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Abstract

Although essential hypertension affects a large proportion of the human population and is one of the key drivers of cardiovascular
mortality worldwide, we still do not have a complete understanding of its pathophysiology. More than 50 years ago, the immune
system has been identified as an important part of the pathogenesis of arterial hypertension. An exceeding variety of recent
publications deals with the interplay between the numerous different components of the immune system and mechanisms of
arterial hypertension and has substantially contributed to our understanding of the role of immunity and inflammation in the
pathogenesis of the disease. In this review, we focus on myeloid cells and anatomical barriers as particular aspects of innate
immunity in arterial hypertension. Since it represents a first line of defense protecting against pathogens and maintaining tissue

homeostasis, innate immunity provides many mechanistic hinge points in the area of hypertension.
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Introduction

Arterial hypertension is one of the key drivers of cardiovas-
cular mortality worldwide. Already in 2005, the global burden
of disease study predicted a number of 1.56 billion adults with
prevalent hypertension in 2025 [1]. Back in 1949, Page intro-
duced the so-called mosaic theory of the pathophysiology of
essential hypertension, claiming that not a single factor but a
complex interplay of different organs and circumstances is
part of the disease [2]. In addition to the endocrine system,
kidney, heart, and vasculature, the immune system has been
identified to be a major contributor to hypertension. First ex-
perimental hints were collected in 1960, when Grollman et al.
identified antihypertensive effects of pharmacological immu-
nosuppression in a murine model with partial renal infarction
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[3]. Since these days, hypertension research increasingly fo-
cused on the immune system resulting in the tempting theory
of essential hypertension as an autoimmune disease [4, 5].

The first step of classifying the numerous different partic-
ipants of the immune system is the subdivision into innate and
adaptive immunity. Innate immunity represents the first line of
defense against pathogens, responsible for maintaining tissue
homeostasis and preventing microbe invasion [5]. In this re-
view, we attempt to focus on the role of innate immunity in the
mechanisms of essential hypertension discussing briefly the
cellular components of innate immunity but also go beyond
immune cells, looking at tissue homeostasis, inflammatory
microenvironment, and anatomical barriers such as skin and
gut. We therefore want to provide space for novel, emerging
ideas and unexpected concepts that seem to be promising for
further advances in hypertension research.

Murine models of arterial hypertension

As the pathogenesis of essential hypertension remains poorly
understood, all of the animal models, which are commonly
used in hypertension research, are limited in their translational
value for the human disorder. Whereas there are several ex-
cellent animal models for primary hypertension, the lack of
understanding of the exact pathogenesis of essential
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hypertension inevitably only allows attempts to mimic aspects
of the human disease as good as possible. We want to intro-
duce briefly the two most common inducible models as they
form the basis for the largest part of the studies, which are
cited in this review. Detailed overviews over all the existing
genetic and inducible animal models including their advan-
tages, disadvantages, and translation to human hypertension
can be found elsewhere [6-8].

Studies using an infusion of the blood pressure hormone
angiotensin II (Angll) represent by far the largest share of all
murine models. Nearly half of all National Institute of Health—
sponsored research projects in the field of arterial hyperten-
sion use this model [9]. Patients with essential hypertension
show lower blood pressure and improved outcomes when
treated with RAAS blockers or inhibitors. However, this clin-
ical observation does not prove the causation that RAAS ac-
tivation is the most important underlying cause of primary
hypertension. Nevertheless, blood pressure elevations seen
in animals treated with a continuous infusion of Angll can
resemble blood pressure values seen in uncontrolled human
hypertension and even induce hypertension-related organ
damage [10, 11]. Since it is inducible, the model offers the
advantage that different species and genotypes can be used
easily for studies and the dose as well as duration of the
Angll treatment can be adjusted dependent of the experimen-
tal question. As human essential hypertension is clearly not
solely depending on Angll, the massive pharmacological
challenge of this model only mimics blood pressure effects
of a dysregulated RAAS and therefore is not suitable to ex-
plain the complete, highly complex pathogenesis of essential
hypertension.

