International Journal of /
* Environmental Research m\DP|
and Public Health Z

Article

Clonal Diversity of ESBL-Producing Escherichia coli
Isolated from Environmental, Human and

Food Samples

Elena Ojer-Usoz * '/, David Gonzalez and Ana Isabel Vitas

Department of Microbiology and Parasitology, University of Navarra, 31080 Pamplona, Spain;
dgonzalez@unav.es (D.G.); avitas@unav.es (A.L.V.)
* Correspondence: eojeruso@alumni.unav.es

Academic Editor: Panagiotis Karanis
Received: 3 May 2017; Accepted: 19 June 2017; Published: 23 June 2017

Abstract: This study presents a comprehensive approach of a clonal diversity analysis of 448
Extended-spectrum (3-lactamase (ESBL)-producing E. coli isolated from environmental, human and
food samples in Spain. The phenotypic confirmation of ESBL production was performed by disc
diffusion and microdilution methods, while Polymerase Chain Reaction (PCR) and sequencing were
used for the molecular characterization of 3-lactamase genes (blactx-m, blaspy, blatem, blaoxa). Clonal
relationship of isolates was determined by multi-locus sequence typing (MLST). Multidrug resistant
strains were present in all the studied niches, with percentages above 50.0%. The most prevalent
[-lactamase genes were blactxm-14 (26%) and blactxm-1 (21.4%), followed by blasgyy-12, blactx-m-15 and
blatgm-42- MLST isolates were grouped into 26 clonal complexes (CC) and 177 different sequence types
(ST) were detected. Despite the high clonal diversity observed, CC10 was the prevalent and the only
CC detected in all niches, while other complexes as CC131 were mainly associated to human isolates.
The observed prevalence and diversity of these resistant bacteria across the different environments
encourages a One Health approach to prevent and control ESBL dissemination between environment
and consumers.
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1. Introduction

The discovery of antibiotics marked a milestone in infectious diseases therapy saving millions of
lives. However, antibiotic misuse among humans and animals has led to the emergence of antimicrobial
resistance. Extended-spectrum (-lactamase enzymes (ESBLs) are currently considered one of the major
public health concerns throughout the world [1]. Among Enterobacteriaceae, Escherichia coli is the species
that causes the greatest number of infections and has become the main ESBL-producing bacteria. The
emergence and wide dissemination of this resistance have important implications in public health
due to the risk of clinical treatment failure. Several factors contribute to the spread of ESBLs within
and outside of hospitals: the overuse of antibiotics in humans and in food-producing animals [2],
agricultural environment [3], food-chain transmission [4,5], water environments [6-8] or healthy fecal
carriers [9,10]. All these different sources where ESBL bacteria have been isolated were defined as
reservoirs that contribute to ESBL transmission. The clinical importance of this resistance is reflected
in the number of papers published in the last years that show the increasing prevalence in human
isolated Enterobacteriaceae of CTX-M enzymes [1,10-12], carbapenemases [13,14] and especially the
prevalence of CTX-M-15 in Spain and other European regions [10,15]. In fact, a recent publication
of the Organization for Economic Co-operation and Development (OECD) regarding antimicrobial
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resistance places Spain on the top of European countries in both rates of antibiotic consumption and
antimicrobial resistance [16].

However, despite the large amount of studies showing the presence of ESBL Enterobacteriaceae in
different sources, there is a lack of information on integrated studies that give a global perspective of the
current situation. In fact, the last report of the World Human Organization on antimicrobial resistance
points out the importance of integrating surveillance information that would enable comparison of
data from food products, and human and environmental strains [1]. Similarly, the One Health initiative
emphasizes the connection of human and animal health to environment as well as the need to improve
health in these three domains. Therefore, a collaborative and multidisciplinary approach is necessary
for controlling the spread of antibiotic resistance [17].

This study follows World Health Organization (WHO) guidelines and tries to connect data
from human, animal and environmental niches. The main objective was to characterize the clonal
diversity of ESBL-producing Escherichia coli isolated from food products, human samples and different
environmental niches in northern Spain in order to gain a better understanding of the diversity and
spread pathways of these resistant bacteria.

