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Abstract Ecosystem degradation accompanied by soil erosion risk is caused by the interaction of many
factors, including climate change and human activities. Therefore, before attempting the optimal form of
ecological restoration, we must know the key factors responsible for soil erosion risk and determine their
impacts on the ecosystem health. To test this approach, we conducted a case study in the Three Gorges
Reservoir Area from 1980 to 2015, where extensive restoration (primarily afforestation) has been conducted.
The results showed that climate was most important during Period I (1980 to 1984), and explained 84%
of the variation in erosion. However, vegetation became equally important during Period II (1985 to 2006),
when it accounted for 51% of the variation. Climate became as important as vegetation during Period III
(2007 to 2015), when it accounted for 51% of the variation. The temporal variation in the dominant factors
that controlled soil erosion risk suggests that the ecological effect of vegetation improvement resulting
from ecological restoration in Three Gorges Reservoir Area has been gradually enhanced since the 1980s.

1. Introduction

Ecosystem degradation is causing major environmental problems around the world, including soil erosion
and desertification. Ecological degradation affects 36 × 106 km2 of land around the world, which amounts
to 25% of the total land area, leading to a direct economic loss as high as US$850 × 109 annually (Liu &
Diamond, 2008). Ecosystem degradation is particularly serious in China, where the area of degraded ecosys-
tems accounts for one third of the total land area. As a result, the livelihood of 400 × 106 people is threatened,
and 12 × 106 people have been plunged into poverty, accounting for 28.5% of China's impoverished popula-
tion (Lusiana et al., 2012).

In China's Three Gorges Reservoir area, the landforms (many hills and sloping land) and human activities
have contributed to increasingly serious ecosystem degradation and loss of arable land. However, as part
of the reservoir construction activities, large‐scale ecological restoration projects have been carried out to
protect the soils surrounding the reservoir against erosion and reduce siltation of the reservoir (Chen
et al., 2020). Because this is a key vulnerable ecological area that lies between the middle and lower reaches
of the Yangtze River, its ecosystem health directly affects the comprehensive benefits provided by the Three
Gorges Project and the ecological security of the middle and lower reaches of the Yangtze River (Xiao
et al., 2017). Thus, determining the optimal form of ecological restoration to permit sustainable development
of the region's resources, including recycling and improved utilization of these resources, is essential for suc-
cessful development (Gou et al., 2020).

Ecosystem degradation in the reservoir area results from interactions among many natural and human fac-
tors. Landforms, climate change, and human activities all strongly influence vegetation change, and changes
in the vegetation, in turn, affect the climate and human activities (Leman et al., 2016). Some natural science
researchers believe that the predicted climate change will degrade ecosystems by adversely affecting the soil
quality, vegetation cover, biodiversity, and hydrologic cycle. However, few studies have quantified the simul-
taneous effects of the interaction among multiple factors (both natural and human) based on long‐term
monitoring data (Valero et al., 2014). This is particularly problematic because of the importance of human
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factors; methods and data from the social sciences have not been combined with those from the natural
sciences, thereby weakening the foundation for environmental management and making it difficult to
improve environmental protection (Sun, Miao, AghaKouchak, et al., 2019).

Before the creation of the Three Gorges Reservoir, the region's ecosystem health was already under consid-
erable stress from a combination of climatic factors (e.g., drought) and human activities (e.g., unsustainable
agriculture in sloping land). Moreover, the regional characteristics (e.g., topography, climate) combined
with changes in the region's natural environment caused by the reservoir construction, population growth,
and increased pollution due to socioeconomic development, make the region's inherently fragile ecosystem
become more complex and fragile due to the impacts of these external influences. To counteract these pro-
blems, China's government has invested more than US$3.22 × 109 to carry out large‐scale afforestation activ-
ities since the 1980s. It has consecutively implemented the Yangtze River Basin Shelter Forest Project,
Natural Forest Protection Project, Grain for Green Program, Afforestation Project on Both Sides of the
Yangtze River, and other key ecological projects. It has also established a preliminary ecological security sys-
temwith the establishment of forests as the primary component, and with a combination of shrub and grass-
land planting as an additional component. However, few studies have quantified the effects of these
ecological projects and of the ecological policy on soil erosion risk (Cao et al., 2014). Furthermore, the simul-
taneous effects of climate change and the Three Gorges Project on the regional climate and ecosystems make
it difficult to distinguish the impacts of climate change from those of the Three Gorges Project itself (Zhao
et al., 2014). Because of the huge area affected by the Three Gorges Project and its long existence, the envir-
onmental impact should be assessed on large spatial and temporal scales to adequately describe the project's
impacts. Most notably, the reservoir has severely reduced flows of water into downstream regions, creating
persistent drought in the lower reaches of the Yangtze River in Hubei, Hunan, Jiangxi, and Zhejiang
provinces (Xiao & Xiao, 2018). The lack of water has destroyed 3 × 106 ha of farmland and has left
millions of people and livestock short of water (Liu & Yang, 2012).

