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Abstract: This paper concentrates on the study of the Weighted Least-squares (WLS) approaches for
the generation of ground displacement time-series through Differential Interferometric SAR (DInSAR)
methods. Usually, within the DInSAR framework, the Weighted Least-squares (WLS) techniques
have principally been applied for improving the performance of the phase unwrapping operations as
well as for better conveying the inversion of sequences of unwrapped interferograms to generate
ground displacement maps. In both cases, the identification of low-coherent areas, where the standard
deviation of the phase is high, is requested. In this paper, a WLS method that extends the usability
of the Multi-Temporal InSAR (MT-InSAR) Small Baseline Subset (SBAS) algorithm in regions with
medium-to-low coherence is presented. In particular, the proposed method relies on the adaptive
selection and exploitation, pixel-by-pixel, of the medium-to-high coherent interferograms, only, so as
to discard the noisy phase measurements. The selected interferometric phase values are then inverted
by solving a WLS optimization problem. Noteworthy, the adopted, pixel-dependent selection of the
“good” interferograms to be inverted may lead the available SAR data to be grouped into several
disjointed subsets, which are then connected, exploiting the Weighted Singular Value Decomposition
(WSVD) method. However, in some critical noisy regions, it may also happen that discarding of the
incoherent interferograms may lead to rejecting some SAR acquisitions from the generated ground
displacement time-series, at the cost of the reduced temporal sampling of the data measurements.
Thus, variable-length ground displacement time-series are generated. The mathematical framework
of the developed technique, which is named Weighted Adaptive Variable-lEngth (WAVE), is detailed
in the manuscript. The presented experiments have been carried out by applying the WAVE technique
to a SAR dataset acquired by the COSMO-SkyMed (CSK) sensors over the Basilicata region, Southern
Italy. A cross-comparison analysis between the conventional and the WAVE method has also
been provided.

Keywords: ground displacement; synthetic aperture radar; small baseline; variable-length time-series;
weighted least-squares

1. Introduction

Weighted Least-squares (WLS) is a generalization of ordinary least-squares (LS) in which
non-negative weights are attached to data points to take into account the varying quality of the
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available data while solving systems of linear equations [1]. Ordinary and weighted least-squares
optimization problems typically arise when the differential synthetic aperture radar interferometry
(DInSAR) technique is employed for the generation of displacement maps of the Earth’s surface [2–4].
The DInSAR technique is based on the measurement of the phase difference (i.e., interferogram)
between two synthetic aperture radar (SAR) images acquired at different times and from slightly
diverse orbital positions. As a result, the measurement of the projection of the ground displacement
along the radar sensor line-of-sight (LOS) is provided [5,6]. Temporal and spatial decorrelation
artefacts [5–7] are responsible for additive noise in the generated interferograms. Specifically, long
interferometric time separations and large spatial baselines (i.e., the separation between the orbital
positions) lead to decorrelated interferograms. However, temporal and spatial decorrelation effects are
distinct for different interferograms for every SAR pixel. The use of weights in the various existing
DInSAR tools aims to take into account the distinctive stochastic properties of the interferograms.
Although the DInSAR technology was initially established to investigate single episodes of ground
displacement [8,9], it is nowadays widely adopted, mainly, for the extraction and the analysis of the
temporal evolution of the ground deformation through advanced Multi-Temporal interferometric SAR
(MT-InSAR) techniques [10–29]. In the last 20 years, several MT-InSAR algorithms have progressively
been developed to study the classes of natural (e.g., [30–33]) and human-induced (e.g., [34–38]) ground
deformation phenomena. The MT-InSAR techniques can usually be grouped into the two families of
the Persistent Scatterers [10–13] and the Small Baseline [14–20] approaches, even though some hybrid
PS/SB techniques have also been developed (e.g., [21]). In particular, the PS algorithms work using all
single-master interferometric SAR data pairs, i.e., computed with respect to one single SAR scene (the
master image). They allow estimating the surface changes of very stable, point-wise scatterers that
retrain their coherence over time. In this case, there is no need to impose any restrictions on the temporal
and spatial separation (i.e., the baseline) of the used InSAR data pairs. Conversely, the SB methods are
predominantly concentrated on detecting and monitoring the ground displacement of scatterers that
are distributed over several resolution cells of the focused images. Such distributed scatterers (DS)
are, however, more prone to be corrupted by spatial and temporal decorrelation phenomena [5–7].
Accordingly, to diminish the noise in the generated interferograms, only multiple-master InSAR data
pairs characterized by small baselines (temporal and spatial) are pre-selected. The corresponding
differential SAR interferograms are then computed and properly inverted to obtain information on the
temporal evolution of the Earth’s surface displacement. The SB MT-InSAR techniques [14–18] rely on
the solution of systems of linear equations using ordinary LS or L-1 norm minimization (e.g., [39]).
Among the SB methods, the Small Baseline Subset (SBAS) technique [14] has been the pioneering
one. It permits analysing the deformation of DS objects on the ground by inverting a sequence
of SB interferograms via an LS optimization. Specifically, if the selection of the SB interferograms
creates disconnected sets of data separated by large baselines, the constraint on the minimum norm
velocity of the ground displacement time-series is imposed, and the Singular Value Decomposition
(SVD) method [40] is applied. Finally, in the framework of the methods addressing the DS targets
signal characterization and study, the SqueeSAR technique [23] and other alternative multi-temporal
approaches have also been recently proposed [24–27]. Globally, the performance of all the developed
MT-InSAR methods depends on the accurateness of the phase unwrapping and phase inversion
operations. Both these key operations are more robust against noise artefacts if the phase stability of
every single, pixel-based measurement is taken into account. In this framework, the use of weights
may guarantee improved performances in terms of error noise propagation and ground displacement
measurements accuracy. The phase unwrapping (PhU) operation [41–55] is the crucial step in any
InSAR processing tool. It involves the searching of the (unknown) 2π-integer multiples that must be
added to the wrapped phases to compute the unwrapped (full) phases. Historically, PhU algorithms
have been developed to process single interferograms independently and have worked both on
regular (e.g., [41]) and irregular (e.g., [50]) grids of pixels. Regular PhU procedures assume that all
phase measurements are reliable. On the contrary, on irregular grids, the PhU operations are only
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performed on a group of SAR pixels with medium-to-high-coherence, by first computing from them a
planar-connected graph (e.g., a Delaunay triangulation [56]). The low coherent pixels are discarded
from the subsequent analyses, or their relevant phase information is recovered by spatial interpolation
of neighbouring coherent SAR pixels. Over the arcs of the computed graph, the vectors of the wrapped
phase differences are subsequently calculated. The unwrapped phases of the pixels over the graph
are obtained as the solution of a weighted minimum L-p norm problem, where the weights are set
by considering the phase quality across the given spatial arcs. With p = 2, PhU is seen as an LS
optimization problem, whose analytic solutions are known [43,53–55]. In this context, the weights are
employed to constrain the unwrapped phases being less dependent on the phase integration paths
across the noisy regions. As in [57], the phase variances of the interferograms are exploited to set
the weights used for achieving the WLS solution. Several weighted LS PhU techniques are currently
available in the literature (e.g. [53–55]). However, the L-2 norm tends to smooth discontinuities,
thus not preserving the 2π-difference restriction between the unwrapped and wrapped phases. For
this reason, the L-1 norm is commonly preferred. The L-1 norm PhU problem has been resolved by
Flynn [47] and Costantini [49,50], by reformulating it as the solution of a Minimum Cost Flow (MCF)
network optimization. With the advent of the MT-InSAR era, the interest has progressively moved
towards the development of three-dimensional PhU algorithms that could allow the generation of a
stack of multi-temporal unwrapped maps, taking profit from the knowledge of the spatial and temporal
relationships among the computed interferograms. Some 3-D [58,59] and hybrid space-time [60,61]
PhU algorithms have been developed in the last 20 years. Weighted Least Squares (WLS) approaches
have also been used for inverting sequences of differential SAR interferograms and producing ground
deformation products, where they are used to improve monitoring performance of ground surface
motions, see for instance [62–65].