2. Materials and Methods

2.1. Sampling and Bacterial Isolation

All ESBL-producing strains included in this study were isolated in Navarra (Spain) from 2009
to 2013. Clinical strains were provided by the Clinica Universidad de Navarra and were collected
consecutively from January 2009 to December 2012 as part of the routine diagnostics of the laboratory
from different human samples (skin, bound exudate, nasal swab, urethral swab, vaginal and perianal
swab, bronchial and ascitic aspirates, deep abscess, sputum, drainage catheter, urine and blood).
Ethical approval was obtained from the Ethical Committee Research of the University of Navarra (Plan
de Investigacion de la Universidad de Navarra Project 024/2012). Food and environmental samples
were collected from different locations within Navarra (2010-2012), selected in terms of population
(>1000 inhabitants). In addition to the already isolated strains from previous studies [18,19], new
sampling was performed over a period of two years (2012-2013) to include a higher variety of food
and environmental strains. A total of 580 samples of food were collected including vegetables, cheese,
fish, sliced cooked meats and fresh meat products made from beef, poultry and pork. With regard to
environmental niches, we have analyzed samples from Waste Water Treatment Plant (WWTP), rivers
and farm beds (Table 1).

Table 1. Prevalence of ESBL-producing bacteria in the analyzed samples.

No. of No. of Positive No. of No. of No. of
Source Analyzed S;;mples (%) ESBL-Producing ESBL-Producing ESBL-Producing E.
Samples Enterobacteriaceae E. coli coli Carrying blagLgg

Food 580 112 (19.3) 196 179 150

Fresh meat 169 96 (56.8) 183 175 149
Vegetables 306 14 (4.6) 11 4 1
Fish 37 12.7) 1 0 0
Cooked meat 34 1(2.7) 1 0 0
Cheese 34 0 0 0 0

Environment 592 255 (43.1) 252 208 186

WWTP 279 163 (58.4) 163 132 117
Rivers 222 45 (20.3) 41 30 26
Farms 91 47 (51.6) 48 46 43

Human 2 - - - 130 112

2 Only E. coli isolates were provided by the Clinica Universidad de Navarra.
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Resistant strains isolation was performed on ChromID ESBL plates (Biomerieux, Marcy 1'Etoile,
France), a selective medium containing cefpodoxime. Suspicious resistant bacteria were isolated on
nutrient agar (Biolife, Milano, Italy) and strain identification was performed by biochemical tests
(API 20E and VITEK®, Biomerieux, Marcy I’Etoile, France).

2.2. B-Lactamase Characterization

The phenotypic confirmation of ESBL production was performed by combination disk test
and double-disk synergy test. The antimicrobial susceptibility to additional antibiotics and
minimum inhibitory concentrations were obtained in MicroScan® system (Siemens AG, Munich,
Germany). Following Clinical And Laboratory Standards Institute recommendations ESBL-producing
isolates were categorized as sensitive and resistant (including “intermediate resistant” and “totally
resistant”) [20].

The presence of 3-lactamase genes (blatgm, blasyy, blapxa and blactx-m) was detected by using
a modification of two multiplex PCR [21,22]. DNA amplification was performed in a DNA thermal
cycler GeneAmp® PCR system 2700 (Applied Biosystems Division, Foster City, CA, USA). In order to
identify the bla genes a bidirectional DNA sequence analysis was performed by the Macrogen EZ-Seq
purification service (Macrogen Europe, Amsterdam, The Netherlands). Each sequence was compared
with the sequences included in GenBank and Lahey Clinic web [23].