In the DOCA-salt model, the combination of mineralocor-
ticoid treatment with deoxycorticosterone (DOCA) and intake
of high-salt (e.g., sodium chloride), sometimes extended by
uni-nephrectomy, provokes hypertension resembling some
features of human low-renin hypertension. Although elevated
levels of DOCA can contribute to some rare human forms of
hypertension, the most common human form of
mineralocorticoid-dependent hypertension involves
hyperaldosteronism, which is then one of the subsets of pri-
mary and not essential hypertension. The model was often
used to mimic salt-dependent hypertension which was ex-
plained by salt-driven fluid retention [12]. This concept is
more and more questioned [13, 14]; however, despite all le-
gitimate criticism, the model still is valuable, especially for
studies with a focus on mineralocorticoid receptor blockage
and hyperaldosteronism.

The development and choice of reproducible and transla-
tional animal models is still one of the biggest challenges in
biomedical research in general and in hypertension research in
particular. So far, there is no individual model that can exactly
recapitulate all key features of human essential hypertension
and reproduce the pathogenesis of this complex disorder. For
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the interpretation of experiments and publications aiming to
contribute to the understanding of essential hypertension, the
limits of the studied animal model has always to be taken into
consideration to estimate the translational value.

Cell-mediated innate immunity

Since the 1960s, most immune cells in innate and adaptive
immunity were described to have contributing roles in essen-
tial hypertension [15, 16]. Therefore, a detailed description of
the published evidence for every single innate immune cell
type would exceed the scope of this review. Nevertheless,
we try to provide an overview of the most important recent
findings and focus on key pathways of innate immune cells in
essential hypertension.

In 2005, de Ciuceis et al. published about the link between
innate immune cells and arterial hypertension in mice: They
infused osteopetrotic mice (Op/Op)—a mouse strain deficient
in macrophage colony-stimulating factor (m-CSF)—with
Angll and found reduced systolic blood pressure values as
well as a protection from vascular dysfunction in the absence
of m-CSF [17]. Their findings indicated that m-CSF-
depending cells play a substantial role in Angll-induced hy-
pertension and vascular dysfunction. As m-CSF induces
monocyte and macrophage colony formation from bone mar-
row precursors, these subsets were suspected to participate in
the pathogenesis of Angll-induced murine hypertension.
Later, we have shown that selective ablation of lysozyme
M-positive myeloid cells attenuated Angll-induced endothe-
lial dysfunction, vascular inflammation, and blood pressure
increase. This phenotype could be restored by adoptive trans-
fer of monocytes, but not of neutrophils or of monocytes de-
ficient in the Angll receptor type 1 (AT1R) or gp91phox [18].

As tissue-resident macrophages are present in most (if not
all) organ systems in the human body [19, 20], they have been
under special investigation [21], and the M1-M2 concept of
macrophage polarization [22] has been considered to play a
role in arterial hypertension. Angll as one of the most prom-
inent hormones in arterial hypertension has been shown to be
a potent driver of the M1/M2 ratio towards the pro-
inflammatory M1 phenotype [23, 24], In a small cohort of
45 hypertensive and 15 normotensive patients, Ji et al. de-
scribed more Thl and Th17 cells in hypertensive patients,
which was accompanied by higher IFN-gamma and IL-17
levels [25]. As M1 macrophages are described to promote
the induction of Th1 and Th17 cells, macrophage polarization
could be a factor in the development of arterial hypertension.
This tempting, “good cop/bad cop” concept for M1 and M2
macrophages in hypertension was challenged by Moore et al.
when they described the accumulation of M2 macrophages in
the aortic wall of Angll-infused mice [26] after 14 days of
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treatment with strong evidence for a shift of the phenotype
during the treatment.

Besides monocytes/macrophages, neutrophils and dendrit-
ic cells (DCs) are main cellular parts of the innate immune
system. Neutrophil counts are elevated in hypertensive pa-
tients [27, 28] and in murine models of arterial hypertension
[29, 30], but it is not clear yet, if they really drive hypertension
themselves or if they are driven by the sterile, low-grade in-
flammation smoldering in hypertensive individuals. In any
case, unequivocal evidence of a decisive role of neutrophils
in initiating or promoting hypertension is lacking. Dendritic
cells (DCs) exert divergent and important roles, which are
required for the orchestrated immune response. They are the
most potent of all antigen-presenting cells (APCs), presenting
phagocytosed antigens to cells of the adaptive immune sys-
tem. Antigen presentation and secretion of co-stimulatory cy-
tokines by DCs are crucial for the exact guidance of T cell
activation, polarization, and recruitment. This bridging posi-
tion between innate and adaptive immune system makes DCs
an interesting hub in the immunology of hypertension [31].