In this paper, we propose a novel WLS method that naturally extends the usability of the SBAS
technique [14] in regions with medium-to-low coherence. Specifically, the process is based on the
adaptive selection, pixel-by-pixel, of a proper set of phase measurements coming from coherent
interferograms, which are then inverted using a WLS approach. As a result, for the different analysed
SAR pixels of the imaged scene, different interferometric SAR distributions are used, selected taking
into account the stability of the involved phase signals. In particular, the weights are set for every
SAR pixel as the reciprocal of the InSAR phase variance, computed by considering the stochastic
properties of the SAR interferograms. As a consequence of the adaptive selection procedure, it may
also happen that SAR data can be grouped into several disjointed subsets (as in the original SBAS
procedure [14]), which are straightforwardly linked by using a weighted generalization of the singular
value decomposition (WSVD) method [66–68]. In some very critical noisy regions, it may also happen
that the adaptive (pixel-by-pixel) selection of the “good” interferograms could lead to the removal
of some SAR images. In these cases, the displacement time-series can still be generated, but at the
expense of the temporal sampling of data measurements, thus having the so-called variable-length
deformation time-series. Although the displacement time-series of some noisy SAR pixels have
a reduced length, the temporal sampling of the obtained deformation time-series is still suitable
to extract useful information on the ground motion at the corresponding spatial locations. As a
consequence, the number of analysable SAR pixels significantly increases. Our method, which is
named Weighted Adaptive Variable-lEngth (WAVE), shares some similarities with the intermittent
SBAS (ISBAS) technique [69,70]. The ISBAS technique estimates the mean velocity deformation rate
as well as the DEM errors related to the intermittent coherent targets, and subsequently applies the
conventional, un-weighted SBAS inversion strategy to the residual interferograms, obtained after
compensating the estimated components. The WAVE method exacerbates the original idea at the
base of the ISBAS technique, allowing for the generation of the variable-length LOS-projected ground
displacement time-series related to the intermittent coherent pixels. As said, this is done by combining
the adaptive selection of the coherent pixels with a weighted singular value decomposition (WSVD)
inversion strategy, directly applied to the whole (i.e., the coherent and intermittent coherent) set of SAR
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pixels. The idea of using different networks of interferograms, depending on the phase quality of the
measurements, can also further be extended and applied in the general framework of the SB DInSAR
methods, beyond the SBAS procedure. The experimental results have been performed considering a
dataset composed of 50 SAR images, gathered by the Italian Space Agency COSMO-SkyMed (CSK)
constellation sensors over the Basilicata region, Southern Italy.

2. Weighted Least-Squares Inversion of SB Differential SAR Interferograms

Let us assume the availability of a group of N + 1 SAR images acquired over the same region
of Earth at the ordered times [t0, t1, . . . , tN]. Every SAR image is preliminarily co-registered to the
same SAR scene and, starting from them, a group of M interferometric SAR data pairs is selected.
Although the proposed method can also potentially work with large baseline interferograms, only
small baseline InSAR data pairs are profitably chosen to reduce the overall algorithm computational
burden. To this aim, the temporal and spatial baselines of the interferograms are taken into account for
the identification of a suitable set of small baseline (SB) InSAR data pairs. The stack of differential SAR
interferograms, namely ∆Φ(P) = [∆φ0(P), ∆φ1(P), . . . , ∆φM−1(P)], where P is a generic radar pixel of
the azimuth/range {Az×Rg} spatial domain, is then generated. This operation is done by simulating and
subtracting the relevant topographic phase components from the InSAR phase differences, computed
using the orbital information and a digital elevation model (DEM) of the area [71].

2.1. Summary of the Un-Weighted SBAS Inversion Technique

The SBAS procedure starts by assuming the availability of a sequence of M unwrapped
interferograms, namely ∆Ψ(P) = [∆ψ0(P), ∆ψ1(P), . . . , ∆ψM−1(P)], computed in correspondence
with the generic radar pixel P of the azimuth/range spatial domain. The unwrapped phases can
be obtained using either conventional 2-D [41–55], 3-D [58,59], or hybrid space-time [60,61] PhU
algorithms. In particular, in this work, we apply a two-step PhU processing chain based on an
adaptation of the EMCF algorithm [60], as discussed in Section 2.2. The unwrapped interferograms are
expressed as follows:

∆ψk(P) = 4π
λ dk(P) + 4π

λ ·
b⊥k

r(P) sinϑ(P) ·∆z(P) + εk(P),

k = 0, 1, . . . , M− 1; ∀P ∈
{
Az×Rg

} (1)

where 4π
λ dk(·), k = 0, 1, 2, . . . , M− 1 is the phase term that accounts for the relative radar LOS-projected

deformation (which also includes the contributions due to the inhomogeneity of the atmosphere) of
the k-th interferogram, where λ is the operational wavelength, and b⊥k(·), k = 0, 1, 2, . . . , M − 1 is
the perpendicular baseline of the k-th InSAR data pair. Moreover, ∆z(·) represents the height profile
error, and r(·) and ϑ(·) are the slant-range distance and the radar side-looking angle, respectively.
Furthermore, the noise phase term εk(·), k = 0, 1, 2, . . . , M− 1 accounts for phase unwrapping errors,
incorrect orbital information, and decorrelation noise artefacts.