2.3. MLST Analysis

To determinate the clonal dissemination of ESBL-producing E. coli, a sequence type analysis was
performed following the scheme described by Wirth et al. [24] and seven housekeeping genes were
amplified and sequenced for each isolate (adk, fumC, gyr, icd, mdh, purA and recA). DNA extraction
was performed with a DNeasy® Blood & Tissue kit (Qiagen, Barcelona, Spain) using a pretreatment
protocol for Gram-Negative Bacteria. For amplification, 3 uL of DNA extract was mixed with 5 pL of
buffer 10 x (Bioline, London, UK), 5 uL of dNTPs (Bioline), 1.5 uL of MgCl, 50 mM (Bioline), 2 pL of
each primer Sigma-Aldrich, Steinheim, Germany) and 1.5 U of Inmolase™ DNA polymerase (Bioline)
in a final volume of 50 pL. The amplification conditions were as follows: 3 min at 94 °C, followed by
30 cycles of 1 min at 95 °C, 1 min at 60 °C (mdh, gyrB, and recA) or 1 min at 64 °C (fumC, icd, purA and
adk), 2 min at 72 °C, and a final elongation step of 5 min at 72 °C. Sequence reactions were performed by
EZ-Seq Service (Macrogen Europe) and sequences data were imported into the E. coli MLST database
website [25] to determine MLST type. These data were analyzed using BioNumerics v7.5 software
(Applied Maths, Sint-Martens-Latem, Belgium).

2.4. Statistical Analysis

The results were subjected to statistical processing with the Statistical Package for Social Sciences
(SPSS) 15.0 software, (SPSS Inc., Chicago, IL, USA), applying R x C contingency test or Fisher’s exact
test depending on the expected frequencies, with a level of significance of p < 0.05.

3. Results and Discussion

3.1. Prevalence in Food and Environmental Samples

Of the 580 food samples analyzed, 19.3% of them were positive for ESBL-producing
Enterobacteriaceae (ESBL-E). According to results obtained in a previous study [18], fresh meat samples
showed the highest prevalence (56.8%), while none of the cheese samples were positive for ESBL-E
(Table 1). It must be pointed out that poultry meat carries a high risk of transmission of these resistant
strains due to its high presence in this product (89.3%, data not shown). Similar results have been
obtained by Skockova et al. [26], who reported high ESBL-E rates in poultry and pork meat in the Czech
Republic. With regard to vegetables, only one out of 306 samples were positive for ESBL-producing
E. coli (0.3%). By contrast, high prevalence of other species were observed (Enterobacter spp., Citrobacter
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spp. and Klebsiella spp.), coinciding with a report by Reuland et al. [27], who isolated Enterobacteriaceae
species other than E. coli in raw vegetables in similar levels.

Similarly, a wide distribution of ESBL-E throughout the environment was detected because 43.1%
of the analyzed samples were positive for these resistant strains. Higher prevalence was observed on
WWTP and farms (>50%), while the presence in rivers was lower than the 36.2% reported in a recent
study carried out in Switzerland [28].

The high prevalence observed in meat as well as on farms suggests the circulation of
ESBL-producing E. coli from farm animals to food products, and supports the thesis of resistant
bacteria spreading throughout the food chain.

3.2. Antimicrobial Resistance

The study of antimicrobial susceptibility points out a high resistance against penicillins,
cephalosporins and aztreonam among strains isolated from all niches, combined with co-resistance
against quinolones and aminoglycosides (Table 2). In addition, we have observed high susceptibility
to carbapenems, coinciding with the results obtained by Egervéarn et al. in a study performed on meat
imported into Sweden [29]. However, other authors have pointed out the emergence of carbapenem
resistance among strains isolated from environmental and clinical samples [13,14,30-32].

Table 2. Percentages of resistance against different antimicrobials according to isolates origin.

Origin of Strains

Antibiotic
Food WWTP Rivers Farms Human
AMP 100.0 100.0 100.0 100.0 99.2
PIP 99.5 100.0 100.0 100.0 99.2
MZ 98.5 100.0 100.0 100.0 99.2
cz 99.5 100.0 100.0 100.0 97.7
CXM 99.1 100.0 100.0 100.0 96.9
CPD 99.5 100.0 100.0 100.0 96.2
CTX 97.1 97.9 100.0 100.0 96.2
CAZ 97.6 80.4 83.7 100.0 96.2
FOX 9.7 34.6 43.0 4.0 14.6
FEP 94.2 82.3 18.0 2.0 94.6
AZT 96.6 92.0 87.8 100.0 96.2
AMC 18.0 50.0 36.3 10.0 57.7
AMS 79.1 97.0 92.0 68.0 89.2
TZP 1.9 81.1 20.0 4.0 24.6
ETP 0.0 1.5 2.0 0.0 2.3
MER 0.0 0.0 0.0 0.0 0.8
MP 0.0 0.0 0.0 0.0 0.0
AK 99.5 0.0 2.0 0.0 8.5
GM 10.7 16.7 8.0 8.0 21.5
TO 7.8 19.5 8.0 10.0 37.7
LV 50.0 38.2 18.0 44.0 70.8
CIP 56.8 41.6 20.0 46.0 72.3
MXF 67.0 52.3 33.0 58.0 75.4
TET 83.0 484 71.0 72.0 76.1
TIG 0.5 2.1 2.0 0.0 2.3
COL 21.8 0.0 24.0 10.0 27.7
SXT 40.8 38.0 27.0 34.0 65.4
FOT 29 11.9 22.0 2.0 4.6
M 14.6 26.7 12.0 8.0 10.8
CHL 23.7 13.6 16.3 22.0 33.1
MDR 84.8 65.4 62.0 58.0 86.2

