
RESEARCH PAPER

Benchmarking of the quantification approaches for the non-targeted
screening of micropollutants and their transformation
products in groundwater

Anneli Kruve1
& Karin Kiefer2,3 & Juliane Hollender2,3

Received: 10 September 2020 /Revised: 3 November 2020 /Accepted: 2 December 2020
# The Author(s) 2021

Abstract
A wide range of micropollutants can be monitored with non-targeted screening; however, the quantification of the newly
discovered compounds is challenging. Transformation products (TPs) are especially problematic because analytical standards
are rarely available. Here, we compared three quantification approaches for non-target compounds that do not require the
availability of analytical standards. The comparison is based on a unique set of concentration data for 341 compounds, mainly
pesticides, pharmaceuticals, and their TPs in 31 groundwater samples from Switzerland. The best accuracy was observed with the
predicted ionization efficiency-based quantification, the mean error of concentration prediction for the groundwater samples was
a factor of 1.8, and all of the 74 micropollutants detected in the groundwater were quantified with an error less than a factor of 10.
The quantification of TPs with the parent compounds had significantly lower accuracy (mean error of a factor of 3.8) and could
only be applied to a fraction of the detected compounds, while the mean performance (mean error of a factor of 3.2) of the closest
eluting standard approach was similar to the parent compound approach.
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Introduction

Hundreds to thousands of micropollutants and their TPs in the
water cycle are relevant from the ecotoxicology point of view
as well as for water purification. This includes pesticides,
pharmaceuticals, personal care products, and industrial con-
taminants. Pesticides are used to protect crops in farming
across agriculture and reach the environment due to leaching
and run-off [1–5]. Pharmaceuticals and personal care products
result from sewage and are widespread micropollutants [1]. In
the environment, pesticides, pharmaceuticals, and several oth-
er types of micropollutants degrade by biotic and abiotic

processes to their transformation products (TPs).
Additionally, chemical degradation through ozonation or
chlorination may occur in water treatment plants [6]. Mostly,
the toxicity of the TPs is similar or lower than that of the
parent compound; however, cases, where the transformation
products are more toxic than the parent compound, may occur
[7, 8]. The final potential for an adverse effect of the water
sample depends on the toxicology endpoints, bioaccumula-
tion, and concentration of the micropollutants and their TPs
[8]. Genuinely, the drinking water standard of 100 ng/L ap-
plies to pesticides and their relevant TPs in the European
Union [9]. TPs are considered relevant if it is assumed that
they still possess pesticidal properties or show severe and
unacceptable toxicological effects [10].

The monitoring of all these micropollutants is unfeasible
with conventional targeted analysis methods. Therefore, liq-
uid chromatography high-resolution mass spectrometry (LC/
HRMS)-based suspected and non-targeted screening is in-
creasingly used to detect micropollutants, including TPs [11,
12]. In suspected and non-targeted screening, the compounds
are first tentatively identified based on the exact mass of the
compound, isotope pattern, predicted retention time, MS/MS
spectra, etc. [13]. The full identification and quantification of
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the detected contaminants require confirmation with the ana-
lytical standards, which is often complicated due to their un-
availability. Therefore, only a small fraction of the compounds
detected can be identified at the highest confidence level and
subsequently quantified. In order to manage the time-
consuming identification challenge, tentatively identified
compounds need to be prioritized before the final identity
confirmation with purchased, partially expensive standards.
One of the prioritization criteria for identification is the esti-
mated concentration (intensity) of the contaminant.

The quantification of the detected micropollutants tradi-
tionally relies on the calibration graph approach, which as-
sumes the availability of the analytical standards. In cases
where analytical standards are not available, it is more com-
plex to estimate the concentration of these compounds as the
response factor differs from compound to compound in LC/
ESI/HRMS. Differences as large as a factor of 1 million have
been observed [14]. Therefore, alternative quantification ap-
proaches are of importance. The ones of particular interest to
the quantification of micropollutants and corresponding trans-
formation products are (1) using the response factor of the
parent compound for quantification of the TPs, (2) using the
response factor of internal standards eluting closest to the de-
tected micropollutant [15], and (3) using the predicted ioniza-
tion efficiency of the compound of interest [16].

The first approach has been developed to overcome the
lack of analytical standards for TPs of pesticides and pharma-
ceuticals. It is assumed that the TPs have the same response as
the parent compounds, which is based on the structural simi-
larity of the TP and parent compound. This is based on the
assumption that the structural changes occurring during the
biotic or abiotic transformation of the parent compound do
not result in significant structural modifications [17].
Especially, modifications related to the ionization behavior
of the compounds such as basicity and hydrophobicity are
assumed to be minimal.