Kirabo et al. published that proteins modified by oxidation
by highly reactive y-ketoaldehydes (isoketals) found in differ-
ent murine models of hypertension accumulate in DCs. In
their study, this accumulation drives the DC-mediated produc-
tion of pro-inflammatory cytokines and T cell proliferation
resulting in arterial hypertension [32]. DCs also seem to be
crucial for the development of a hypertensive response in
Angll-infused mice. Lu et al. investigated FLT3L™" mice
lacking classical DCs. After application of Angll, the mice
showed reduced blood pressure elevation and lower amounts
of inflammatory cells in the kidneys [33].

Taken together, there are several sophisticated studies
which focused on monocytes, macrophages, and dendritic
cells in experimental hypertension, and many of them could
show blood-lowering effects of interfering with one of these
leucocyte subsets. Unfortunately, the translational value of
these studies for human essential hypertension could neither
be proven nor drive a novel therapeutic approach.

Toll-like receptors

As the orchestrated immune response is crucial for host de-
fense, but also for wound healing and maintenance of tissue
homeostasis, the simple depletion of myeloid cells is not fea-
sible for humans. Therefore, investigating (dys-)regulations in
more specific inter- or intracellular pathways of innate immu-
nity has been the topic of further studies. Fast recognition of
invading microorganisms is of utmost priority for the organ-
ism. Widely shared molecular structures of pathogens, so-
called pathogen-associated molecular patterns (PAMPs), and
their direct activation of pattern-recognition receptors (PRRs)
of innate immune cells are key components of the early innate

immune response [34]. In contrast to the highly rearranged
receptors of adaptive immunity, PRRs are limited in their
number, germline-encoded, and evolutionary conserved [35].

The mammalian homolog of Drosophila Toll, TLR 4, was
described as the first PRR in mice [36] responding to lipo-
polysaccharide (LPS) [37] as one of the major components of
gram-negative bacteria. Until today, 10 different TLRs have
been described in humans and 12 in mouse, detecting distinct
PAMPs from bacteria, mycobacteria, viruses, fungi, and par-
asites, whereas one intact pathogen usually contains different
PAMPs activating different PRRs [38]. Downstream signal-
ing of TLRs initiates two major signaling pathways: except for
TLR 3, which is TRIF-dependent (TIR domain—containing
adaptor-inducing interferon-3—dependent), all TLRs recruit
myeloid differentiation protein 88 (MyD88)—dependent
signaling.

TLR4 exerts different effects in different murine
models of arterial hypertension

Enforced TLR-signaling (especially TLR4- and MyD8§8-
dependend pathways) has been described in murine hyperten-
sion with a high variability in the effects depending on the
investigated model. An overview regarding all different
TLRs and their impact on arterial hypertension has been de-
scribed in detail before [39, 40], so we focus on TLR4 and the
partially contradictory findings for its role in murine models of
arterial hypertension and discuss the sparse human data.

In genetic models of hypertension, spontaneously hyper-
tensive rats showed higher cardiac TLR4 expression [41]
whereas anti-TLR4 antibody treatment decreased blood pres-
sure [42]. These studies provide evidence that enhanced TLR4
expression and TLR4 signaling might be linked to the devel-
opment and maintenance of hypertension. Same trends could
be seen in DOCA-salt and aldosterone-salt hypertensive rats
[43]. In mice with NG-nitro-l-arginine methyl ester (I-
NAME)-induced hypertension, blood pressure was blunted
in TLR4 knockout mice compared with wild-type mice [44],
supporting the role of TLR4—at least—in this experimental
model of arterial hypertension.

For Angll-infused mice, findings are complex and highly
dependent of the studied tissue. Dange et al. published evi-
dence that the blockade of brain TLR4 attenuates blood pres-
sure in the Angll model [45]. In contrast to these findings,
Singh et al. found that Angll-induced hypertension was not
affected in MyD88 ™~ but in TRIF™" mice [46] and that a full
knockout of TLR4 kept a preserved or even enhanced hyper-
tensive response after the infusion of Angll [47]. This in line
with findings of Matsuda et al. who could reproduce the re-
sults in TL4-deficient mice [48].

