compounds needs to be given interest and considering greater exposure in this
study. Moreover, as indicated from the results, the ∑PAHscarc had been the principal
contributor to TEQ. The TEQ in different 10 WWTPs were dissimilar: the higher TEQ as
follows WWTP 4 (32.1 ng/L), WWTP 5 (29.2 ng/L), WWTP 6 (25.2 ng/L), and WWTP
3 (24.8 ng/L), respectively Table 3. Contrasted with the other researches, the effluent
TEQBaP in this study was greater than the EU annual average environmental quality stan-
dard (AA-EQS = 0.17 ng/L) [32] and higher than that in effluent wastewater from Beijing
(31.7 ng/L) [24], effluent wastewater concentrations from the city of Prato (8.3 ng/L) [25],
effluent from two Italian Municipal WWTPs (7.8 ng/L) [43]. Furthermore, the potential
carcinogenicity of PAHs in the WWTP effluent was very high compared to other researches,
and it needs to be stressed.

Table 3. PAHs TEQ concentrations in different WWTPs µg/L.

PAHs TEF WWTP 1 WWTP 2 WWTP 3 WWTP 4 WWTP 5 WWTP 6 WWTP 7 WWTP 8 WWTP 9 WWTP 10

NaP 0.001 0.10 0.04 0.14 0.13 0.15 0.09 0.27 0.17 0.13 0.06
Acy 0.001 0.02 0.01 0.01 0.03 0.05 0.02 0.03 0.02 0.01 0.02
Ace 0.001 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.00
Flu 0.001 0.04 0.05 0.06 0.05 0.01 0.04 0.07 0.14 0.04 0.02
Phe 0.001 0.09 0.14 0.12 0.14 0.04 0.09 0.11 0.45 0.08 0.05
Ant 0.01 0.11 0.11 0.08 0.20 0.23 0.12 0.28 0.49 0.13 0.07
Fluo 0.001 0.01 0.01 0.02 0.04 0.02 0.02 0.05 0.09 0.01 0.02
Pyr 0.001 0.01 0.01 0.03 0.03 0.03 0.03 0.06 0.05 0.01 0.01
BaA 0.1 0.27 0.43 4.90 1.93 3.50 4.07 2.44 0.76 0.44 0.67
Chr 0.01 0.02 0.02 0.33 0.25 0.22 0.27 0.17 0.07 0.02 0.04
BbF 0.1 0.42 0.73 2.57 2.61 3.07 1.87 1.97 0.66 0.55 1.05
BkF 0.1 0.96 0.53 0.89 1.99 2.38 1.13 2.46 2.36 0.86 0.93
BaP 1 BDL BDL 9.69 17.7 14.2 11.3 14.2 4.62 3.40 17.6
IcdP 0.1 BDL BDL 0.86 1.39 0.86 0.73 0.56 BDL BDL BDL

DahA 1 BDL BDL 4.97 5.37 4.12 5.18 BDL BDL BDL BDL
BghiP 0.01 0.01 0.02 0.15 0.14 0.21 0.21 0.14 0.03 BDL 0.04

∑7 PAHscarc 2.41 1.68 1.72 24.2 31.2 28.4 24.6 21.8 8.49 5.28 20.3
∑ 16 PAHs 2.43 2.12 2.16 24.8 32.12 29.2 25.2 22.9 10.0 5.75 20.6

BDL: Below detection limit. ∑PAHScarc: total polycyclic aromatic hydrocarbons carcinogenic including (BaA, Chr, BbF, BkF, BaP, InP and
DahA).
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4. Conclusions

In this research, the exposure degree of PAHs, Me-PAHs, and NPAHs in wastewater
from Heilongjiang Province, Northeast China, had been explored. In the influent, the total
average concentrations of ∑NPAHs (47.3 µg/L) had been higher than these of ∑Me-PAHs
(46.6 µg/L) and ∑PAHs (4.58 µg/L) in contrast in effluent ∑PAHs (0.54 µg/L) had been
greater than those of ∑Me-PAHs (0.18 µg/L), and ∑NPAHs (0.30 µg/L). The concentrations
of Nap, 2-MNAP, and 2-N had been the highest among PAHs, Me-PAHs, and NPAHs,
and concentrations for LMW had been greater than these for HMW. The Simple Treat
model executed higher than the meta-regression model in predicting elimination efficiency.
Regarding the Simple Treat model, Res, SRT, and biodegradability can remove the chemical
compounds properly. Furthermore, the essential sources were mixed petrogenic and
pyrolytic sources related to diagnostic ratios and principal component analysis. It was once
observed that the TEQ concentrations of 7 carcinogenic PAHs in the effluent of wastewater
had been greater than the EU (AA-EQS), which needs to be seriously taken into attention.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/toxics9040076/s1, Figure S1: MRM chromatogram of target PAHs, Figure S2: MRM chro-
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influent vs effluent of ∑PAHs, ∑Me-PAHs and ∑NPAH, Figure S5: Percent removal efficiency of
PAHs, Model Simple Treat (a) Model Meata-regression (b) versus Log Know, Table S1: Basic informa-
tion for the ten WWTPs, Table S2: Determined of LOD ng/mL and LOQ ng/Ml, Table S3: GC-MS/MS
detection parameters of target PAHs, including the optimized retention time, transitions and collision
energy (CE), Table S4: PAHs, Me-PAHs and NPAHs physiochemical properties. Re [4,44], Table S5:
Factor pattern of PCA for PAHs in 10 WWTPs, China.
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