If we can understand how natural and human factors interact to produce degraded ecosystems in TGRA, we
can manage these ecosystems in ways that permit optimal ecological restoration (Loizeau et al., 2018). To do
this, we must first identify the key driving forces responsible for degradation and restoration and quantify
their impacts on ecosystem health. Ecological restoration can only be successful if it accounts for both the
ecological environment (e.g., climate, topography) and the productive and living behaviors of the inhabi-
tants of the degraded area. Accounting for both natural and human factors can avoid the shortcomings of
traditional projects, which neglect human factors, and thereby improve the effectiveness of ecological pro-
tection. The goal of the present study was to account for ecological factors, as well as human activities, that
lead to ecosystem health changes. This knowledge can be used to support the development of effective
restoration strategies based on improved utilization of soil and water resources and can thereby reduce
the impacts of soil erosion risk on the ecological environment.

2. Study Area and Methods
2.1. Study Area

The Three Gorges Reservoir area is located between Chongqing City and Hubei Province and covers a total
area of 57,802 km2 that is home to a total population of nearly 20 million people. This area includes 26 cities
and counties, most of which are rugged terrain (Figure 1). About 74.0% of the area is mountainous, 21.7% is
hilly, and only 4.3% is plains (Bao et al., 2018). The elevation is high in the east and low in the west. The
dominant soil types are Ultlsols based on USDA soil taxonomy (Xiao et al., 2019). The region has a subtro-
pical monsoon climate. The mean annual precipitation reaches ~1,100 mm. And, for most of the year, it
experiences humid conditions with an annual mean temperature of 17–19°C.

The Three Gorges Reservoir has strongly affected the Yangtze River Basin, both because the Yangtze River
Basin is the largest river basin in the world and because the Three Gorges Dam is the largest hydropower
project in the world (Jiang et al., 2018). The dam's construction occurred from 1993 to 2009, with a total
reservoir capacity of 39.3 × 109 m3. In the 16 years before 2009, 1.25 million people were displaced by this
project as the reservoir inundated 245 km2 of farmland and orchards, about 35 km2 of residential areas,
and 824 km of roads. The construction resulted in wide‐scale land use/land cover (LULC) change and cli-
matic change that are expected to change regional soil conservation patterns.
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2.2. Data Sources

Because of the long time span of our study and its large area, we used Landsat images of the reservoir area
with a spatial resolution of 60 m (MSS) and 30 m (TM/OLI) from 1980 (MSS), 1990 (TM), 2000 (TM), 2005
(TM), 2010 (TM), and 2015 (OLI) to extract LULC data.We selected these images according to their availabil-
ity and the quality of the data set. We used version 9.3 of ArcInfo (https://www.esri.com) to superimpose
images from two consecutive years to identify changes in LULC. Comparing areas with ground‐based data
(387 samples), the overall accuracy of LULC maps were above 89.1% for the five periods concerned. The
Vegetation Cover date set from 1982 to 2015 was calculated by mixed pixel decomposition model (Ivits
et al., 2013) based on the Global Inventory Modeling and Mapping Studies (GIMMS) Normalized
Difference Vegetation Index (NDVI) (https://ecocast.arc.nasa.gov).

We obtained meteorological data from the China National Meteorological Information Center (http://data.
cma.cn) (precipitation and temperature) and interpolated to raster data with a resolution of 0.05° by kriging
method (Xiao & Xiao, 2019). Soil maps and related soil properties were obtained from the second national
soil survey conducted by the Institute of Soil Science, Chinese Academy of Sciences, with a scale of
1:1000000 (http://www.issas.cas.cn). We derived a digital elevation map of the study area from the data
set produced by the Terra satellite's Advanced Space‐borne Thermal Emission and Reflection Radiometer
(ASTER), with a resolution of 30 m (http://www.gscloud.cn). All cartographic raster data were converted
to the same Albers coordinate system and spatial resolution of 100 m.