Ampicillin, AMP; piperacillin, PIP; mezlocillin, MZ; cefazolin, CZ; cefuroxime, CXM; cefpodoxime, CPD;
cefotaxime, CTX; ceftazidime, CAZ, cefoxitin, FOX; cefepime, FEP; aztreonam, AZT; amoxicillin clavulanic
acid, AMC; amoxicillin sulbactam, AMS; piperacillin tazobactam, TZP; ertapenem, ETP; meropenem, MER;
imipenem, IMP; Amikacin, AK; gentamicin, GM; tobramycin, TO; levofloxacin, LV; ciprofloxacin, CIP; moxifloxacin,
MXEF; tetracycline, TET; tigecycline, TIG; colistin, COL; trimethoprim sulfamethoxazole, SXT; fosfomycin, FOT;
nitrofurantoin, FM; chloramphenicol, CHL. MDR: multi drug resistance.
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It must be pointed out that some significant differences regarding antimicrobial resistances in
certain antibiotics were observed, depending on the strain origin. For instance, we detected high
resistance against cefepime in food and human isolates (94.2% and 94.6%, respectively), while low
resistance was observed in farm isolates (2.0%) (p = 0.016). Similar low resistances against cefepime
were reported in a study performed in meat from Poland [33]. On the other hand, a high resistance to
cefoxitin (FOX) was observed in isolates from water environments (rivers and WWTP) when compared
to the other isolates. The diversity of species different to E. coli found in these environments that
usually express AmpC (Enterobacter spp., Citrobacter spp., Klebsiella spp.) could be the reason of this
high resistance for FOX. In fact, seven out of 11 isolates from vegetables corresponded to species
different from E. coli, pointing to irrigation water as the possible origin of contamination as suggested
previously. In this paper only E. coli isolates have been characterized for the presence of 3-lactamase
genes. Therefore, further molecular studies in the remaining species should be performed to check the
probable AmpC (3-lactamase.

Moreover, we detected high susceptibility against aminoglycosides in the strains isolated from all
sources, with the exception of amikacin and isolates from food samples (99.5% resistance). Similar
results were detected in a study carried out in Sweden [29]. Among food isolates we have not found
differences in antimicrobial resistance between poultry, pork and beef meats. For instance, tetracycline
resistance differences were not significant (p = 0.17) between the three meat origins, consistent with
the highly extended use of this antimicrobial in European livestock [34]. Moreover high resistance to
tetracycline (83.0%) were observed among food isolates strains coinciding with the study performed
by Beninati et al. [35], who detected 85.0% of resistant strains against this antimicrobial.

In contrast, we have detected significant differences (p = 0.043) in ciprofloxacin resistance between
pork (49.1%), beef (64.3%) and poultry meat (80.4%), which is consistent with the highly extended use
of quinolones among poultry farms.

Similarly, clinical isolates showed higher percentage of resistance to quinolones (>70%), in
accordance with other European studies [36,37]. Isolates from food also showed high resistance (57.9%)
against this antimicrobial family, similar to the data reported by Egerviarn et al. [29] Isolates from farm
beds showed a percentage of 49.3% of resistance whereas river isolates showed lower percentages.

