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A B S T R A C T

In the last three decades, an integrated approach to optimize logistics system is considered as one of the most
important aspects of optimizing supply chain management. This approach involves the ties between locations of
facility, allocation of suppliers/customers, structure of transportation routes and inventory control. The aim of
this paper is to investigate the ordering planning of a supply chain with multi supplier, multi distribution center,
multi customer and one perishable raw material. This paper provides a mathematical model taking in consid-
eration the limitation of raw material corruptibility (perishable material) which belongs to the category of NP-
hard problems. To solve the proposed model, the Ant Colony Optimization algorithm (ACO) and Particle
Swarm Optimization algorithm (PSO) are employed. In order to improve performances of ACO and PSO pa-
rameters, a Taguchi experimental design method was applied to set their proper values. Besides, to evaluate the
performance of the proposed model, an example of the dairy industry is analyzed by using MATLAB R 2015a. To
validate the proposed meta-heuristic algorithms, the results of them were compared with together. The results of
the comparison show that ACO is greater than PSO in speed convergence rate and the number of solutions
iterations.
1. Introduction

In many logistics environments, decisions should be taken by man-
agers such as locating of distribution centers, allocation of customers to
the transportation centers and programing for transportation to provide
services for customers. These decisions affect the level of service pro-
vided to the customers. The cost of routing and locating affects the entire
logistics system. Defining the optimal number and location of distribu-
tion centers (warehouses) as well as the schedule of vehicles and distri-
bution routes affect to minimize the total cost of the system. As a result,
the mathematical models had been used to determine the location of
warehouses and solving these problems. Since many customers can use
the same route, it increases the likelihood that its demand will exceed the
capacity of the network. This necessity expresses the integration of
location and routing problems, but this integration was not recognized
until the year 1970.

The location-routing problem can be defined as a routing problem
in which determine the locations and the optimum number of ware-
houses at the same time with vehicles schedules and distribution routes
in order to minimize system cost. But most past research in this area
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has examined the development of location and routing problems
separately.

The process of solving the location-routing problem (LRP) consists of
three phases: 1. Demand allocation, 2. Facility location and 3. Optimizing
vehicle routes of sub-problems can result in an optimized decision. But
it's impossible to integrate these problems mathematically. Based on the
description provided above, this study presents a new mathematical
model taking in consideration the limitation of raw material corrupt-
ibility (perishable material) which belongs to the category of NP-hard
combinatorial optimization problems. The aim of this paper is to inves-
tigate the ordering planning of a supply chain with multi supplier, multi
distribution center, multi customer and one perishable raw material. The
rest structure of this paper is as follows. Section 2 provides a systematic
literature review of the location-routing problem. In Section 3, we pre-
sent a new multi-objective model for a location-routing problem with
considering the limitation of raw material (perishable material)
including four objective functions. In section 4, the applications of ACO
and PSO algorithms are described to solve the proposed model. The
computational analysis is proposed in Section 5. Finally, the conclusions
and suggestions are provided in Section 6.
mber 2019
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2. Literature review

The integration of routing and location problems had not been
considered till 1970 and entering the routing problem into the location
problem seemed impractical. Baumol and Vinod (1970) attempted to
determine the carriers in the unique product market that can decrease the
system costs. Constable and Whybark (1978), developed an inventory
model with integration of communication costs and demand return rate.
This model can minimize communication and inventory costs through
determining the inventory re-demand point.

Langley (1979), mixed the communication decisions with inventory
location. In this research the schematic plan of facility location decisions,
communication and inventory was presented. Van Beek (1981), inves-
tigated various strategies for determining the location in a two level
distribution system in the production center of a company and consid-
ered four local distribution centers. Tuzun and Burke (1999), studied the
location–routing modeling with limited capacity of the fleet and pre-
sented a super-innovative algorithm base on banned search algorithm
that is two-stepped. Ghiani and Improta (2000), presented a new math-
ematical model based on capable direction location.

Albareda-Sambola et al. (2005), used the web theory for modeling the
location – routing problem. Albareda-Sambola et al. (2007), used a new
model in order to find a suitable solution to management of dangerous
rubbishes. The aim of this research was minimized the system cost and
communication risk of treatment and disposal facilities and finding a
suitable route to convey dangerous disposals. In order to minimize
transportation risks, Alumur and Kara (2007) presented a new model to
determine the disposal centers, location of treatment and best routing
schedule for various types of hazardous waste.