2.3. Methods
2.3.1. Model Description
Because soil erosion by water is the main cause of ecosystem degradation in the study area, excessive soil
erosion and sediment deposition will both damage local ecosystems and gradually decrease the reservoir's
hydroelectric power generation, and will also cause structural damage to the Three Gorges Dam. To estimate
the magnitude of the annual soil erosion in the study area, we used the universal soil loss equation:

Figure 1. The location of the Three Gorges Reservoir area in China (TGD: Three Gorges Dam).

10.1029/2020GH000274GeoHealth

XIAO ET AL. 3 of 13

https://www.esri.com
https://ecocast.arc.nasa.gov
http://data.cma.cn
http://data.cma.cn
http://www.issas.cas.cn
http://www.gscloud.cn


SEa ¼ R × K × LS × C × P (1)

where SEa represents the annual soil loss under the current LULC conditions (t ha−1 yr−1); R is the rain-
fall erosion coefficient (MJ mm ha−1 hr−1 yr−1); K is the soil erodibility factor (t ha hr ha−1 MJ−1 mm−1);
LS is a dimensionless topographic factor; C is a dimensionless vegetation cover factor; and P is a dimen-
sionless conservation practice factor. We will describe the calculation of these variables in the rest of this
section.
2.3.1.1. Rainfall Erosivity Factor (R)
We calculated R from 1980 to 2015 using the proposed formula based on monthly rainfall (Fu et al., 2011):

R ¼ Σ1:735 × 101:5log Pi2=Pð Þ–0:818 (2)

where Pi is the total rainfall (mm) in month i and P is the total annual rainfall (mm).
2.3.1.2. Soil Erodibility Factor (K)
Soil erodibility describes the vulnerability of soil particles to being mobilized by raindrops and surface run-
off. We used the Erosion/Productivity Impact Calculator (EPIC) formula to calculate K. To make the equa-
tion applicable to the nature of the Chinese soils in the study area, we used the following parameterization:

KEPIC ¼ 0:2þ 0:3 exp –0:0256msand 1–msilt=100ð Þ½ �f g × msilt= mclay þmsilt
� �� �0:3

× 1–0:25orgC= orgC½f

þ exp 3:72–2:95orgCð Þ�g × 1–0:7 1–msand=100ð Þ= 1–msand=100ð Þ þ exp –5:51þ 22:9 1–msand=100ð Þ½ �f gf g
(3)

K ¼ –0:01383þ 0:51575KEPICð Þ × 0:1317 (4)

where KEPIC and K are soil erodibility factors (t ha hr ha−1MJ−1mm−1) before and after revision, respec-
tively; and msand, msilt, mclay, and orgC are the percentages of sand, silt, clay, and organic carbon,
respectively.
2.3.1.3. Topographic Factors (LS)
Topographic factors reflect the effects of slope length (L) and steepness (S) on soil erosion. We calculated the
LS factor using improved L and S equations and an Arc Macro Language (AML) script in ArcGIS. The equa-
tions are as follows:

L ¼ λ=22:13ð Þm (5)

m ¼ β= 1þ βð Þ (6)

β ¼ sin θ=0:089ð Þ= 3:0 sin θ0:8 þ 0:56
� �

(7)

S ¼

10:8 sin θþ 0:03 θ < 5:14°

16:8 sin θ − 0:5 5:14° ≤ θ < 10:20°

21:91 sin θ − 0:96 10:20° ≤ θ < 28:81°

9:5988 θ > 28:81°

8>>><
>>>:

(8)

where LS is a dimensionless topographic factor, L is a dimensionless slope length factor; S is a dimension-
less slope steepness factor that depends on the slope gradient θ (°); λ is the slope length (m); and m is the
slope length index, which also depends on θ.
2.3.1.4. Vegetation Cover Factor (C)
Soil erosion has a negative exponential relationship with vegetation cover, which therefore plays an impor-
tant role in controlling soil erosion. We determined the value of C for our study area using a look‐up table
based on vegetation cover and LULC (Table 1).
2.3.1.5. Erosion Control Practices Factor (P)
Based on previous research (Fu et al., 2011), in our study area, this factor was only relevant for cultivated
farmland. This soil erosion is a key factor in our study area, since about 74% of the land is mountainous
and therefore at high risk of erosion. We calculated P as follows:

10.1029/2020GH000274GeoHealth

XIAO ET AL. 4 of 13



P ¼ 0:2 ± 0:03 α (9)

where α is the slope gradient (°).