In addition, a high level of multi-drug resistance (MDR), defined as resistance to three or more
structurally unrelated antimicrobial agents, was detected in all niches (Table 2). Food and human
isolates showed the highest MDR rates (84.8% and 86.2%, respectively). Similar results were reported
by Egervérn et al. [29] regarding food isolates, with levels of multi-resistance between 81 and 98%
depending on the type of food. In contrast, Amador et al. [38] observed lower levels of multi-resistance
in food in 2009 (31.4%), and lower rates of MDR among human isolates were reported by other authors
in 2014 [9,39]. The level of multi-drug resistance observed in strains from other environmental origins
was very similar (ranging 60.0%). Similar results were reported by Zurfluh et al. [28] for isolates from
rivers and lakes in Switzerland (63.7%). In contrast, Randall et al. [40] found lower levels of MDR E.
coli isolated from broiler chickens and turkey samples in Great Britain slaughterhouses.

These drug and multi-drug resistance profiles observed in bacteria isolated from food products
can be explained by the misuse of antimicrobials in livestock and agricultural production, as well as
the movement of resistance bacteria via sewage and manure. These findings pose an emergent health
risk through food consumption and show the actual limitations in therapeutic treatment of infections
caused by ESBL-producing bacteria.

3.3. B-Lactamase Genes

Molecular characterization by PCR and sequencing showed that bla genes were present in 75.0%
of the strains isolated from food samples, in 86.1% of strains isolated from human samples and in
74.2% of environmental samples. Furthermore, we detected CTX-M-1 and CTX-M-14 producing E. coli
in all niches (Table 3).
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With regard to food isolates, the most prevalent genes were blactx-m-14 (25.0%) and blactx-m-1
(23.9%), followed by blagyy.12 and blatgy-4p. Other bla genes such as blactx-m-2 and blatpy-145 were
present in low percentages. In contrast with other studies [10], encoding bla-cTx.m-15 genes were
detected only in one food sample, despite the fact that this type was the prevalent among clinical
isolates. With respect to isolates from poultry meat, blactx-m-14 genes were the most prevalent (34.4%)
and a high genotypic variability was observed among these isolates with harbored genes blacTtx-m-1,
blastv-133, blagyv.s, blatpm-145 and blatpym.sz. In contrast, Belmar Campos et al. [41] pointed out the
prevalence of blactx.m-1 and blagpyy-12 in poultry meat purchased in Germany. We also detected two
multidrug resistant E. coli strains with less common phenotypes such as blactx-m-g and blactx-m-2,
which have been observed by other authors in E. coli, Klebsiella pneumoniae and Proteus mirabilis
strains [42]. Among isolates from beef meat, the variability was lower and blactx.m-14 genes were also
predominant (40%), followed by blatgm-42 and blactx-m-1 genes. However, Egervidrn et al. [29] detected
higher prevalence of blactxMm-1 genes in this meat. Our results showed that 56% of isolates from
pork samples harboured blactx-m-14 genes while other authors present pork meat as a reservoir
of blactx-m-1 [21]. With respect to the only strain isolated from vegetables, blactx-m-1 was the
encoding gene.

Table 3. Genotypic characteristics of ESBL-producing E. coli isolated from different sources.

Sample No. of No. of bla Percentages of Detected bla Genes (%)
Origin ESBL-Producing Genes
CTX-M-14 CTX-M-1  CTX-M-15 TEM-42 SHV-12

Food 179 150 25.0 23.9 12 125 18.5
WWTP 132 117 24.5 18.4 11.1 11.7 14.1
Rivers 30 26 17.1 244 9.8 49 9.8
Farms 46 43 15.5 28.1 21.4 16.7 51.0
Human 130 112 33.5 115 39.2 13.1 10.7

In contrast, blactx-m-15 was the prevalent gene among clinical isolates (36.9%), followed by
blactx-Mm-14 (33.8%), blapxa-1 (20.0%) and blatgn-42 (12.0%). The most common ESBL types characterized
in this study (CTX-M-15 and CTX-M-14) were also found in other Spanish studies [43,44] which
reported a high prevalence of these genes (30.8% and 27.3%, respectively). Meanwhile, blactx-m-1
genes were present in 11.5% of isolates and only one strain carried blactx-m-3 gene. These results
reaffirm the evolution of the prevalence of CTX-M reported years ago by Livermore and Woodford [45]
in Spain and detected by other authors more recently [9]. In addition, OXA type enzyme was observed
in 26 E. coli isolates, and was combined with CTX-M enzyme in 24 isolates.