Vincent et al. (2010), presented Gradual freezing algorithm. To test
and validate the proposed algorithm, the classical examples in the liter-
ature of the location - routing was used. The results proposed the gradual
freezing are superior to other algorithms presented in the literature. In
addition to providing new solutions, new hypotheses taken from real life
are considered for the location–routing problem. Ngueveu et al. (2010),
introduced a model of the router forwarding stacking capacity to mini-
mize the total moving vehicles time. Carter and Ferrin (2011), used a
mixture of gradual freezing and branch and bound algorithms in order to
solve the problem of location – routing problem considering the hy-
pothesis of delivery of product. Ke and Feng (2013), presented an inno-
vative two-stage method in order to solve the problem of stacked capable
communication. Rath and Gutjahr (2014), presented a new optimization
model with three-objective functions including: short-term economic,
medium-term economic and a disasters objective function. Also, a new
meta-heuristic algorithm was designed to solve the proposed model
based on genetic algorithm.

Barzinpour and Esmaeili (2014), presented a multi-objective plan-
ning model in three levels and in phasic state and used a suitable genetic
algorithm to solve it. Agrawal (2014), explored how factories can
manage their material sourcing better by expanding suitable raw mate-
rial sourcing relationships with their suppliers. The results showed that
active management of raw material sourcing can add value to supply
chains. Marinakis (2015), solved the location–routing problem by using a
stacked particles algorithm and a comparison with other algorithms. The
results showed that the stacked particles algorithm is a suitable algorithm
in location-routing problems. Sattrawut (2015) attempted to reduce the
problem solving time through turning the two level necessary materials
supply to one level problem. Moreover, they presented a problem with
different time horizons and solved it through an accurate algorithm
called the branch and price algorithm. Vidovi�c et al. (2016), designed a
problem with mixed variables for reuse logistic webs that had two phases
and achieved an acceptable result through the innovative algorithm.
Azadeh et al. (2017) analyzed inventory decisions and vehicle routing
simultaneously. Wu et al. (2017) designed a three location-routing
models. They also considered time deadlines and tight time windows
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to establish services for trains. Hiassat et al. (2017) surveyed
location-routing-inventory problem for perishable products distribution.
Najjartabar-Bisheh et al. (2018) analyzed the pattern of third-party firms
in a tolerable supply chain management. Wang et al. (2018) designed a
new LRP model with the minimum total costs as the objective functions,
which includes carbon emission costs in cold chain logistics. A new
hybrid GA was designed to solve the proposed model.

3. Problem description

Methods and techniques of the supply chain are important issues in an
organization's supply chain management. The problem was about how to
achieve the best and most appropriate method according to the nature of
the organization in order to reach the most effective supply chain, always
had been one of the biggest challenges in supply discussions. How to
provide needed items for an organization is an important issue that will
be considered in supply chain management and purchasing. Attention to
this fact that which items should be made within the organization and
which items should be provided from outside of it, is one of the main
issues that had been raised in supply chain management. After deter-
mining the most necessary items, the next stage is identifying, choosing
and attracting the suitable suppliers in order to provide the needs of the
organization. Most of suppliers faced the organizations with different
issues about their integration, the manner of communication and specify
the other related matters. The chain which has perishable raw materials
is more sensitive because of the higher maintenance costs.

On the other hand, the essential parts of the supply chain are routing
and transportation process. These processes established material flow
between suppliers and customers in an organization. An appropriate
distribution system, basically depends on the following parameters:
product type, amount of product, size of transportation vehicle and the
distance between suppliers to customers.

Based on the description given above, this study proposes a new
mathematical model taking in consideration the limitation of raw ma-
terial corruptibility (perishable material). The aim of this paper is to
investigate the ordering planning of a supply chain with multi supplier,
multi distribution center, multi customer and one perishable raw mate-
rial. The most important goals of the proposed model are to minimize
transportation costs and transport time of perishable raw materials be-
tween suppliers, distribution centers and factory with considering the
capacity of them.

In general, the exact algorithms and the meta-heuristic algorithms
have been used to solve location-routing problems. The exact algorithms
are used for problems with small dimensions and meta-heuristic algo-
rithms for problems with large dimensions. Planning a suitable algo-
rithm, the optimum results can be achieved. Considering the proposed
model belongs to the category of NP-hard optimization problems, the
ACO algorithm and PSO algorithm are employed to solve it. Also, for
improving performances of ACO and PSO parameters, a Taguchi exper-
imental design method is applied to set their proper values.