The system of linear Equation (1) defines an LS optimization problem, which is solved as fully
detailed in [14]. Precisely, for every identified pixel of the SAR image scene, the topographical error
term ∆z(·) as well as a rough estimate of the deformation rate, namely x(·), are first estimated [14,72].
Subsequently, the unwrapped phases are corrected from the topographical errors, thus obtaining:

∆ψ̃k(P) = ∆ψk(P) − 4π
λ ·

b⊥k
r(P) sinϑ(P) ·∆z(P) = 4π

λ dk(P) + εk(P),

k = 0, 1, . . . , M− 1; ∀P ∈
{
Az×Rg

} (2)

The system of linear Equation (2) can be synthetically expressed as [14]:

∆Ψ̃ = A·Φ + E (3)
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where A is the M ×N incidence-like matrix of the linear transformation of Equations (2) and (3),
Φ =

(
4π
λ

)
D is the vector of the (unknown) deformation values D(P) = [0, d1(P), . . . , dN(P)] at the given

analysed SAR pixel (where it is implicitly assumed that d0(P) ≡ 0), and E is the vector of the error noise
contributions. System (3) is solved in the LS sense. Nevertheless, in the more general case that the
selected SB InSAR data pairs are arranged to form some independent subsets of data that are separated
by large baselines [14], the matrix A turns out to be rank-deficient. In this case, the problem becomes:

Φ : min ||A·Φ − ∆Ψ̃ ||2
min ||Φ ||2

(4)

Problem (4) can be solved by decomposing the matrix A using the singular value decomposition
method [67–69]. However, a solution that minimizes the norm of Φ is not physically feasible because
it is responsible for significant discontinuities in the final deformation result. This problem was
circumvented in [14] by manipulating the system of Equations (3) and replacing the phase unknowns
Φ(P) = 4π

λ D = [0,φ1(P), . . . ,φN(P)] with the phase velocities between time-adjacent acquisitions
V(P) = [v1(P), . . . , vN(P)], which are defined as vk(·) = (φk(·) −φk−1(·))/(tk − tk−1), k = 1, 2, . . . , N.

As a result, Problem (4) becomes:

Φ : min ||B·V− ∆Ψ̃ ||2
min ||V ||2

(5)

which is solved using the SVD method applied to the matrix B(M ≥ N) (see [14] for its mathematical
expression). Mathematically, the matrix B is decomposed as follows:

B = Q·S·ZT (6)

where Q is an (M×M) orthogonal matrix, Z is an orthogonal (N ×N) matrix, and S is a diagonal
(M×N) matrix, whose diagonal elements represent the singular values [σ1, σ2, . . . , σN] of the matrix B.
Accordingly, the solution of Problem (5) is obtained as:

V = B+
·∆Ψ̃ (7)

with B+ being the inverse generalized of B : B+ = Z·S+
·QT, and S+ is the diagonal matrix S+ =

diag
[

1
σ1

, 1
σ2

, . . . , 1
σN

, 0, . . . , 0
]
∈ RN×M. The phase values associated with every SAR acquisition are

finally obtained by time-integrating the estimated values of the vector V. Once collected, the phases
associated with the SAR acquisitions are converted to deformation measurements, and subsequently the
Atmospheric Phase Screen (APS) is computed. Finally, the APS-filtered deformation time-series [10,14]
are calculated.

2.2. EMCF-Based Multi-Temporal Phase Unwrapping

In this sub-section, we present an adaptation of the Extended Minimum Cost Flow (EMCF) PhU
algorithm [60]. First, we give some introductory information on the EMCF phase unwrapping algorithm.
The EMCF technique [60] represents an extension of the minimum cost flow PhU method [49,50]. It
exploits two triangulations; the former is computed in the Temporal/Perpendicular baseline domain.
Indeed, every SAR image can be represented in that domain with a point, and the arcs connecting
different points represent the selected interferometric SAR data pairs. Those arcs are organized to form
a (reduced) triangulation in the Temporal/Perpendicular baseline plane, see Figure 1, obtained by first
computing a triangulation starting from the available SAR data and then discarding those arcs that
involve at least one large baseline interferogram [60]. The latter triangulation is computed in the {Az ×
Rg} plane and encompasses the group of coherent SAR pixels that are common to the entire pool of the
selected SB interferograms. The unwrapping operation is then performed. First, we identify all the arcs
of the computed “spatial” triangles, and, for every arc, we independently carry out a “temporal” PhU
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step, which is done by applying the MCF technique [49,50] to the temporal/perpendicular baseline
grid. The second stage of the EMCF PhU procedure uses, for every arc, the previously computed
unwrapped phases as the starting point for the successive spatial phase unwrapping operations. The
latter are performed on every single interferogram by using the conventional MCF technique [49,50].
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Figure 1. Distribution of the SAR data into the temporal/perpendicular baseline plane for the
COSMO-SkyMed dataset of the Basilicata region, used for the experiments shown in Section 4. In
particular, the dataset is composed by 50 SAR images. Starting from these data, M = 263 small baseline
InSAR pairs are identified. The dates are represented in the “day-month-year” format, and the label
“CSK” stands for the satellite mission.

As initially explored in [72], here, we propose to adapt the EMCF procedure to enlarge the
pool of the interferograms to be unwrapped and improve the overall PhU performance. To this aim,
the selected M interferometric SB SAR data pairs are grouped into two different sets, labelled as
{S1} and {S2}, which are composed of M1 = M(Tr) and M2 = M −M1 interferograms, respectively.
The interferograms related to the first set identify the primary network, which forms a (reduced)
triangulation in the temporal/perpendicular baseline plane (see Figure 2a) consisting of M(Tr) data
pairs, see [58] for further details, also potentially selected using the sub-optimal procedure described
in [22].

The primary network is ideally suited to the application of the original EMCF PhU

technique. Let
[
∆φ(1)

0 (P), ∆φ(1)
1 (P), . . . , ∆φ(1)

M(Tr)−1
(P)

]T
be the set of wrapped phases and[

∆ψ(1)
0 (P), ∆ψ(1)

1 (P), . . . , ∆ψ(1)
M(Tr)−1

(P)
]T

be the corresponding set of the unwrapped phases, where P

is a generic SAR pixel of the {Az × Rg} spatial grid. The PhU operations are performed over a set of
highly-coherent SAR pixels that are in common to the whole set of interferograms of {S1}, namely
G(Tr)

≡ {P ∈ S1}. These pixels can be identified either by computing the average spatial coherence of
the interferograms or exploiting the phase triangulation closures (see the appendix of [73]).
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Figure 2. Interferometric SAR distributions in the temporal/perpendicular baseline plane. (a) The
M1 = M(Tr) interferometric data pairs of the (reduced) Delaunay triangulation used by the canonical
EMCF PhU algorithm. (b) The additional M2 = M−M1 interferometric data pairs that are unwrapped
using the modified EMCF PhU algorithm.

For the subsequent operations, the identification of the coherent SAR pixels that are specific
for every SAR interferogram represents a very critical step. Over the interferograms of the primary
network, as earlier said, a group of high-coherence SAR pixels is selected, and the unwrapping
operations are done only on those SAR pixels. After, considering only the interferograms related
to the primary network, a rough estimate of the LOS-projected displacement time-series, namely

d̂
(1)

(P) =
[
0, d̂(1)1 (P), d̂(1)2 (P), . . . , d̂(1)N′ (P)

]
, ∀P ∈ G(Tr) and the DEM errors ∆ẑ(P), ∀P ∈ G(Tr) are

obtained by applying the (conventional) un-weighted SBAS procedure (see Section 2.1) or alternative
methods. As a result of the removal of some triangles (i.e., those that involve at least one large-baseline
interferogram) from the complete triangulation in the temporal/perpendicular baseline plane [60], it is
possible that the reduced triangulation may involve N′ + 1 < N + 1 distinctive SAR images. However,
this limitation of the original EMCF PhU technique is straightaway circumvented by complementing
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the interferograms of the primary network (see Figure 2a) with some additional interferograms (see
Figure 2b).