In TLR3-deficient mice, Angll-induced hypertension was
abrogated [47] suggesting the TLR3-TRIF pathway as crucial
for a blood pressure increase in the Angll model (Fig. 1a). The
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divergent findings between a full knockout and a brain-
specific blockade might indicate either that the investigated
tissue is of importance or that the models are so variable and
unstable regarding the phenotype that a comparison is not
possible. In cardiomyocytes, a different mechanism with a
possible interaction between TLR and Angll signaling was
published by Han et al. who supposed a MD2-mediated direct
activation of TLR-signaling by Angll via TLR4 [49], whereas
other experiments with the AT1R-antagonist Valsartan sug-
gest a crosstalk between AT1R- and TLR4-dependent signal-
ing [50] (Fig. 1b). Regarding the human population,
Schneider et al. demonstrated that in a cohort of patients with
myocardial infarction, older carriers of a TLR4 single-
nucleotide polymorphism have a lower systolic blood pres-
sure and pulse pressure indicating that TLR4 signaling influ-
ences age-dependent blood pressure increases [51].

Taken together, there is on the one hand promising murine
data regarding TLR4-signaling as a potential pharmaceutical
target in essential hypertension. On the other hand, the results
are strongly depending on the used murine model and could
not have been solidly reproduced in humans yet.

NLRP3-inflammasome

Another downstream target of the TLR-4 signaling cascade,
the cytosolic NOD-, LRR-, and pyrin domain—containing 3-
receptor (NLRP3), has attracted attention within the past
years, offering a novel possible pharmacological target for
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Fig. 1 Possible crosstalk between angiotensin II (Angll) and Toll-like
receptor 4 (TLR 4) in arterial hypertension. a A model proposed by
Singh et al. [46, 47] with different effects of TLR 2 and 4 in Angll-
induced murine hypertension. The studies propose intrinsic differences
between TLR4-TRIF and TLR3-TRIF interactions, where TLR3 directly
interacts with TRIF and is required for Angll hypertension, whereas
TLR4 activates MyD88, which lowers blood pressure in their studies
using Angll-infused mice. b Angll acting through ATI1 receptors
upregulates TLR4. MyD88-dependent intercellular signaling results in
MAP-kinase and NFkB activation with consequent increased production
of pro-inflammatory mediators, which in turn contributes to hypertension.
Additionally, TLR4 can induce NLRP3 inflammasome by activation of a
receptor-interacting protein 1 (RIP1)-FAS-associated death domain

@ Springer

different inflammatory diseases [52]. NLRP3 drives the as-
sembly of the inflammasome, leading to caspase 1-
dependent activation of interleukin-13 (IL-1 (3) cytokines.
Crowley et al. demonstrated that renal IL-x and IL-3 levels
correlate with systolic blood pressure levels [53] and that IL-
IR1 deficiency and blockage lowers blood pressure by reduc-
ing sodium re-uptake in the kidneys of Angll-infused animals
[54].

Besides potassium-dependent pathways of NLRP3 acti-
vation, TLR4 can induce NLRP3-inflammasome by activa-
tion of a receptor-interacting protein 1 (RIP1)-FAS-associ-
ated death domain protein (FADD)—caspase 8 pathway
[55]. Krishnan et al. demonstrated that inflammasome ac-
tivity is crucial in one-side nephrectomized mice treated
with DOCA-high-salt diet [56] and interfering with the
NLRP3 inflammasome provided antihypertensive effects
[57]. The authors conclude that the observed renal inflam-
mation driven by DOCA/high-salt diet is responsible for
arterial hypertension in their model and can be prevented
by a pharmacological inhibition of the NLRP3
inflammasome as a novel antihypertensive strategy. These
publications are in line with other papers, which link high
salt intake with macrophage activation and polarization in
other tissues [58, 59]. In the bigger picture of risk factors
driving vascular dysfunction and atherosclerosis, targeting
NLRP3 might offer a second benefit as well. Christ et al.
published strong evidence that western diet triggers
NLRP3-dependent innate immune reprogramming [60]
and therefore exacerbates pro-inflammatory conditions.
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protein (FADD)—caspase 8. Furthermore, Angll drives the generation of
reactive oxygen species through NADPH oxidase. Downstream of all
pathways, TLR4 exerts pro-inflammatory effects which can contribute
to arterial hypertension. TLR 4, Toll-like receptor 4; AT1r, Angiotensin
I receptor type I, NAPDH, nicotinamide adenine dinucleotide phosphate
oxidase; MyD88, Myeloid differentiation primary response 88; ROS,
reactive oxygen species; MAPK, mitogen-activated protein kinase;
FADD, FAS-associated death domain protein; NFxB, nuclear factor
“kappa-light-chain-enhancer” of activated B cells; NLRP3, nucleotide-
binding oligomerization domain and leucine-rich repeat-containing re-
ceptor 3; ASC, apoptosis-associated Speck-like protein containing a
caspase-recruitment domain
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Humoral innate immunity
Antimicrobial peptides and the complement system