Based on the calculations described earlier in this section, Figure 2 shows
the spatial distribution of the abovementioned parameters of the universal
soil loss equation model that we used in this study.
2.3.2. Model Validation
To verify the regional applicability and reliability of the universal soil loss
equation model, we verified our results using observational data from
2000 to 2010, which were obtained from the government's soil and water
conservation bulletin (http://slj.cq.gov.cn). The simulated soil erosion
agreed well with the observed values (Pearson's r = 0.810, n = 31,
P < 0.01). This indicates that the model and its parameters are suitable
for simulating soil and water conservation conditions in the study area.

2.3.3. Data Analyses
2.3.3.1. Trend Analyses
To detect changes in the soil erosion trend during the study period (1982 to 2015), we used least squares lin-
ear regression to fit the soil erosion variables as a function of time (year) for each pixel. The least squares
linear regression method used the following equation (Xiao & Xiao, 2019):

y ¼ aþ bt þ ε (10)

where y represents a given soil erosion variable (SEa), t is the year, a and b are fitted variables (a is the
intercept and b is the slope, which represents the trend), and ε is the residual error. If b > 0, soil erosion
increases. Conversely, if b < 0, erosion decreases. We used the t test to identify significant differences in
the trends for the annual erosion time series, with significance defined at P < 0.05.
2.3.3.2. Abrupt Changes
Weused theMann‐Kendall mutation test to identify abrupt changes in soil erosion (Yue &Wang, 2004). This
test assumes that if the forward trend sequence curve UF intersects the backward trend sequence curve UB
generated with the reverse data series of UF at a position above the threshold for statistical significance
(±1.96), then a statistically significant mutation point exists; on the other hand, if the intersection point lies
outside the threshold or if there are many intersections between the lines, then it is impossible to establish a
fixed mutation point. In this case, we used the nonparametric Pettitt test to detect mutation points
(Pettitt, 1979).

Figure 2. The spatial distribution of the parameters of the universal soil loss equation.

Table 1
Values of the Vegetation Cover Factor (C) as a Function of Land Use and
Cover Types (LULC) and Vegetation Cover (VC)

C values based on VC (%)

LULC <10 10–30 30–50 50–70 70–90 >90

Forest 0.10 0.08 0.06 0.02 0.004 0.001
Shrubs 0.40 0.22 0.14 0.085 0.040 0.011
Grassland 0.45 0.24 0.15 0.09 0.043 0.011
Wetland 0
Cropland 0.221–0.595logVC
Built up land 0.01
Bare land 0.7
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2.3.3.3. Correlation and Regression
To study the relationship between the soil erosion change and the driving forces, we used Pearson's
correlation coefficient (r) and stepwise regression for the relationships to reveal the relative contributions
of each factor to the spatial distribution of soil erosion. The statistical unit for more than 700 samples in
TGRA was analyzed in the IBM SPSS Statistics 20 (IBM Corp., Armonk, NY, USA), which were created by
ArcGIS 10.3 (URL: http://www.esri.com/) fishnet tool according to the maximum resolution (8 km × km)
of all data.

3. Results
3.1. LULC Trends

The dominant LULC types in the reservoir area were forest and cropland, which occupied around 40.25%
and 32.77% of the land, respectively, in 1980, and 42.66 and 25.22% in 2015, respectively (Table 2). In abso-
lute terms, there was little change in LULC during the study; for example, the area of forest only increased by
2.41 percentage points, and that of cropland changed by only 7.55 percentage points. However, these small
percentage changes represented large areas (an increase of 1,404 km2 for forest and a decrease of 4,405 km2

for cropland). In addition, the area of built‐up land increased to nearly 10 times its 1980 value during the
36‐year study period. In relative terms, the area of forest increased by 5.98% during the study period, and
the area of grassland increased by 1.00%. The wetland area (including rivers, lakes, and the reservoir) had
almost doubled. In contrast, the area of cropland decreased by ~23.04%.

From 1980 to 2015, LULC changed remarkably (Figure 3) in spatial perspective, driven by ecological and
developmental policies. Most of the changes occurred in the northeastern and central mountainous areas,
For example, 60% of the increase in forest area and 70% of the decrease in cropland area occurred in these
areas. Built up and forest areas are the two main LULC types that increased from 1980 to 2015. Almost all
of these increases occurred in areas where cultivated land decreased. Cultivated land was the main type of
LULC that decreased, with changes in this category accounting for 46.55% of the total change from 1980
to 2015.

3.2. Dynamic Characteristics of Soil Erosion

The total annual soil erosion reached 1.67 × 108 t. This represents an average rate of 28.69 t ha−1. The annual
mean soil erosion was highly spatially variable, with the highest values in the northern and northeastern
parts of the reservoir area and smaller values in the southwestern part of the study area (Figure 4a). Areas
with high soil erosion (>100 t/ha) that suffered heavy soil loss were primarily located near the Daba
Mountains in the northeast.