The effective unwrapping procedure of the additional SAR interferograms, namely[
∆φ(2)

0 (P), ∆φ(2)
1 (P), . . . , ∆φ(2)

M2−1(P)
]T

, which belong to the second set {S2}, is hereinafter detailed.

These added interferograms are independently unwrapped following a strategy that is similar to the
one initially adopted in [72]. In particular, for every interferometric SAR data pair, the phase unwrapping
operation is performed over the relevant set of coherent SAR pixels (which are selected by imposing a
threshold on the corresponding spatial coherence map) by using the conventional MCF procedure [50].
First, for every SAR pixel, we consider the local topography errors ∆ẑ(P), ∀P ∈ G(Tr) and the

deformation time-series d̂
(1)

(P) =
[
0, d̂(1)1 (P), d̂(1)2 (P), . . . , d̂(1)N′ (P)

]
, ∀P ∈ G(Tr) (including possible

atmospheric artefacts) obtained by processing the sequence of the primary network interferograms. The
collected rough LOS-projected displacement time series, computed on the unwrapped interferograms
of the first network, are temporally low-pass filtered and time-interpolated, and subsequently spatially
interpolated to retrieve information on the incoherent pixels. The temporal and spatial interpolation
steps are both performed using a simple polynomial interpolator. Thus, the estimated displacement
time-series and the residual topographic components are used to generate a model of the (unknown)
unwrapped phases. In particular, by considering the k-th interferogram of the group of the added
interferograms {S2}, the phase model has the following expression:

mk =
4π
λ

∆d̂(1)k +
b(2)
⊥k

r sinϑ
∆ẑ

, k = 0, 1, . . . , M2 − 1 (8)

where ∆d̂(1)k is the LOS-projected relative deformation of the k-th InSAR data pair, ∆ẑ is the DEM error,

and b(2)
⊥k is the perpendicular baseline of the k-th InSAR data pair. The modelled phase contributions

are then modulo-2π subtracted from the phase of the interferograms, and the residual phase is then
unwrapped by the conventional MCF technique [50].

Hence, the whole set of the unwrapped interferograms is obtained. We note that for every
SAR interferogram of the primary network, the previously collected unwrapped phases are spatially
interpolated over the specific set of coherent pixels of the given InSAR data pair, identified by
considering those pixels with a spatial coherence value larger than 0.2.

The diagram flow of the whole process leading to the unwrapping of the complete set of the
interferograms is shown in Figure 3.

2.3. Weighted Adaptive Variable-lEngth (WAVE) InSAR Method

In this sub-section, we will introduce the adaptation of the methods presented in Section 2.1 to
the weighted case. The presented analysis is performed adaptively for every pixel P of the {Az × Rg}
domain. As a starting point, let us consider the whole sequence of the unwrapped interferograms, say
[∆ψ0(P), ∆ψ1(P), . . . , ∆ψM−1(P)]

T, again. As earlier stated, for a given SAR pixel P, only a subset of
the available M interferograms has an adequate spatial coherence value (i.e., larger than a prescribed
threshold, for instance γ̂ = 0.2). Differently from [14] (and similarly to [70]), we propose to discard the
interferograms that are less coherent (adaptively on a pixel-by-pixel basis). More precisely, for a given
SAR pixel P, we propose to discard all the interferograms exhibiting a spatial coherence value less than
γ̂ = 0.2 and use the remaining ones for the generation of ground displacement time-series. Accordingly,
for every single SAR pixel of the imaged scene, an exclusive network of DInSAR interferograms
is selected and, then, inverted to generate the LOS-projected displacement time-series relevant to
the selected SAR pixel. As an example, Figure 4 shows two different networks of InSAR data pairs
related to two distinctive SAR pixels of the analysed area. More precisely, the DInSAR distributions in
Figure 4a,b are composed by 242 and 77 interferometric data pairs, respectively.
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Let us now describe the subsequent inversion step of the unwrapped interferograms. Our
procedure has some similarities with [63,69] but, in our case, the selection and removal of some
interferometric SAR data pairs may lead, as in [14], to an undetermined problem and (potentially) to
the generation of variable-length ground displacement time-series.

Before going in detail, let us first spend a few additional moments on the setting of the weights
associated with the phase measurements, in correspondence with the SAR pixels that have a coherence
value larger than the considered threshold (e.g., in our experiments, γ̂ = 0.2). To this aim, the variance
of the multi-looked interferometric phases is, first, estimated pixel-by-pixel. It is well known that the
density probability function (pdf) of the wrapped multi-looked phase φ(ML) is [7,74,75]:

pφ(ML)

(
φ(ML)

)
=

Γ(L+0.5)(1−γ2)
L
γ cos

(
φ(ML)

−φ
(ML)

)
2
√
πΓ(L)

(
1−γ2 cos2

(
φ(ML)−φ

(ML)
))L+0.5

+
(1−γ2)

L

2π F(L, 1; 0.5;)γ2 cos2
(
φ(ML)

−φ
(ML)

) (9)

where L is the number of the looks, φ
(ML)

is the average multi-looked (true) phase, Γ(·) is the gamma
function, and F(·) is the hypergeometric function. Accordingly, the phase variance can be numerically
calculated as:

σ2
φ(ML) =

+π∫
−π

[
φ(ML)

−φ
(ML)

]2
pφ(ML)

(
φ(ML)

)
dφ(ML) (10)

However, for the low coherence regions, the estimated coherence values typically result in being
biased. Moreover, the phase variance calculation is somewhat computationally expensive, requiring
the numerical integration in Equation (10). Alternatively, we can exploit the basic principles of the
directional statistics [76]. Indeed, under some simplified assumptions [76], it can be shown that a
suitable approximation for the pdf of the wrapped phase (i.e., a directional data vector) is the wrapped
normal distribution WN(ϑ;µ,ρ), which is obtained by wrapping onto the circle the normal distribution
N

(
µ, σ2

)
, that is:

WN(ϑ;µ,ρ) =
1

σ
√

2π

+∞∑
q=−∞

exp

−(ϑ− µ+ 2qπ)2

2σ2

 (11)

where ρ = exp
[
−
σ2

2

]
is the resultant mean length of the circular phase data [76].