3.1. Model assumption

✓ Each demand center (suppliers and factories) can be assigned to more
than one route.

✓ The number of distribution centers and their capacity are limited.
✓ All transportation vehicles are the same in terms of transport capacity

and transport speed.
✓ Any transportation vehicles start from a distribution center, and after

providing the rawmaterials of its customers, it will return to the same
distribution center.

✓ Multiple uses of vehicles within the routes of the vehicle (time limi-
tation) are possible.

✓ Each of the factories is served only by one vehicle and the vehicle will
be back to the start point.
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3.2. Model formulation

In the following section, the notation, parameters, sets, decision
variables of the model and the proposed mathematical model are
presented.

3.2.1. Problem parameters

l Index of the factories (l ¼ 1,…, L)
i
 Index of the distribution center (i ¼ 1,…, I)
j
 Index of the supplier centers (j ¼ 1,…, J)
Xijmax
 Maximum amount of raw material transported from supplier center j to
distribution center i
Xli
max
 Maximum amount of raw material transported from distribution center i to

factory l

Dij
 Distance from supplier j to distribution center i
Dli
 Distance from distribution center i to factory l
Mi
 Total amount of raw material entered to distribution center i from suppliers
Ml
 Total amount of raw material entered to factory l from distribution centers
Ui
 Maximum capacity at distribution center i
Ul
 Maximum capacity at the factory l
Ci
 Total amount of raw material exported from distribution center i
Cj
 Total amount of raw material exported from supplier j
T
max
 Maximum of the storage time of raw material
α
 The rate of transportation cost of raw material per one kilometer
Qi
 The fixed cost of establishing the distribution center i
Ql
 The fixed cost of establishing the factory l
3.2.2. Problem variables

Xij The amount of raw material transported from supplier j to distribution center i
Xli
 The amount of raw material transported from distribution center i to factory l
tij
 The required time for transporting raw material from supplier j to distribution
center i
tli
 The required time for transporting raw material from distribution center i to
factory l
In terms of the above notation, the newmathematical model taking in
consideration the limitation of raw material corruptibility (perishable
material) can be formulated as follows:

Min Z1 ¼
XI

i¼1

�XJ

j¼1

αDijXijþQi

�
þ
XL
l¼1

�XI

i¼1

αDliXliþQl

�
(1)

Min Z2 ¼
XI

i¼1

XJ

j¼1

tijXij þ
XL
l¼1

XI

i¼1

tliXli (2)

Subject to:

Xij � Xmax
ij ði2 I; j2 JÞ (3)

Xli � Xmax
li ði2 I; l2LÞ (4)

Mi ¼
XJ

j¼1

Xij ði2 IÞ (5)

Ml ¼
XI

i¼1

Xli ðl2LÞ (6)

Mi � Ui ði2 IÞ (7)

Ml � Ul ðl2LÞ (8)
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Cj �
XI

Xij ðj2 JÞ (9)

i¼1

Ci �
XL
l¼1

Xli ði2 IÞ (10)

tijXij �Tmax Xij 6¼ 0;8i 2 I;8j 2 J (11)

tliXlj �Tmax Xli 6¼ 0;8i 2 I;8l 2 L (12)

The objective function shown in Eq. (1) expresses to minimize the
total transportation costs of raw materials from suppliers to distribution
centers and from distribution centers to factories, respectively. The
objective function shown in Eq. (2) aims to minimize the total trans-
portation time from supply centers to distribution centers and from dis-
tribution centers to factories, respectively.

Constraints (3) limit the amount of raw material transported from
each supplier to each distribution center. Constraints (4) limit the
amount of rawmaterial transported from each distribution center to each
factory. Constraints (5) illustrate the total amount of raw material
entered to each distribution center from supplier centers. Constraints (6)
indicate the accumulated amount of raw material sent to the factory by
distribution centers. Constraints (7) limit the capacity of raw material
entered to each distribution center from supplier centers. Constraints (8)
limit the capacity of raw material sent to the factory by distribution
centers. Constraints (9) indicate the capacity constraints on each supplier
center. Constraints (10) impose the capacity constraints on each distri-
bution center. Constraints (11) and (12) indicate the restriction related to
transportation time from each supply center to distribution centers and
factories.

4. Solution approach

To solve the proposed model, the objective functions (Zi) must first be
normalized between zero and one to be dimensionless. These objectives
are converted to a single function by using formula (13), where Z10 and
Z20 are the normalized forms of Z1 and Z2 objective functions,
respectively.