Since 1989, many of the government's afforestation policies have been implemented in the reservoir area,
including the Yangtze River Shelter Forest Project, Natural Forest Conservation Project, and Grain for
Green Program. Under these programs, a large area of sloping farmland has been transformed into shrub
and forest vegetation (above 1,000 km2). The vegetation cover also increased as a result of the different affor-
estation programs. As a result of these changes, soil erosion fluctuated but showed a significant overall

Table 2
Changes in the Areas of Each Land Use and Land Cover (LULC) and in the Corresponding Proportions of the Total Area From1980 to 2015

1980 1990 2000 2005 2010 2015

LULC 103 km2 % 103 km2 % 103 km2 % 103 km2 % 103 km2 % 103 km2 %

Forest 23.48 40.25 23.52 40.32 23.63 40.50 24.26 41.58 24.35 41.74 24.89 42.66
Shrubs 10.51 18.02 10.56 18.10 10.67 18.30 10.48 17.96 10.35 17.74 10.22 17.51
Grassland 4.21 7.21 4.23 7.25 4.29 7.36 4.28 7.34 4.25 7.28 4.25 7.28
Wetlands 0.84 1.44 0.84 1.44 0.84 1.44 1.23 2.10 1.46 2.51 1.72 2.96
Cropland 19.12 32.77 18.95 32.48 18.14 31.09 16.88 28.93 15.98 27.40 14.72 25.22
Built up 0.13 0.22 0.19 0.33 0.72 1.24 1.19 2.04 1.93 3.31 2.53 4.34
Bare land 0.05 0.08 0.05 0.08 0.05 0.08 0.02 0.04 0.01 0.02 0.02 0.03
Total 58.34 100.00 58.34 100.00 58.34 100.00 58.34 100.00 58.34 100.00 58.34 100.00

Note. The relative change ratio is calculated based on the following formula: Change ratio = ([LULC2015 − LULC1980]/LULC1980) × 100.
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decreasing trend from 1980 to 2015, at −3.35 × 106 t yr−1). However, not all regions had a decreasing trend
(Figure 4b). The most notable decreases, many of which were statistically significant, occurred near the
Daba Mountains in the northern part of the study area. In contrast, soil erosion increased slightly in the
southwestern plains and in hilly areas, and some of these increases were also statistically significant.

To evaluate the long‐term changes in soil erosion we identified the dates when the Mann‐Kendall test
revealed abrupt changes. Figure 5a shows three periods with distinctly different trends: 1980 to 1984, 1985
to 2006, and 2007 to 2015. When we separately performed regression analysis for the data from each period
(Figure 5b), we found that soil erosion decreased significantly (at a rate of 1.52 × 108 t yr−1, p < 0.01) before
1984. Subsequently, soil erosion fluctuated, but with an overall decrease by 0.06 × 108 t yr−1, p < 0.05) until
2006. During the last period (2006 to 2015), soil erosion again decreased gradually, at an overall rate of
0.10 × 108 t yr−1, p < 0.05).

3.3. Driving Forces for Soil Erosion Changes

The Pearson's correlation analysis results (Table 3) showed that climate and vegetation were the main cor-
relation factor relating the soil erosion change. Moreover, their correlation coefficients changed over time, In
Periods 1 and 3, climate significantly affected soil erosion change, especially on precipitation (r = 0.7 and
0.52, respectively). However, in Period 2, vegetation significantly affected soil erosion change, especially
for on vegetation cover (r = 0.59).

In addition, we established statistical model to quantify the impacts of the driving forces in Table 4 on soil
erosion using multiple linear regression. In Periods 1 and 3, regression analysis indicated that precipitation
(standardized B = 0.664, and 0.637, respectively) was the significant key factor for soil erosion change.
However, in Period 2, vegetation became the significant key factor for soil erosion change (standardized
B = −0.391). All models produced good regression results (R2 = 0.375–0.566; adjusted R2 = 0.370–0.564).

The dominant factors that controlled soil erosion differed among the periods. The soil erosion reduction that
occurred during Period I (1980 to 1984) was controlled by changes in climate, which explained 84.05% of the

Figure 3. Spatial distribution and changes over time in the land use and land cover (LULC) types from1980 to 2015.
Spatial distribution of LULC in 1980 (a) and 2015 (b); Spatial distribution of increases (c) and decreases (d) of a given
category of LULC.