In our case, if we refer to the k-th SAR differential interferogram and the generic (multi-looked)
SAR pixel P, the circular data represents the unitary phase vector

[
φk,0,φk,1, . . . ,φk,L−1

]
. It is relevant to

the single-look phases that averaged together (see Figure 5), one gets the k-th multi-looked phase at the
SAR pixel P, where L is the number of averaged phase samples. Accordingly, [76]:

φ
(ML)
k (P) = arctan

∑L−1
h=0 sinφk,h∑L−1
h=0 cosφk,h

; ρ =
1
L

∣∣∣∣∣∣∣
L−1∑
h=0

exp
[
jφk,h

]∣∣∣∣∣∣∣ (12)

where j =
√
−1 is the imaginary unit, and:

σ2
φ
(ML)
k

= −2 lnρ = −2 ln

1
L

∣∣∣∣∣∣∣
L−1∑
h=0

exp
[
jφk,h

]∣∣∣∣∣∣∣
 (13)
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Hence, the phase variances can be easily computed by Equation (13), and the DInSAR
interferograms are generated without requiring highly demanding computations as with Equation (10).
Alternatively, it is possible to consider the Cramer-Rao bound for the phase variance [6], which is
expressed as follows:

σ2
φ
(ML)
k

=
1− γ2

2Lγ2 (14)

Once the phase variances are estimated, a suitable way to set the weights that are associated with
every single InSAR measurement (i.e., the multi-looked interferometric phase related to every InSAR
data pair) is to consider the reciprocal of the phase variances [29], namely W = [ω0,ω1, . . . ,ωM−1] with:
ωi = 1/σ2

φ
(ML)
i

i = 0, 1, . . . , M− 1. Using the matrix formalism, we can also write that:

{
diag[ω0,ω1, . . . ,ωM−1]

}
=

{
diag

[
σ2

∆Ψ0
, σ2

∆Ψ1
, . . . , σ2

∆ΨM−1

]}−1
(15)

Equation (15) is fundamental for the analysis of the error propagation in the weighted case. To
introduce the problem, we refer to the fundamental principles of the uncertainty theory applied to the
linear regression problems [77]. We note that, as earlier described, the un-weighted SBAS procedure
leads to the solution of the optimization Problem (4), which is done by Equation (7). For a given SAR
pixel, the known term ∆Ψ̃, representing the vector of the unwrapped phases, is a random phase vector,
and C∆Ψ̃ is its related covariance matrix:

C∆Ψ̃ =


σ2

0,0 σ2
0,1 . . . σ2

0,M−1
σ2

1,0 σ2
1,1 . . . σ2

1,M−1
. . . . . . . . . . . .

σ2
M−1,0 σ2

M−1,1 . . . σ2
M−1,M−1

 (16)

where the elements on the principal diagonal of the covariance matrix represent the phase variances of
the M DInSAR interferograms used for the SBAS inversion, and the off-diagonal element of C∆Ψ̃, say
σ2

i, j i , j, represents the covariance between the (unwrapped) phases of the i-th and the j-th InSAR
data pair. By applying the basic principles of the linear regression and the uncertainty theory [77] to
Equation (7), the covariance matrix of the unknown velocity vector V is derived as follows:

CV = B+
·C∆Ψ̃·B

+T (17)
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In our treatment, although the computed interferograms have a given grade of dependence
(because obtained by the same sequence of SAR data), we assume that the interferometric phases are
uncorrelated. This simplified assumption is widely adopted in the literature, and only very few InSAR
studies have addressed the problem of the systematic calculation of the correlation among a group of
InSAR interferograms computed from the same set of SAR data [78]. Under this simplified hypothesis,
Equation (17) becomes:

CV = B+
·diag

{
σ2

0,0, σ2
1,1, . . . , σ2

M−1,M−1

}
·B+T (18)

Let us now describe the developed Weighted Adaptive Variable-lEngth (WAVE) DInSAR technique,
which permits us to select and adaptively process a set of differential SAR interferograms. Let us
refer, again, to a generic SAR pixel P of the multi-looked grid, and let [∆ψ0, ∆ψ1, . . . , ∆ψM−1]

T be the
corresponding vector of the unwrapped phases, [γ0,γ1, . . . ,γM−1]

T be the relevant spatial coherences,
and W = [ω0,ω1, . . . ,ωM−1] be the weights. As earlier said, for every SAR pixel, a preliminary selection
of the “good” interferograms is made up. Hence, only the group of coherent interferograms survives.
Therefore, let I =

[
i0, i1, . . . , iM̂−1

]
be the indexes of the coherent interferograms, with M̂ being the

number of selected ones. The extracted vectors of the unwrapped phases and the relevant weights

are ∆Ψ̂ =
[
∆ψ̂0, ∆ψ̂1, . . . , ∆ψ̂M̂−1

]T
=

[
∆ψi0 , ∆ψi1 , . . . , ∆ψiM̂−1

]T
and

[
ωi0 ,ωi1 , . . . ,ωiM̂−1

]T
respectively.

Similarly to [14], because of the adaptive selection of the interferograms to be used and the discarding
of the remaining ones, the SAR data can generally be organized in disjointed subsets, which have to
be properly linked. In our approach, we also check the temporal overlapping of the produced data
subsets. From our analyses, we discard those SAR pixels for which there is no time overlap between
the data subsets. Note also that the extracted interferograms now do not necessarily involve all the

available SAR images. Indeed, only a group of SAR acquisitions are preserved, let
[
φ̂0, φ̂1, . . . , φ̂N̂

]T

be the unknown phase relevant to those N̂ + 1 “survived” SAR images, which are those acquired

at ordered times
[
t̂0, t̂1, . . . , t̂N̂

]T
. As for the un-weighted SBAS case, the problem is still formulated

concerning the vector of the unknown velocities between contiguous SAR images
^
V =

[
v1, v2, . . . , vN̂

]T
,

where v̂k(·) =
(
φ̂k − φ̂k−1

)
/(t̂k − t̂k−1) k = 1, 2, . . . , N̂.

The weighted inversion problem to be solved is:

min ||B·
^
V− ∆Ψ̂ ||W

min ||
^
V ||2

(19)

where the matrix B is also adaptively obtained for the given SAR pixel taking into account the
distribution of the “survived” SAR acquisitions and the relevant InSAR data pairs, following the same

lines of [14]. The norm indicated in Equation (19) is defined as in [79], namely ||X ||W =
(
XT
·W·X

) 1
2 .

Accordingly, Problem (19) leads to the minimization of the following norm:

||B·
^
V− ∆Ψ̂ ||W =

(B· ^V− ∆Ψ̂
)T

·W·
(
B·

^
V− ∆Ψ̂

)
1
2

=

=
√
ω0ε0 +ω1ε1 + · · ·+ωM̂−1εM̂−1

(20)

subjected to a minimum-norm constraint on the velocity. Note that, in our case, W =

diag
(
ω0,ω1, . . . ,ωM̂−1

)
, see Equation (15), and the vector e represents the phase residuals between the

unwrapped phases and those reconstructed from the retrieved solution, namely e = B·
^
V− ∆Ψ̂.
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The Problem (20) represents the particularization of the following more general weighted
least-squares problem:

min ||B·
^
V− ∆Ψ̂ ||W

min ||
^
V ||T

(21)

where the matrixes W
(
RM̂×M̂

)
and T

(
RN̂×N̂

)
put weights on the row and column of the matrix

B
(
RM̂×N̂

)
, respectively; its solution is unique. It is obtained, see [79], by first calculating the

W-T-singular decomposition of matrix B [79], assuming that M̂ ≥ N̂, which decomposes B such that
U−1
·B·Z = diag

(
µ1,µ2, . . . ,µN̂

)
, where µi, i = 1, . . . , N̂ are the singular values of the decomposition,

U is orthogonal to W, and Z is orthogonal to T.
Note that, the W-T decomposition of matrix B is obtained [79] as follows. First, the matrixes of

the constraints W and T are written by the Cholesky factorization as: W = L·LT, T = K·KT. Then, the
SVD decomposition of the matrix C = LT

·B·K−T is obtained, such as QT
·C·X = diag

(
µ1,µ2, . . . ,µN̂

)
.