With regard to environmental isolates, we determined blacTtx-\-1 as a predominant gene in river
samples (37.0%) while blagiyy.12 was prevalent in farm beds (51.0%). In contrast, other studies reported
a high prevalence of blactxym-1 in pig and chicken farms [46,47]. These differences could be due to
different antimicrobial treatments and feeds on livestock farms.

3.4. Clonal Diversity Study

MLST analysis of the ESBL-producing E. coli isolates (n = 448) showed a high clonal diversity
regardless of ESBL type (Figure 1) or sample origin (Figure 2). These strains were grouped into
26 different clonal complexes (CC), being CC10 the prevalent clonal complexe in this study (13.3%) and
the only one present in all niches (Table 4). It should be noted that CC131 (5.9%) was mainly detected
in human samples (n = 26). Finally, other complexes were found in three different niches, as CC23
(5.9%) that was present in WWTP, farm and human samples, or CC155 (2.8%) that was detected in
food, WWTP and human isolates.

Overall, 177 different sequence types (ST) were detected. Among these, ST98 was the prevalent
one (n = 17), followed by ST617 (1 = 13), ST88 (n = 12) and ST648 (n = 11). It must be pointed out
that none of strains have been identified as ST131, however 27 strains from food (n = 1) and human
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samples (1 = 26) were included in CC131. The remaining isolates were singletons and did not cluster
into any CC.

Table 4. Distribution of main Clonal Complexes (CC) detected in human, environmental, and
food samples.

Clonal Number of Isolates
Complex Food WWTP River Farm Human
CC10 21 16 2 6 16
CC101 2 - - 5 _
CC131 1 - - - 26
CC155 6 6 - - 1
CC156 2 7 - - 1
CC168 4 3 - 1 -
CC23 - 7 - 6 1
CC350 1 1 - - 1
CC398 - 1 - - 1
CC448 1 - - - 2
CC46 2 5 3 - 1
CCo648 6 - - - 5
CCo69 - 1 - - 1
CC86 5 1 - - 3
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Figure 1. Minimal spanning tree constructed based on the MLST profiles of the 448 ESBL-producing
E. coli isolates and coloured according to ESBL genes (Bionumerics v7.5, Sint-Martens-Latem, Belgium).

Food isolates belonged to 14CCs and the most extended ST was ST98 (n = 13), that was the
mainly present in chicken meat (62%), followed by ST776 (n = 8) and ST878 (1 = 6). We have detected
ST648, ST776, ST878 and ST98 among the three classes of meat products analyzed in this study;,
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what indicate a high dissemination regardless of meat origin. Furthermore, we have detected five
isolates from beef and chicken samples belonging to ST648 and harbouring blactx-m-14 genes. In the
same way, Belmar-Campos et al. [41] reported ST648 chicken isolates harbouring blactx-m-1 genes.
Similarly, previous studies observed ST648 in ESBL-producing strains isolated from human, poultry
and wildlife [48-50]. These results point out the spread of this ST among several niches in Europe.
Otherwise, isolates harbouring blactx-m-14, blactx-m-1 and blagyy-121x-Mm-14 belonged to ST359 were
detected in chicken meat as well as chicken farms what suggests the existence of a ST359 reservoir
among poultry niches. In addition, we have detected only one isolate from pig meat belonged to CC131
(5T2433), traditionally associated to more virulent strains. Finally, other clones as ST57 harbouring
blactx-m-14 gene have been detected in different niches (food, WWTP, human samples), what suggests
that the dissemination of ESBL genes in E. coli may occur through multiple routes including food chain.
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Figure 2. Minimal spanning tree constructed based on the MLST profiles of the 448 ESBL-producing
E. coli isolates and coloured according samples’ origin (Bionumerics v7.5, Sint-Martens-Latem, Belgium).