Min : Z ¼ θZ
0
1þð1� θÞZ 0

2 (13)

This function should be reduced to minimize deviations from the
ideal. As the Z1 has the same importance with Z2 in the given model, the
value of θ is set to 0.5.
4.1. Ant colony optimization

The use of swarm intelligence is a relatively new approach to solving
problems and inspired from social behavior of insects and other animals.
Particularly, there are several methods had been inspired from ant's
behavior and there are researches in this field. The most successful
method was the versatile optimization method known as ant colony
optimization (ACO). Ant colony optimization had beenmodeled from the
behavior of the ant's verities that seek food. These ants remained pher-
omone and determined the suitable direction for other group members
through these materials. In a test called due bridge test, the ant nest is
connected to a food source by two bridges with the same length. In this
case the ants check around the nest to find the food and finally found a
food source by putting a substance called pheromone. Initially, each ant
selects one of the paths randomly. Inspire of the existence of random
events, the density of pheromone had increased at some points and
attracted more ants and resulted in more choosing of that direction by
ants. Then Goss et al. (1990) changed the conditions of the experiment
and increase the length of one of the bridges and repeated the
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experiment. In this case, the fluctuations in choosing one path had
decreased and the second construction had an important role. Those ants
that randomly choose shorter distance, can reach the food source faster
and randomly. Thus the shorter path can find pheromone more quickly
and this increases the probability of choosing this path by ants. Dorigo
and Blum (2005) provided a discussion of theoretical results on ACO.
They reviewed some convergence results and then discussed some re-
lations between ACO and other heuristic algorithms for optimization.

The pkijof an kth ant transporting from the location i to location j is
denoted as follows:

pkij ¼

8>><
>>:

ταij:η
β
ijP

l2Nk
i

ταil:η
β
il

if j 2 Nk
i

0 otherwise

(14)

where Ni
k expresses the set of locations which kth ant must meet at the

location i. Also, τij and dij are the pheromone concentration and distance
between two location i and location j, where ηij¼1/dij is the heuristic
data. The parameters α and β denote the relative importance of τ and η
Table 1. Parameters and their values for the proposed algorithms.

The ACO parameters

Level Pheromone evaporation rate Population Iteration

1 0.000001 20 50

2 0.000003 30 100

3 0.000006 40 200

The PSO parameters

Level Individual intelligence rate Social intelligence rate Population Iteration

1 3 1 20 50

2 4.5 2 30 100

3 6 3 40 200

Figure 1. Main effects plot f
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respectively. The pheromone upgrade is done after establishing the
routes as follows:

τij ← ð1� ρÞ:τij þ ρτ0 (15)

where ρ is the evaporation rate in (0, 1] that controls the speed of
evaporation and τ0 is the value of initial pheromone. After ant k makes a
tour, the global tour pheromone updating is done as follows:

τij ← ð1� ρÞ:τij þ ςτ0 (16)

where ς is the pheromone decay in (0, 1]. This process is repeated and the
best solution from all of the iterations is selected as an optimal solution.
(Dorigo and Blum, 2005)

4.2. Particle Swarm Optimization

Also in this paper, relevant to our problem, a Particle Swarm Opti-
mization (PSO) was developed to solve proposed model. PSO is inspired
by the social behavior simulation, was originally designed and developed
by Eberhart and Kennedy (1995). It is a population-based swarm intel-
ligence algorithm that was on the basis of the simulation of the social
behavior of social organisms such as bird flocking and fish schooling. In
the PSO algorithm, the optimization is performed by the set of particles
which are communicating with each other. One of the important factors
to design a prosperous PSO is to find an appropriate relation between LRP
solutions and particles in PSO. Each particle is randomly placed in the
d-dimensional space as a candidate solution. Therefore, all particles
move in the d-dimensional space of the problem while retrieving his-
torical information collected during the search process. These particles
tend to move to better search areas during the search process. Each
particle has its location and velocity.

The velocity (vid) and position (xid) updates of the ith particle are
calculated as follows:

vidðtþ 1Þ¼w� vdðtÞ þ c1 � r1 � ðpbidðtÞ� xidðtÞÞ þ c2 � r2

� ðgbidðtÞ� xidðtÞÞ (17)
or the S/N ratio of ACO.



Figure 2. Main effects plot for the S/N ratio of PSO.

Table 2. Parameter set obtained through optimization for ACO & PSO
algorithms.