Already beyond the anatomical borders, components of the
innate immunity defend the integrity of the body against path-
ogens. Mucus and plasma are enriched with different classes
of secreted antimicrobial peptides. Epithelial and circulating
cells release defensins, cationic polypeptides with direct and
indirect antimicrobial functions. There are still different hy-
potheses about the exact mechanisms of their microbe-killing
capacities, but all focus on interactions between their molec-
ular structure and the membrane of the microbes [61]. Nassar
et al. could describe the presence of x-defensin in human
coronary arteries and decrease the contraction of smooth mus-
cle cells in response to the vasoconstrictor phenylephrine via
the low-density lipoprotein receptor-related protein/x2-
macroglobulin receptor, indicating a direct effect of these pep-
tides on vascular tone and a possible role in hypertension as
well [62].

Lysozyme, a glycoside hydrolase catalyzing the hydrolysis
of 1,4-beta-linkages between N-acetylmuramic acid and N-
acetyl-D-glucosamine, is the most active component of all
antimicrobial peptides. Several studies have already investi-
gated a possible interplay between lysozyme and hyperten-
sion. With the intention to find a way to measure markers
for subclinical atherosclerosis in an easy approachable and
non-invasive way, especially salivary levels of lysozyme and
other inflammatory molecules have been investigated within
the past years. In two different studies, lysozyme in saliva was
associated with hypertension. Qvarnstrom et al. suggested in a
study with 500 participants that the top quartile of salivary
lysozyme levels is significantly associated with prevalent hy-
pertension [63]; similar findings were described in 259
humans by Labat et al. [64] A complementary trend has al-
ready been described for salivary lysozyme and coronary heart
disease. The authors of the study interpreted these findings in
line with the general paradigm that inflammation is an impor-
tant part of pathogenesis of hypertension and atherosclerosis
without defining the relationship as causal.

The complement system is component of the innate im-
mune system. It is a complex humoral cascade consisting of
over 30 soluble and membrane-bound molecules which di-
rectly sense and destroy microbial invaders [65] via
opsonization and phagocytosis or enhance the cellular im-
mune response via induction of chemokine or cytokine pro-
duction. The complement cascade is mainly found not only in
the circulation but also in tissues [66]. Increased plasma levels
of different complement proteins in human patients with hy-
pertension have been described. For instance, Eggstrom et al.
and Bao et al. could find a positive association of elevated
blood pressure and prehypertension with blood levels of the
complement protein C3 [67, 68]. The same trend has also been

seen for C3a [69], C4 [68], and C5a [70] indicating that hy-
pertension induces the activation of complement system and
production of complement factors.

In murine models, interfering with the complement system
has been shown to provide protective mechanisms especially
against hypertensive end-organ damage. Pharmacological in-
hibition of C5a production significantly reduced cardiac in-
flammation and remodeling in Angll-induced hypertension
[70, 71]. Not only for cardiac end-organ damage but also for
hypertension-driven pathologic changes in the kidney, differ-
ent components of the complement system seem to be crucial-
ly involved. Chen et al. published that Angll-infused mice
deficient for C5a and C3a receptors did not develop arterial
hypertension by a decreased renal macrophage and T cell
infiltration [72]; moreover, Zhou et al. showed that C3a acti-
vates the RAAS system by induction of epithelial-to-
mesenchymal transition in renal epithelial cells [73].

Given the promising evidence of the conducted murine
studies, the complement system is a likely target in further
advances of hypertension research. Promising data regarding
the prevention of hypertensive end-organ damage more than
possible blood pressure—lowering effects may be at the center
of attention in this field.