WWTP isolates were scattered among 12 CC that included 64STs, the remaining isolates were
singletons and did not cluster into any CC. ST611 and ST844 were the most common (n = 14), followed
by ST615 and ST617 (n = 10). ST10 was also a common genotype. Regarding ST611 (CC157),
in addition to WWTP environment we have detected this clone among chicken, beef and human
samples, associated to SHV-12 and TEM-42 production. Other studies observed this clonal complex
among human, poultry and wildlife [51,52]. Moreover, CC10 isolates harbouring blactx-m-1 have been
observed in different environments and blactx-m-14 genes belonged to ST10 were isolated from WWTP
strains (n = 4), farms (n = 3) and human samples (1 = 1). Isolates belonging to ST167 were detected in
WWTP (n = 3) and human strains (1 = 2) harbouring blactx-m-14 and blaspyy.12 genes. In addition, strains
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from WWTP (n = 6) and food samples (n = 6) addressed to CC23 (ST88, ST90 y ST650) were associated
to CTX-M-14 production. All these results suggest that water systems might act as a reservoir and
dissemination route of ESBL resistant genes. Finally, isolates from river samples (1 = 26) were scattered
among 22 different STs and we have detected several STs that were exclusive of river isolates as ST940,
ST298 and ST1196.

Regarding farm isolates we have found four CCs, being ST88 the prevalent ST (n = 6). All this
strains were isolated from poultry farms and were associated to CTX-M-1 (n = 5) and SHV-12
production (n = 1). Other detected sequences were ST878 (n = 5) and ST619 (n = 5), associated to
SHV-12 production in the first case and SHV-12 and CTX-M-1 production in the second one. We have
also detected from a swine farm, a multirresistant strain that belong to ST373 (CC168) and harbour
blaCTX_M_l, blaSHV—lZ and blaTEM_42 genes.

These results showed the high heterogeneity among farm isolates as well as the risk of
transmission to human being through food chain. Similarly, Knapp et al. [53] analyze swine farms
and reported high presence of antimicrobial resistant strains and point out this niche as an important
reservoir of resistant genes. In addition, we have detected ST648 in chicken, pig and beef meat as well
as human samples, what suggest a possible dissemination through food chain.

About 60% of clinical isolates were scattered among 17 CCs, the remaining isolates did not cluster
into any CC. A total of 66 different ST were observed, ST3213 was the most common followed by ST88,
ST617, ST648 and ST90. We have detected five isolates harbouring blactx-m-15 gene that belonged to
ST648 that were also reported by other authors in human and animal samples [49,54].

Moreover, Brisse et al. [55] reported a high diversity among E. coli isolated from clinical samples,
belonged to 116 STs and 13 CCs. The most common complexes they observed were CC131 (23%),
CC10 (15%), CC73 (6%) and CC23 (5%). Similarly, we have detected CC131 (21.6%), CC10 (16.4%),
CC23 (16.4%) and CC73 in only one strain (0.9%). According to our study, they also observed a high
heterogeneity among CC10 (11 different STs) and CC23 (five different STs). However, Brisse et al. [55]
reported high frequency of ST131 meanwhile in our study we have not detected ST131, although
we have observed 25 strains from urine samples that belong to CC131 and harbor blactx-m-15 gene.
The only strain that harbour blactx-m-3 gene belonged to ST838 (CC131). These isolates belonged to
CC131 are interesting because of the high virulence they could present.

We have also detected two strains that belonged to ST393 (CC131) harbouring blactx-m-15 and
showing high resistance against quinolones, penicillin, cephalosporin and tetracycline. Other studies
reported that strains of this ST were resistant to quinolones and were implicated in extraintestinal
infections [56,57].

4. Conclusions

In conclusion, this study demonstrates the multidrug resistance and the clonal diversity of
ESBL-producing E. coli isolated from food, environmental and human samples. The MLST profiles
of isolates from food were different from human and environmental isolates and it emphasizes the
high diversity of these bacteria throughout these niches. However, the unique CC present in all the
aforementioned niches was CC10, while CC131 was mainly associated to human isolates. According
to WHO'’s recommendations in the ‘Global action plan on antimicrobial resistance’ [58], there is
a need to strengthen knowledge and evidence through research and surveillance so as to improve our
understanding of antimicrobial resistance. Therefore, it is essential to control ESBL-producing E. coli
spread among animals and environment to minimize human transmission.
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