The ACO parameters

Pheromone evaporation rate Population Iteration

0.000006 20 200

The PSO parameters

Individual intelligence rate Social intelligence rate Population Iteration

6 3 40 50
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xidðtþ 1Þ¼ xidðtÞ þ vidðtÞ (18)
Table 4. Distance between potential locations of distribution centers & factories
in kilometer.

Dli I1 I2 I3 I4

L1 10 10 25 70

L2 70 30 20 10
where r1 and r2 are two uniformly distributed random numbers in [0,1]
and c1 and c2 are the acceleration constants. vi¼(vi1,vi2,...,vid) represents
the velocity of the ith particle, xi¼(xi1,xi2,..., xid) is the position of the ith
particle, gb¼(gb1,gb2,...,gbD) is the best position discovered by the whole
population and pbid¼(pbi1,pbi2,...,pbid) is the best previous position
yielding the best fitness value for the ith particle. In Eq. (18), w is the
inertia weight used to balance between the local and global search
abilities. t is the current iteration times, tmax is the total iteration times,
wmin is the final inertia weight of the velocity and wmax is the initial
inertia weight of the velocity (Eberhart and Kennedy, 1995).

5. Computational results

5.1. Parameters tuning

Since the results of all meta-heuristics techniques are sensitive to their
parameter setting, extensive simulations are needed to find the
Table 3. Distance between potential locations of suppliers & distribution centers in k

Dij J1 J2 J3 J4 J5 J6

I1 2 5 10 25 15 41

I2 40 41 25 15 25 10

I3 32 20 32 30 15 25

I4 100 70 70 80 60 70

5

appropriate values for the different parameters. Thus the process of
inventing a new methodology for solving this problem, allocated by
Taguchi (1995). Taguchi added quality and breadth of knowledge
through his research in the 1950s and 1960s, which specifically raised
the concept of loss cost function. This function integrated scope and di-
versity with measuring the specification limits. In addition, Taguchi has
developed the concept of strength, which means addressing the irregu-
larities in order to ensure the proper functioning of the system (Taguchi,
1995).

In this study, Taguchi method was used in order to determine the
appropriate level of each parameter. Based on the structure of the
Taguchi method, three levels are first proposed for each of the parame-
ters of the ACO and PSO algorithms. The proposed values are presented
in Table 1. Taguchi recommends using the loss function to measure
performance characteristics that deviate from the target value. The value
of this loss function is further transformed into a signal-to-noise (S/N)
ratio. Based on this method, the noise factor descripts the unwanted
factors in the evaluated value and the signal value denotes the real value
that the system provides.

S=N¼ � 10�log
�
1=n

Xn

i¼1

yi2
�

(19)
ilometer.

J7 J8 J9 J10 J11 J12 J13

35 35 40 50 60 70 100

25 10 32 20 35 35 40

2 5 10 15 20 25 25

25 31 20 35 5 10 15



Table 5. The capacity of supplier centers in kilogram.

J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12 J13

Cj 50 100 20 30 80 90 200 50 150 90 200 70 140

Table 6. The capacity of distribution centers in kilogram.

I1 I2 I3 I4

Ci 300 350 500 250

Table 9. The ACO results of volume transferred from distribution centers to
factories in kilogram.

I1 I2 I3 I4

L1 250 310 0 0
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where, n ¼ Sample Size, and y ¼ Surface Roughness in that run.
According to the data in Table 1, the target (location-routing of

perishable material supply) sizes small, medium and large, has been
performed three times. Referring to Taguchi standard table (Taguchi,
1995), for the L9 (32) Taguchi scheme, the ACO and PSO algorithms were
executed for the following scenarios with Minitab (16) software, the S/N
charts are presented as Figures 1 and 2.

According to Eq. (19), the suitable value for each parameter is the
lowest S/N value. Therefore, the parameter set obtained through opti-
mization for ACO & PSO algorithms are presented in Table 2.
L2 0 0 460 250

Table 10. The PSO results of volume transferred from distribution centers to
factories in kilogram.

I1 I2 I3 I4

L1 200 280 0 30

L2 50 30 460 220

Figure 3. The best and average fitness of ACO.
5.2. Numerical calculations

To prove the feasibility of proposed model and validity of the pro-
posed algorithms, a hypothetical example of randomize generated data
about the dairy industry is expressed in this section. Tables 3 and 4 show
the distances between 13 potential locations for suppliers, 4 potential
locations for distribution centers and 2 potential locations for factories.
The distance unit is kilometer and the maximum time for each path is 30
min.