Anatomical barriers

Visible but often overlooked—the physical barriers
gut and skin as the first line of defense in innate
immunity

Even though it is the only part of the innate immune system,
which is immediately visible for the human eye, skin and
mucosal barriers tend to be ignored as innate immune organs.
Besides the physical barrier function, the skin and the gut
represent the outer interface with the external environment,
and are therefore essential organs for the maintenance of phys-
iologic homeostasis and closely related in purpose and func-
tion [74]. Within recent years, the skin and the gut have
reached growing interest regarding their role in arterial hyper-
tension. More particularly, these additional approaches pro-
vide a more physiology-oriented than a molecular biology-
oriented approach, which might help to find new treatment
strategies for essential hypertension.

The gastrointestinal barrier—human organ or micro-
biota zoo?

Under healthy conditions, the gastrointestinal barrier exerts an
important role in nourishing the organism by digestion of
food, influences the development and function of the mucosal
immune system, and is an active endocrine organ. The contri-
bution of the gastrointestinal barrier in arterial hypertension
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has been linked to the effects of gastrointestinal hormones,
which were shown to influence systemic blood pressure levels
in different murine models. Especially administration of the
incretin hormone glucagon-like peptide-1 significantly atten-
uated the development of hypertension in Dahl salt-sensitive
[75] and spontaneously hypertensive rats [76] and antihyper-
tensive capacities of GLP-1 receptor agonists even could pro-
vide promising results in human hypertensive diabetics [77].

Within the last years, the gastrointestinal barrier unexpect-
edly advanced into the closer focus of attention in arterial
hypertension—not by the organ function itself but by the fas-
cinating inhabitants it accommodates. In the introduction of
their work about the “Human microbiome project,”
Turnbaugh et al. described humans as “supraorganisms com-
posed of human and microbial components,” [78] underlining
the undeniable close connection between the human organism
in health as well as in disease and the microbes that live inside
and on us. As the intestine is the organ of the body which is
most densely populated with microorganisms, the major part
of this emerging research field is dealing with this site, where
the microbiome has a deep impact on human body develop-
ment and contributes to normal physiology and disease
developement [79].

Human microbial colonies in the gastro-intestine are de-
scribed to be generally stable [80], but can be immediately
changed and shaped by a large scale of influences. Not sur-
prisingly, the consumed diet is a major factor for the compo-
sition and function of gut microbiota [81, 82]. Recent evi-
dence revealed that certain diseases can be transferred via
the microbiome: transferring microbiota from genetically
obese mice induced higher amounts of body fat in germ-free
mice [83]. These findings indicate that not only the diet has an
effect on the microbiome but also the microbiome itself can
influence host metabolism, which has been proven in further
publications [84].

Several studies have linked gut microbiota and dysbiosis of
microbiota with arterial hypertension in mice and men [85,
86]. Karbach et al. showed that germ-free-raised mice without
a colonializing microbiome do not develop arterial hyperten-
sion and vascular dysfunction in response to Angll [87]. The
lifelong absence of gut microbiota protected them from AnglI-
induced arterial hypertension and vascular dysfunction by re-
duced vascular inflammation and diminished production of
reactive oxygen species.

Studies in different murine models of arterial hypertension
could show that hypertensive animals have alterations in their
microbiome and that it is possible to transfer hypertension by
transferring microbiota from hypertensive to formerly normo-
tensive animals [85, 88]. Even more interesting, dietary inter-
ventions, which affected the microbial colonization of the gut,
modified blood pressure, and protected the animals from
hypertension-related end-organ damage in murine models of
arterial hypertension [89, 90]. Vice-versa, high-salt diet—
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driven changes of the gut microbiome induced Th17 cells
and caused hypertension in mice, which could successfully
be restored by probiotic treatment [91].

Taken together, the studies indicate that the gut
microbiome is a fascinating field of research not only to de-
velop a deeper understanding in microbiota host or interac-
tions but also regarding a novel and profitable drug target in
arterial hypertension.

Skin, sodium, and sodium-dependent hypertension

Besides its role as an outer barrier, the skin, especially skin
glycose-aminoglycans, was detected as large compartment for
water-free sodium storage regulating body sodium balance
independently of renal function [92, 93]. These findings
started to challenge the concept of pressure-natriuresis, an
almost 50-year-old theory explaining the causal connection
between high-salt intake and high blood pressure.