Finally, the decomposition of the matrix B is done by setting U = L−T
·Q and Z = K−T

·X.
The final solution is eventually obtained as follows:

^
V = Z·D+

B ·U
−1
·∆Ψ̂ (22)

where: Z ∈ RN̂×N̂, D+
B = [1/µ1, 1/µ2, . . . , 1/µr, 0, 0, .., 0] ∈ RN̂×M̂ with r ≤ N̂, and U ∈ RM̂×M̂.

In our case, matrix T is the identify matrix of RN̂×N̂ and, by Equation (5), the weights are set

as W = diag
{[

1/σ2
∆Ψ̂0

, 1/σ2
∆Ψ̂1

, . . . , 1/σ2
∆Ψ̂M−1

]}
. Accordingly, the matrixes W and T are diagonal and:

L = W1/2, T = K = IN̂×N̂, C = W1/2
·B. As a consequence, we have:

^
V = X·D+

B ·Q
−1
·W1/2

·∆Ψ̂ = Ω·W1/2
·∆Ψ̂ (23)

Of course, the solution (23) is now pixel-dependent, because both the selected InSAR data pairs
and the associated weights are different from pixel to pixel. In critical regions, it may also happen that
the pre-selection of the “good” interferograms, for the given SAR pixel, leads some SAR acquisitions to
be discarded. In this latter case, the problem in (19)–(21) is mathematically defined in the same way as
in the previous sub-section. Still, the vectors of the unknown velocities have a reduced length (i.e., N̂ is
less than N). As a consequence, once the estimated velocity values are time-integrated to recover the
corresponding LOS-projected deformation time-series, namely φ̂ =

[
φ̂0, φ̂1, . . . , φ̂N̂−1

]
, the latter have a

reduced length (i.e., less than N + 1).
The diagram flow chart of the WAVE method is shown in Figure 6.
We would like to remark that although the proposed WAVE method has been developed in the

framework of the SB approaches, its main characteristics allow a simple extension to the more general
non-SB context.

Finally, let us spend a few moments on the propagation of errors for the weighted case. By
considering Equation (22), it is easy to prove that:

CV̂ =
^
B
+

·C∆Ψ̂·
^
B
+T

(24)

where
^
B
+

= Ω·W1/2, and C∆Ψ̂ is the covariance matrix of the selected unwrapped phases. Under the
hypothesis that the interferograms are uncorrelated, namely C∆Ψ̂ = W−1, Equation (24) simplifies as:

CV̂ = Ω·W1/2
·W−1

·W1/2
·ΩT = Ω·ΩT (25)
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This outcome is significant: It means that if the weights are chosen as
{
diag[ω0,ω1, . . . ,ωM−1]

}
={

diag
[
σ2

∆Ψ0
, σ2

∆Ψ1
, . . . , σ2

∆ΨM−1

]}−1
, the co-variance matrix of the velocity terms is constant for every

element of the (estimated) velocity vector, thus implying that errors propagate in the computed
deformation time-series uniformly over time.

To check the quality of the obtained variable-length LOS displacement time-series, a weighted
version of the temporal coherence factor [60], which also takes into account the weights[
ωi0 ,ωi1 , . . . ,ωiM̂−1

]T
of the selected interferograms, has also been introduced:

Γ(Q) =
1∑M̂(Q)−1

k=0 ωk

∣∣∣∣∣∣∣∣
M̂(Q)−1∑

k=0

ωk exp
{
j
[
∆ψ̂k − φ̂IMk + φ̂ISk

]}∣∣∣∣∣∣∣∣ (26)

where M̂(Q) is the number of above-coherence-threshold interferograms at the given pixel Q, and IMk
and ISk are the indexes of the master and slave time acquisitions of the k-th InSAR data pair.

3. Dataset and Study Area

The study area where we have successfully applied the WAVE methodology encompasses the
Basilicata region, Southern Italy (see Figure 7). The territory of Basilicata is predominantly mountainous.
It is surrounded by the Mediterranean Sea, with a relatively small flatland zone near the coastal area
overlooking the Ionian Sea, which is one of the two outlets to the sea, where the other ones are on the
Tyrrhenian side. Moreover, the region is crossed by the Apennine Mountains that extend from the
Ligurian Alps to the Northern Sicily mounts, with famous massifs, such as Mount Sirino (2005 m),
Mount Pollino (2267 m), Mount Volturino (1835 m), and many other ones. The hills are almost entirely
composed of clay soil, which is subjected to erosion processes caused by the frequent rainfalls, mostly
in the winter season. These processes are the starting trigger for landslides, which have afflicted
and still afflict several cities [80–84], such as Montemurro, Latronico, Pomarico, Maratea, Craco, and
Montescaglioso. It is also important to underline the high seismic risk of the entire area, as confirmed by
the numerous earthquakes [85–87] that have occurred during the last 200 years, which, in many cases,
have destroyed several small cities [88], where thousands of people tragically died. The intertwining
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of these issues, including also the hydrogeological instability, contributes to the overall instability of
zone. That results in a problematic scenario for correctly applying the conventional interferometric
SAR techniques. The available SAR dataset is composed of 50 SAR acquisitions, collected by the
COSMO-SkyMed (CSK) sensors of Italian Space Agency (ASI), from which a set of 263 differential SAR
interferograms were generated.
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Figure 7. Geography of the study area: (a) The Italian Peninsula. The red demarcation lines identify
the Basilicata region; the green rectangle identifies the used COSMO-SkyMed ascending strips. (b)
Macro of the Basilicata region, where it is possible to see the two sea outlets. Shown are the Google
Earth’s optical images acquired by Landsat satellites on 14 December 2015.

The distribution of the SAR images in the temporal/perpendicular baseline plane, as well as the
identified set of the SB InSAR data pairs, are shown in Figure 1. COSMO-SkyMed [89] is a constellation
of four SAR sensors, both operating at the centre carrier frequency of 9.6 GHz with a maximum radar
bandwidth of 400 MHz, single and dual-polarization, which flight at an altitude of about 620 Km from
the sea level with an inclination angle of 97.86◦. From the point of images acquisition, it is possible
to exploit three types of scene shooting, the Spotlight-2 mode with the best resolution achievable (1
m) and a 10 Km × 10 Km swath, the StripMap (HIMAGE and PING-PONG) mode with a medium
resolution (3 m and 15 m) and a medium swath area (40 Km and 30 Km), and the ScanSAR (WIDE and
HUGE REGION) mode with the lower resolution (16 m and 30 m) and the greatest swath possible (100
Km and 200 Km) with these sensors.