Tables 5 and 6 represent the supply capacity of the perishable raw
material by suppliers and distribution centers, respectively. The capacity
unit is the kilogram to measure quantity of raw material.

We ran all computational experiments on a Linux-based workstation
with a 2.4 GHz processor and 2 GB RAM. A summary of computational
results is reported in the following table. Tables 7 and 8, respectively,
show the results of the ACO and PSO algorithms, that specify which
supplier should be sent perishable raw material to which distribution
center. Also, these tables show the volume of perishable raw materials
sent from suppliers to distribution centers. Tables 9 and 10, respectively,
show the results of the ACO and PSO algorithms that specify which
distribution center should be sent perishable raw material to which
factory. Also, these tables show the volume of perishable raw materials
sent from distribution centers to factories.

Figure 3 and 4 show the average and the best fitness curves for the
ACO and PSO algorithms, respectively. As can be seen from these figures,
Table 7. The ACO results of the volume transferred from suppliers to distribution ce

J1 J2 J3 J4 J5 J6

I1 50 100 20 0 80 0

I2 0 0 0 30 0 90

I3 0 0 0 0 0 0

I4 0 0 0 0 0 0

Table 8. The PSO results of the volume transferred from suppliers to distribution cen

J1 J2 J3 J4 J5 J6

I1 0 80 20 0 60 0

I2 50 0 0 30 0 90

I3 0 20 0 0 0 0

I4 0 0 0 0 20 0

6

it can be said that the ACO is greater than PSO on average and the best
fitness rate in iterations.

Moreover, in order to compare performance of the ACO and PSO al-
gorithms to solve the proposed model and to validate the robustness of
the proposed algorithms, convergence curves of the ACO and PSO is
compared in Figure 5. As is shown in this figure, in convergence metric,
the results of the performance measures show that the ACO has better
convergence compared to the PSO. On the other hand, it can be said that
nters in kilogram.

J7 J8 J9 J10 J11 J12 J13

0 0 0 0 0 0 0

50 50 0 90 0 0 0

150 0 150 0 50 0 110

0 0 0 0 150 70 30

ters in kilogram.

J7 J8 J9 J10 J11 J12 J13

50 0 0 0 0 0 0

0 50 0 75 0 0 0

150 0 85 0 50 0 100

0 0 65 15 150 70 40



Figure 4. The best and average fitness of PSO.

Figure 5. The compare convergence curve between ACO and PSO algorithms.
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that the ACO is greater than PSO in speed convergence rate and the
number of solutions iterations.

6. Conclusions and recommendations

Managers recognize that there is a strong relation between the loca-
tion of facilities, the allocation of suppliers, vehicles and customers to the
facilities and in the design of routes around the facilities. The number and
location of facilities, fleet size and the path structure are determined
regarding locations and characteristics of suppliers and customers. The
aim of this paper was to investigate the ordering planning of a supply
chain with multi supplier, multi distribution center, multi customer and
one perishable raw material. This paper provided a mathematical model
taking in consideration the limitation on raw material corruptibility's
(perishable material). The most important goals of the proposed model
are to minimize transportation costs and transport time of perishable raw
materials between suppliers, distribution centers and factory with
considering the capacity of them. Considering the proposed model be-
longs to the category of NP-hard combinatorial optimization problems,
the Ant Colony Optimization algorithm and Particle SwarmOptimization
algorithm were employed to solve it. Also, In order to improve perfor-
mances of ACO and PSO parameters, a Taguchi experimental design
method was applied to set their proper values. To prove the feasibility of
proposed model and validity of the proposed algorithms, a hypothetical
example of randomize generated data about the dairy industry was
expressed in this paper. The numerical results of the suggested algo-
rithms and the proposed model were analyzed. In order to assess the
reliability of the solution, the results of the proposed algorithms (ACO
and PSO) were compared with each other. In convergence metric, the
results of the performance measures show that the ACO has better
convergence compared to the PSO. On the other hand, it can be said that
that the ACO is greater than PSO in speed convergence rate and the
number of solutions iterations.
7

The following items are recommended for Future researches:

� Developing the proposed model for multi-product problems
� Developing the proposed model with considering risk in
transportation

� Developing the proposed model in multi periods of time
� Developing the proposed model with considering heterogeneous ca-
pacities for platforms

� Developing the proposed model with probabilistic parameters for
demand and costs

� Increasing the shelf life of raw material by special equipment
� Designing other meta-heuristic algorithms and comparing results
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