10.1029/2020GH000274GeoHealth

XIAO ET AL. 7 of 13



total variation in soil erosion. However, vegetation became as important as precipitation for controlling soil
erosion during Period II (1985 to 2006), accounting for 51.35% of the variation. Finally, climate became as
important as vegetation for controlling soil erosion during Period III (2007 to 2015), accounting for 51.65%
of the variation. This temporal change in the factors that controlled soil erosion suggested that effects of
the vegetation improvement under the government ecological restoration programs became more
pronounced over time.

3.4. The Relationship Between Urban Development and Soil Erosion

The real per capita income of residents of the study area increased significantly in both urban and rural
areas, but the gap between urban and rural incomes increased from a ratio of 1.8 in 1985 to 3.0 in 2015
(Figure 6a). At the same time, urbanization (migration of rural residents to cities) was accelerating in the
Three Gorges Reservoir area. The proportion of the total population living in an urban area increased by
0.02 annually, from about 0.32 in 1985 to about 0.89 in 2015, and increased particularly rapidly after 2009
(Figure 6b). As large numbers of people moved into cities, the built‐up area increased rapidly (Table 2).
We also found a statistically significant contribution of urbanization on the decreasing of soil erosion from
1980 to 2015 (Figure 7).

4. Discussion

With ongoing environmental degradation and increasingly fragile ecosystems, environmental managers
must look beyond traditional approaches that focus on ecology and begin to consider the human aspects
of the problem (Feng et al., 2015). To achieve this goal, it's necessary to account for the key forces that drive
ecosystem change, including both natural and human forces. We found that soil erosion in the Three Gorges
Reservoir area reached 170 Mt per year in 2015. Soil erosion in the eastern region was significantly higher
than that in the western region. The region with the largest amount of soil erosion was mainly located near
the DabaMountains. In general, an ecosystem's resistance to soil erosion depends on the ecosystem type and

Figure 4. Spatial pattern and temporal dynamic of soil erosion (SEa) in the Three Gorges Reservoir area from 1982 to
2015. (a) Spatial distribution of SEa. (b) Trends in annual SEa, with × indicating areas with a statistically significant
trend (p < 0.05).

Figure 5. (a) Detection of abrupt changes in annual soil erosion (SEa) in the Three Gorges Reservoir area from 1982 to
2015. Turning points occur where the UF and UB curves intersect at a position above the threshold for statistical
significance based on the Mann–Kendall mutation test. (b) Trends of annual SEa during the study period. Arrows
indicate the significant turning points in 1984 and 2006 that were identified in (a).
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vegetation cover; for example, dense grasslands protect the soil better than sparse forests (Sun, Miao, Hanel,
et al., 2019). The soil conservation function of different ecosystem types is strongest for forest, followed by
shrub and grassland communities (Xiao et al., 2017). In addition, the higher the vegetation cover, the stron-
ger the soil conservation function. However, our results show that in addition to these factors, the actual soil
conservation function is determined by the climate, topography, and socioeconomic factors, with different
relative strengths for each group of factors in different periods.

Since 1989, many ecological restoration projects have been implemented in our study area; as a result, a large
amount of sloping farmland (4,280 km2) has been transformed into shrub communities and forests, and
vegetation cover has continuously increased. This increase has helped to reduce soil erosion. From 1980
to 2015, soil erosion showed an overall decreasing trend, with soil erosion decreasing by
3.36 × 106 t yr−1). However, not all regions showed a decreasing trend (Kong et al., 2015). Soil erosion
increased in hilly regions in the west, resulting in serious losses of soil and water. This resulted mainly from
the rapid urbanization and expansion of the built‐up area in this region, leading to greatly increased inten-
sity of human activity, and from increased precipitation, which together exacerbated soil erosion in this
region (Cao et al., 2017).

To evaluate the long‐term changes of soil erosion, we used the Mann‐Kendall mutation test to identify
abrupt changes and revealed three distinct periods. In the first period, from 1980 to 1984, soil erosion
decreased significantly, possibly because of the significant decrease in precipitation during this period. In
the second period, from 1985 to 2006, soil erosion fluctuated, but decreased slowly overall. In the third per-
iod, which began in 2006 (around the start of construction of the Three Gorges Dam), soil erosion again
showed a significant downward trend. Due to increasing urbanization after 2000 and the construction of
Three Gorges Dam in 2006, the areas where LULC change occurred were mainly distributed in the eastern

Table 3
Pearson's Correlation Analysis Results for the Multiscale Factors and Time Period Indexes