The pressure-natriuresis approach by Guyton et al. [94]
described a first concept of how salt intake regulates blood
pressure which led the field for more than half a century. It
supposes that direct changes in salt and water intake and the
following excretion drive the direction and change in arterial
pressure to maintain body salt-water balance. By introducing
the skin as the crucial compartment for long-term sodium
storage and skin tissue sodium content as a detectable signa-
ture which is also non-invasively detectable in human hyper-
tensive patients [95-97], Titze et al. indicated that the single-
compartment concept of pressure-natriuresis for sodium ex-
cretion and blood pressure control might fall short. In a human
long-term balance study, they could prove more evidence by
detecting continuous fluctuations in sodium excretion, inde-
pendent of sodium intake, indicating that sodium is stored and
released in the skin without a direct impact on parallel water
storage or blood pressure increase [98]. Helle et al. contributed
further functional aspects of skin sodium storage for the gen-
esis of arterial hypertension by showing that skin arterioles
from rats fed a high-salt diet had increased contractility in
response to Angll [99].

The detected storage of sodium in the skin thereby does not
represent a random or incidental process at all. Beyond
keratinocytes and extracellular matrix components, the skin
barrier accommodates a variety of innate immune cells
exerting phagocytic as well as regulatory functions: dendritic
cells (DCs), natural killer (NK) cells, innate lymphoid cells
(ILCs), mast cells, yo-T cells, and myelomonocytic cells.
These cellular representatives of the innate immune system,
in particular tissue-resident macrophages, play a key role in
sensing the interstitial, extracellular electrolyte levels in the
skin (Fig. 2). Via the expression of tonicity-responsive en-
hancer binding protein (TONEBP), skin macrophages may
modify electrolyte clearance through an extension of the skin
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Fig. 2 Osmotically inactive Na

storage in the skin contributes to
body sodium and blood pressure
regulation. Interstitial electrolyte
balance relies on extrarenal
regulatory mechanisms within the
skin interstitium. Macrophages
act as interstitial osmosensors that
regulate local electrolyte
composition via a tonicity
enhancer binding protein/vascular
endothelial growth factor-C
(TonEBP/VEGF-C)—dependent
mechanism [100]. The subse-
quent modulation of the lymph
capillary network in the skin
drives clearance of interstitial
electrolytes from the interstitium
into the bloodstream for renal
clearance. Failure of this physio-
logical extrarenal regulatory
mechanism leads to a salt-
sensitive blood pressure response.
eNOS, endothelial nitric oxide

Lymph vessel

Skin interstitium

synthase; VEGFR, vascular en-

dothelial growth factor receptor;
TonEBP, tonicity enhancer bind-
ing protein

Urine

lymphatic capillaries, which is part of the body blood pressure
regulation [100].

Taken together, the skin is a key component regarding the
innate immune system and mechanisms of hypertension. At
cutaneous tissue level, macrophages modulate the interstitial
salt storage and release by changing the lymph capillary net-
work in the skin, which results in a kidney-like lymphatic
counter-current system. As the body’s largest reservoir for
sodium storage, it is—next to the kidney—a crucial organ
for regulating the body salt-water balance and arterial blood
pressure.

Conclusion

Innate immune cells are important drivers and modulators in
the pathophysiology of hypertension on many levels. It has
never been tested specifically, whether a pharmacologic inter-
vention that would impact on anatomical barriers or other
components’ innate immune system is effective to treat human

arterial hypertension or prevent emergence or exacerbation of
high blood pressure. An exception is concomitant autoim-
mune disease such as psoriasis or rheumatoid arthritis; pa-
tients afflicted by these diseases who were treated with myco-
phenolate mofetil, an inhibitor of inosine monophosphate de-
hydrogenase and suppressant of T and B cell proliferation
[101], or the monoclonal TNF-o-antibody, infliximab [102],
had reductions in blood pressure. There seems to be a strong
link between genes favoring an enhanced status of
inflammasome activation, IL-1{3 levels, arterial hypertension,
and reduced longevity [103]. Whether anti-IL-1{3 helps to
reduce increased blood pressure, however, is unclear.
Secondary analyses from the CANTOS trial [104, 105] at least
suggest that the IL-13 antibody canakinumab, which was ef-
fective to prevent cardiovascular events in patients with
established coronary artery disease, was neutral with regard
to arterial hypertension [106], although this trial also revealed
that hsCRP level increases with increasing tertiles of blood
pressure values at baseline. Whether arterial hypertension
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can specifically be treated by an anti-inflammatory therapy
[107] remains to be tested in randomized controlled trials.
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