For our purpose, we have used HH polarized StripMap (HIMAGE) images, collected from
February 2012 to November 2018 along ascending orbit, each with a right-looking radar direction and
viewing angles of approximately 34◦. Every raw SAR acquisition has been first focused [90,91] to
obtain the focused In-Phase and Quadrature terms for each acquisition, e.g., the Single Look Complex
(SLC) images. The information of the entire SAR dataset is summarized in Table 1, where for every
SAR image, we list: (i) the acquisition dates, (ii) the (average) Doppler Centroid (DC) and (iii) the
orthogonal baseline (calculated w.r.t the common, reference master image acquired on 1 October 2014).
Every SAR image covers a small area of the Basilicata region, between the meridians ranging from 15.6◦

to 16.0◦ and the parallels ranging from 40.0◦ to 40.4◦. In this zone, the Pertusillo dam, the Lagonegrese,
and the Val D’Agri territory, as well as the Vallo di Diano territory, are included. In Figure 8, an optical
image of the area is shown, and some locations of particular interest are highlighted.
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Table 1. The Used COSMO-SkyMed Dataset.

Day Month Year Orthogonal Baseline [m] Doppler Centroid [Hz]

14 02 2012 887.96 −1164.2
02 04 2012 300.52 −1136.8
18 04 2012 455.29 −1074.5
20 05 2012 1072.3 −1241.8
23 07 2012 1186.6 −1133.3
24 08 2012 878.17 −1176.1
11 10 2012 959.50 −1235.1
26 12 2012 1177.6 −653.37
11 01 2013 811.07 −659.16
12 02 2013 642.53 −681.40
16 03 2013 1458.4 −536.96
23 05 2013 660.91 −1092.4
24 06 2013 1139.4 −1176.9
26 07 2013 249.04 −1188.3
27 08 2013 291.91 −1201.2
12 09 2013 −83.779 −1194.1
30 10 2013 416.50 −1196.9
15 11 2013 739.37 −1187.5
17 12 2013 1373.2 −1231.9
18 01 2014 656.69 −1237.0
03 02 2014 −62.523 −1206.4
23 03 2014 646.41 −1163.4
08 04 2014 191.51 −1099.6
29 07 2014 −337.35 −1227.3
30 08 2014 −42.907 −1206.0

01 M 10 M 2014 M 0.0000 M −1236.5 M
18 11 2014 517.28 −1194.4
20 12 2014 685.74 −1211.9
26 03 2015 −967.52 −1224.9
13 05 2015 −912.84 −1182.2
17 08 2015 −540.35 −1245.1
18 09 2015 −497.50 −1325.8
20 10 2015 −672.71 −1384.0
07 12 2015 −198.14 −1189.8
12 03 2016 −494.75 −1284.2
15 05 2016 −437.48 −1081.5
02 07 2016 366.08 −1185.4
04 09 2016 498.12 −1258.2
06 10 2016 24.905 −1266.8
26 01 2017 659.14 −1252.1
02 05 2017 605.27 −1209.8
21 07 2017 −909.00 −1334.3
23 09 2017 52.237 −1414.1
10 11 2017 −119.79 −1291.0
28 12 2017 −123.48 −1521.1
18 03 2018 −450.21 −1258.0
21 05 2018 −924.02 −1275.6
24 07 2018 −153.99 −1218.1
10 09 2018 −682.59 −1296.5
29 11 2018 −848.53 −1290.5

M The footer corresponds to the master acquisition used for the images registration.
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tests. The footprint of the processed CSK frame is highlighted by a green rectangle. The Google Earth
optical images have been acquired by the Landsat satellites on 14 December 2015.

4. Experimental Results

In this section, we show the results achieved by applying the WAVE method to the set of SAR data
presented in Section 3. The experiments were conducted by first selecting from the available N = 50 SAR
acquisitions a group of InSAR data pairs, selected by imposing a maximum perpendicular separation of
800 m and a maximum time span of 2 years, respectively. As a result, we have identified M = 263 InSAR
data pairs. Once chosen, the M differential SAR interferograms have been generated. To this purpose,
precise satellite orbital information and a three-arc Shuttle Radar Topography Mission (SRTM) digital
elevation model (DEM) of the area have been used to remove the topographic phase components. The
computed differential SAR interferograms have also been independently multi-looked (10 azimuth
and 10 range looks, respectively) and pre-filtered by using the approach in [92]. As explained in
Section 2, the interferometric SAR data pairs are organized into two independent groups. The former
corresponds to the primary interferometric data pairs network shown in Figure 2a, and the latter
represents the set of additional interferograms (see Figure 2b). These two sets of interferograms are
then unwrapped by using the strategy outlined in Section 2.2.

To investigate the potential of the WAVE approach, we first processed the sequence of the M
unwrapped interferogram using the conventional, un-weighted SBAS approach. Figure 9 shows the
mean displacement velocity map of the investigated area, overlaid to an amplitude SAR image of
the zone. Only the SAR pixels with a temporal coherence greater than 0.6 have been depicted on the
map. We also show in Figure 9b–e the LOS-projected displacement time-series of some selected SAR
pixels, which are located in areas subjected to sensible deformation signals. The shown displacement
time-series are obtained after the estimation and removal of the Atmospheric Phase Screen (APS). The
latter operation is carried out by the cascade of a High-Pass temporal filter and a Low-Pass spatial
filter [10] applied to the achieved LOS-projected, un-filtered deformation time-series.
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Figure 9. Un-weighted SBAS approach InSAR products. (a) Mean displacement velocity map of the
investigated area. Four SAR pixels, labelled as I, II, III, and IV have been selected. The relevant ground
displacement time-series are shown in (b–e), whereas the zoomed views of the areas nearby the selected
pixels are also shown.

Subsequently, we have applied the WAVE method to the same set of unwrapped interferograms.
We remark that, even though we pre-selected a set of SB interferograms, all the possible DInSAR
interferograms could be potentially processed. However, this would turn out to be extremely
time-consuming. Similarly to [14], however, the removal of the low-coherent interferograms may lead
to the generation of multiple disjointed subsets, which are linked by using the weighted version of
the SVD strategy, as detailed in Section 2. Furthermore, in some noisy areas, the possibility of having
LOS-projected displacement time-series with variable length also arises. The application of the WAVE
technique to the whole set of SAR pixels has led to the generation of the corresponding LOS-projected
displacement time-series. To check the quality of the achieved results, we have calculated the weighted
temporal coherence; see Equation (26), namely

{
Γ(P)

}
P∈{Az×Rg}. With respect to the temporal coherence

factor initially introduced in [60], in our case, we only consider the set of DInSAR interferograms
that has actually been used during the inversion step for the generation of the surface displacement
time-series. Accordingly, the weighted temporal coherence factor turns out to be more sensitive to
the unwrapping errors in the medium-to-high coherent regions. Conversely, the weighted temporal
coherence does not take into account the decorrelation artefacts that were present in the interferograms
that were adaptively discarded, because of the low values of their spatial coherence. Additional
constraints have also been imposed to discard some extra SAR pixels with low quality. To do that,
we have generated three spatial maps containing, for every SAR pixel, the information related to: (i)
the number of interferograms actually used during the inversion of the unwrapped phases, namely{
NI(P)

}
P∈{Az×Rg}; (ii) the number of time acquisitions of the computed variable-length displacement

time-series, namely
{
ND(P)

}
P∈{Az×Rg}; and (iii) the number of independent data subsets that are linked



Sensors 2020, 20, 1103 19 of 27

by the WSVD decomposition described in Section 2.3. Figure 10 shows the map of the number of used
interferograms, as obtained in our case. Finally, the set of the well-processed SAR pixels are those that
satisfy the following multiple conditions:

{Γ > γ̂} ∩ {NI > ι} ∩ {ND > δ} ∩ {NI ≥ ND} (27)

where γ̂, ι and δ are the thresholds on the weighted temporal coherence, the number of used
interferograms, and the number of used data, respectively.
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Figure 10. A spatial map of the investigated area in SAR coordinates related to the number of
interferograms used for each pixel by the WSVD time-series inversion.