Category
Independent
variable

1980–1984
Period‐1

1985–2006
Period‐2

2007–2015
Period‐3

1980–2015 whole
period

Climate change Precipitation 0.700** 0.521** 0.520** 0.273**

Temperature −0.320** 0.226** 0.277** 0.147*

Vegetation
change

NDVI −0.150** −0.523** −0.092* −0.671**

VC −0.167** −0.590** ns −0.667**

Evapotranspiration ns ns −0.229** −0.197**

LULC change Forestation −0.108** ns ns −0.105**

Urbanization 0.113** ns 0.104** ns

Note. Only statistically significant values of Pearson's correlation coefficient are displayed; ns represents a nonsignifi-
cant result. Abbreviations: NDVI, the normalized‐difference vegetation index; VC, vegetation cover.
*p < 0.05. **p < 0.01.

Table 4
Regression Analysis Results for the Multiscale Factors and Time Period Indexes

Category Independent variable 1980–1984 Period‐1 1985–2006 Period‐2 2007–2015 Period‐3 1980–2015 Whole period

Climate change Precipitation 0.664** 0.331** 0.637** 0.287**

Temperature −0.290** ns 0.112** −0.098**

Vegetation change NDVI ns −0.177** ns −0.349**

VC ns −0.391** −0.346** −0.371**

Evapotranspiration 0.181** ns −0.167** −0.104**

LULC change Forestation ns ns ns ns
Urbanization ns −0.207** −0.188** −0.176**

R2/Adjusted R 0.566/0.564 0.490/0.487 0.375/0.370 0.553/0.549

Note. Only statistically significant values of standardized coefficients are displayed; ns represents a nonsignificant result. Dependent variables are the changing
trend in per‐unit‐area soil erosion for Period‐1, Period‐2, Period‐3, and Whole Period, respectively. The R2 values represent goodness of fit for multiple linear
regression models that account for the effects of the variables in each category of driving forces. Abbreviations: NDVI, the normalized‐difference vegetation
index; VC, vegetation cover.
*p < 0.05. **p < 0.01.
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and western parts of the study area (Yang et al., 2018). The main change type in the eastern region was an
increase in the area of forest, whereas the main change type in the western region was urban expansion.
Both changes were at the expense of a decreased area of cropland. The expansion of forests in the east
showed that the implementation of the government's ecological projects played a positive role in increasing
forest cover in this region (Sun, Miao, Hanel, et al., 2019). The development of cities in the western region in
response to migration of residents from rural areas to urban areas reduced the disturbance of vegetation by
human activities in eastern rural areas to some extent (Dominati et al., 2014). The rapid development of
cities in the western region and the increase of government revenue from taxation of economic activities
in these cities may be able to support the continued implementation of the government's ecological projects.

Another possible reason for the increasing vegetation cover is that construction of the Three Gorges Dam has
increased the groundwater content in areas near the reservoir and this, combined with increasing rainfall at
the same time, combined to promote vegetation growth in most of the surrounding areas (Haghjou
et al., 2014). The government's vegetation restoration projects clearly played a positive role in reducing soil
erosion in the region. Of the driving forces we analyzed, vegetation accounted for a large proportion (70%) of
the total variation in soil erosion. By acting on local ecosystem or on local constraints that control ecological
restoration, accounting for these driving forces can improve restoration success (Karlen et al., 2014).

Our results are preliminary and apply best to our study area; they must be replicated and tested in areas with
different characteristics to confirm the overall validity of our method and learn how to adapt it for use in
other areas. Nonetheless, the problems solved by the new method deserve attention, particularly in terms
of how it accounted for human driving forces such as urbanization and LULC change (Zheng et al., 2019).

If the methodology is suitably modified to account for local conditions,
it will allow policy makers and restoration managers in other areas to
design more effective restoration strategies and will provide a theoretical
basis for simultaneously improving environmental protection and socioe-
conomic development (Krois & Schulte, 2014). As this approach matures,
it will provide important solutions to the poverty trap in China and
elsewhere.

As the proportion of the rural population in our study area continued to
decrease, the proportion of the labor force engaged in primary industries
such as agriculture also continued to decrease. As a result of this
long‐term social shift, the contradiction between traditional agriculture
(which creates high pressure on the environment) and ecological protec-
tion has gradually weakened, and this trend has been conducive to the
natural restoration of vegetation even in the absence of government
restoration programs. Previous research also found a significant positive
correlation between the urbanization rate and NDVI trends in our study
area (Lee et al., 2014).