Figure 11 shows the map of the mean displacement rate of the area as obtained by using the
WAVE approach, where only the well-processed SAR pixels satisfying the multiple Conditions (27)
have been portrayed. As a result, we got a total number of 696,898 well-detected SAR pixels against
the 132,399 corresponding values obtained by processing the same set of unwrapped interferograms
using the un-weighting SBAS procedure, with an improvement of roughly 526%. We also show in
Figure 11b–e four examples of the obtained LOS-projected displacement time-series. In particular,
Figure 11b,c show the plots related to two SAR pixels (see their location in the map of Figure 11a)
characterized by one single data subset and with full-length displacement time-series (i.e., consisting
of 50 time samples), and Figure 11d,e show the plots related to two SAR pixels with variable-length
deformation time-series. We also show in Figure 12a–d the relevant networks of InSAR interferograms,
as represented in the temporal/perpendicular baseline plane, and related to the SAR pixels whose LOS
displacement time-series are shown in Figure 11b–e.
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Figure 12. (a)–(d) InSAR distribution in the temporal/perpendicular baseline plane related to the SAR
pixels labelled as I, II, III, and IV in Figure 11.

Finally, the LOS-projected displacement time-series have been compared to available external
GPS measurements. GPS data were downloaded from the website [93] and projected along the sensor
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line-of-sight. Figure 13 shows the results of this cross-comparison analysis in correspondence to the
seven GPS stations available in the area. The red stars in Figure 13 highlight the location of the GPS
sites in Figure. Table 2 shows the values of the root mean square error (RMSE) of the difference between
the obtained LOS-projected displacement time-series and the corresponding GPS measurements.

Sensors 2020, 20, x FOR PEER REVIEW 22 of 28 

 

 

Figure 12. (a)-(d) InSAR distribution in the temporal/perpendicular baseline plane related to the SAR 

pixels labelled as I, II, III, and IV in Figure 11. 

 

Figure 13. Comparison between the GPS measurements and the LOS-projected deformation time-

series in correspondence with the seven available GPS stations of the area. (a) Mean displacement 

velocity map of the area. (b–h) Plots of the LOS-projected ground deformation time-series (black 

triangles) and the GPS deformation measurements projected along the radar sensor LOS (red crosses). 

Figure 13. Comparison between the GPS measurements and the LOS-projected deformation time-series
in correspondence with the seven available GPS stations of the area. (a) Mean displacement velocity
map of the area. (b–h) Plots of the LOS-projected ground deformation time-series (black triangles) and
the GPS deformation measurements projected along the radar sensor LOS (red crosses).

Table 2. Root Mean Square Error (RMSE) of the difference between SAR and GPS LOS-projected
measurements.

Figure Identifier Name RMSE [mm]

13.b AGR2 3.75
13.c MTSN 3.19
13.d RVLO 3.34
13.e SCHR 3.17
13.f SIRI 2.82
13.g VIGG 3.10
13.h SLC1 3.49

Mean RMSE 3.27

5. Discussion

We now discuss the main topics that emerged in this work, taking into account the attained
experimental results. We have developed a hybrid InSAR method that complements the adaptive
selection of a suitable set of interferograms with a weighted least squares inversion strategy, to improve
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our capability to monitor the evolution of surface displacement, especially in the low-coherent regions,
by considerably increasing the number of measurements points. This is done, in correspondence
with some SAR pixels, at partial expenses of the time sampling of the measurements (i.e., the number
of sampling SAR acquisition times). Therefore, we have produced the so-called variable-length
LOS-projected displacement time-series. The benefit of this approach with respect to the conventional,
un-weighted SBAS procedure is that it preserves all the principal features of the SBAS technique
(and potentially of other alternative SB approaches) but complements it with a spatial adaptive
selection procedure, which allows working always with moderate-to-high coherent interferograms,
thus mitigating the impact of noise decorrelation and phase unwrapping artefacts. Even though the
WAVE method represents an extension of the SBAS procedure, it does not impose, in principle, any
pre-selection of the small baseline InSAR data pairs to be used. For reducing the computational burden
of the algorithm, not all possible InSAR interferograms are generated, but only a fraction of them.
Because of this, the WAVE approach does not necessarily belong to the class of the SB methods. Even
in the large baseline interferograms, some isolated pixels still preserve their coherence, and they can be
profitably used for the generation of ground displacement time-series. Therefore, our approach avoids
the time-consuming inspection (and in some cases, the potential manual removal) of the InSAR pairs to
be used for the generation of the deformation time-series. The use of the multiple-criterion (27) for the
identification of the well-processed SAR pixels also allows quantifying the improvement in terms of
analysable SAR pixels. The weights used during the interferograms inversion procedure are essential
to reduce the impact of noise artefacts in the obtained DInSAR products and, as demonstrated by
Equation (25), they are set in such a way to have LOS-projected displacement time-series with uniformly
time-distributed uncertainty values. The WAVE method can be applied to any set of multi-looked
SAR interferograms, no matter the InSAR tools or the pre-processing (e.g., the noise-filtering) methods
that have been used to generate and process the interferograms. In addition, the WAVE method can
be straightforward implemented in concurrent and/or parallel computing architectures, thus only
requiring independent, pixel-by-pixel analyses. Further efforts are required to study how to set these
weights in the most general case that the interferograms are correlated (as they are). Also, the WAVE
method has to be validated in wider geophysical contexts, especially in areas with moderate-to-low
coherence, where the un-weighted SBAS approach (and other alternative SB methods) still suffers from
significant decorrelation noise and phase unwrapping disturbances. All these issues are matters for
future investigations.

6. Conclusions

This study has addressed the problem of generating variable-length LOS-projected displacement
time-series in moderate-to-low coherent areas using a hybrid InSAR method, which is named as
Weighted Adaptive Variable-lEngth (WAVE) technique. The paper provides an introduction of the
weighted least-squares (WLS) InSAR methods, with a specific focus on those applied in the small
baseline InSAR framework. The mathematical and statistical fundamentals of the WAVE method have
been detailed in the work. The pros of the WAVE method are essentially related to the possibility to
extend the number of detectable pixels, but at the potential costs of the measurement time sampling.
However, this represents a reasonable compromise, especially in moderate-to-high-vegetated areas,
such as for the Basilicata region, where the decorrelation noise and the phase unwrapping mistakes
may lead to unsatisfactory results. The experimental results have shown the validity of the proposed
method in the selected study area. The new WAVE method requires further extensive studies to
demonstrate its general applicability for the retrieval of deformation signals in various geophysical
contexts. As earlier stressed, we would like to remark that the WAVE technique naturally fits with the
requirements of the SBAS technique as well.
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