Figure 7. Relative contribution importance of the driving forces associated
with changes in total annual soil erosion.

Figure 6. Changes from 1985 to 2015 in (a) the per capita real income of urban and rural residents and (b) the
populations of rural and urban areas and the associated urbanization rate.
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In general, environmental goals cannot be separated from economic development, since human survival
depends on a healthy environment. This dependence provides a clear path to success: influencing the liveli-
hood of residents of environmentally fragile regions so that they can continue earning a living without
damaging their environment. Environmental degradation and poverty are mutually reinforcing processes
(i.e., they together create the poverty trap). Investing in environmental assets and management is a crucial
strategy to combat the poverty trap and simultaneously achieve both environmental restoration and poverty
alleviation (Miao et al., 2019). In the Three Gorges Reservoir area, urbanization has accelerated during the
study period, leading to less pressure on the rural environment and an increase in the built‐up area in cities.
Previous research showed that the growth rate of the built‐up areas in cities was faster than that of the non-
agricultural population in the urban area, which agrees with the present results (Zhang et al., 2014).

The effects of this trend are evident in our study area. Due to the rapid economic growth that has
occurred in the study area, the acceleration of urbanization, and the large and growing difference
between urban and rural incomes, a large proportion of the rural population has migrated to cities and
towns, and much of this migration came from the northeastern mountainous areas, with former residents
of these areas moving to the main urban areas in the western part of our study area. This large change in
the proportions of urban and rural residents suggest that an equally huge social transformation is under-
way (Liebig et al., 2014).

This migration has been accompanied by the implementation of a large number of ecological restoration
projects in the eastern region. The migration has weakened human impacts on the source region for the
migrants, while simultaneously improving vegetation cover in this region through government projects;
the result was greatly improved vegetation cover and greatly reduced soil erosion risk. Our research confirms
our hypothesis that measures to control the driving forces responsible for ecological degradation through
targeted ecological restoration measures can eliminate the blind spot in traditional ecological restoration
planning, which focused on ecological factors and largely ignored human factors. For example, large rural
populations place a proportionally large pressure on their environment (Xiao et al., 2020). To relieve this
pressure, migration to urban areas can be promoted through education, which allows migrants to obtain
other forms of employment, and social welfare programs, such as providing social services (e.g., access to
medical care and schools for their children) that make the move to a city easier. Ecological restoration in
the Three Gorges Reservoir area is aimed at achieving sustainable socioeconomic development (Marenya
et al., 2014). Therefore, in dealing with the relationship between ecological restoration and this develop-
ment, we should seek a balance between development and restoration rather than relying exclusively
(and simplistically) on vegetation restoration.

5. Conclusions

Research such as the present study is important because it reveals the response of soil erosion to both eco-
logical factors (climate, afforestation) and social factors (urbanization, ecological migration). In our study
of the Three Gorges Reservoir area, we found that both ecological and socioeconomic factors were driving
forces for mitigating soil erosion, but with different relative strengths at different times. Our study meth-
ods can, with suitable modification to account for local conditions, help guide the restoration of ecologi-
cally sensitive areas in other regions of China and elsewhere in the world. We found that soil erosion
gradually decreased throughout the study period, though at different rates during different parts of the
study period and with changes in the relative strengths of the driving forces between these periods.
During the first part of the study period, soil erosion decreased significantly, and our correlation analysis
suggested that decreasing precipitation was responsible. During the second period, soil erosion fluctuated
but still decreased slowly. During the third period, soil erosion again showed a significant decreasing
trend, but in this period, the change resulted from socioeconomic factors such as a rapidly increasing
urbanization rate.

Our results demonstrate that the government's restoration programs, and particularly afforestation, have
improved the vegetation cover and decreased soil erosion. However, they have also displaced large numbers
of rural residents to the region's rapidly growing cities. Because this migration will challenge the ability of
local residents to earn a living, we propose that the government continue to increase its afforestation efforts,
but that they complement these efforts with programs that improve employment opportunities for displaced
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residents. This approach will simultaneously support economic development and ecological restoration, and
particularly an ongoing reduction of soil erosion. Our proposed approach reveals that the government's pro-
grams in our study area have succeeded because they focused on the key driving forces (both ecological and
socioeconomic) that cause degradation or promote restoration. Moreover, our approach revealed different
dominant factors that controlled soil erosion in each part of the study period. These differences will help
restoration managers understand the changing factors that control both restoration and its relationship with
socioeconomic development, thereby offering opportunities to develop more effective programs for accom-
plishing both goals.
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