The second approach, proposed by Pieke et al. [15], uses a
set of internal standards spiked into the samples and uses the
response factor of the internal standard eluting closest to the
compound of interest for the quantification. This approach is
based on the assumption that compounds eluting close to each
other also have similar response factor, which further results
from the assumption that the retention behavior in LC and
ionization in ESI are influenced by the same properties of
the compounds. This is likely to be true to some extent as both
retention in reversed-phase chromatography [18, 19] and ion-
ization efficiency in ESI [20–22] have been related to the
hydrophobicity, expressed as logP, of the compound.
However, both retention and ionization in ESI [23] are more
complex processes and depend also on other factors such as
acid-base properties and eluent properties.

The third approach aiming to estimate the concentration of
the micropollutants without analytical standards is based on

predicting the ionization efficiency of the compounds in the
ESI source [16, 24–26]. In this approach, first, the ionization
efficiency of the compound of interest is predicted from struc-
tural and eluent descriptors. Then, the ionization efficiency is
converted into a response factor corresponding to the analysis
conditions, including the instrument, using few calibration
compounds that were measured at different concentration
levels with the same LC/HRMS method. This approach aims
to account for the effect of the structure of the compound,
eluent composition, and instrument parameters (such as
source geometry) on the response factor. The ionization
efficiency-based quantification has been recently tested for
quantification of pesticides in food samples [27].

The objective of this paper is to compare these three ap-
proaches described above for the quantification of 341
micropollutants analyzed with LC/ESI/HRMS in positive ion-
izationmode. The comparison is based on an extensive dataset
from 31 Swiss groundwater samples that especially focusses
on pesticides and their TPs. The 74 micropollutants finally
detected in the groundwater samples were previously
robustly quantified from groundwater samples with the
aid of a unique set of analytical standards. Therefore,
this dataset is highly suitable for benchmarking different
quantification approaches.

Materials and methods

Dataset

The samples originated from 31 groundwater monitoring sites
in Switzerland. Most monitoring sites were located in agricul-
turally intensively used and/or densely populated areas.
Dissolved organic carbon content was low (< 0.5–1.8 mg/L,
median: 0.8 mg/L) and electrical conductivity as sum param-
eter for salt content ranged from 360 to 1000 μS/cm.

The samples were analyzed for 519 micropollutants (236
pesticides and TPs, 221 pharmaceuticals and TPs, 62 other
compounds from urban sources) using LC/HRMS/MS. For
quantification, 22 calibration standards (0.1–1000 ng/L pre-
pared in ultrapure water; 0.1–2000 ng/L for chloridazon-
desphenyl due to detections > 1000 ng/L), six spiked samples
(analyte spiking level 10 ng/L or 100 ng/L), and the 31 sam-
ples were spiked with 224 isotope-labeled internal standards
(ISTDs) at 100 ng/L. As micropollutant concentrations in
groundwater are usually low, the samples, spiked samples,
and calibration standards were enriched via vacuum-assisted
evaporation [28] by a factor of 150 resulting in limits of quan-
tification of ≤ 10 ng/L for 78% of the compounds. The con-
centrates were injected on a reversed-phase C18 column
(Atlantis T3 3μm, 3.0 × 150 mm, Waters, Ireland; injection
volume: 100 μL). Analytes were separated by gradient elution
with water and methanol as eluents (both modified with 0.1%
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formic acid), ionized in electrospray (4/− 3 kV), and detected
on an orbitrap mass spectrometer with a resolution of 140k in
MS1 full-scan mode and data-dependent MS/MS acquisition
(Q Exactive Plus, Thermo Fisher Scientific, USA). The com-
pounds were quantified based on the peak area ratio of analyte
and the assigned ISTD using TraceFinder 4.1 (Thermo Fisher
Scientific, USA). A total of 142 analytes were quantified with
structurally identical ISTD. If a structurally identical ISTD
was not available, the ISTD was selected that coeluted with
the analyte (± 2 min) and resulted in the best relative recovery
(i.e., ideally close to 100% and low deviation across spiked
samples) using an in-house R script [29].

Finally, a total of 62 pesticides and TPs, 22 pharmaceuti-
cals and TPs, and 19 other compounds from urban sources
were detected in the groundwater samples at concentra-
tions ranging from 0.2 to 1800 ng/L. Individual samples
contained four to 44 compounds. For details on sample
preparation, analysis, quantification, and final concentra-
tions, see Kiefer et al. [2].

Compound selection

For this study, we limited our analysis to compounds ionizing
in positive ionization mode as much more compounds could
be quantified in this mode. Compounds quantified using the
sodium or ammonium adducts were removed from the dataset,
due to the fact that currently ionization efficiency (approach
III) for adducts cannot be predicted; however, if both proton-
ated molecules and adducts are formed, the ionization effi-
ciency can be predicted for the protonated molecule and the
compounds can be quantified. Additionally, compounds that
could neither be separated by chromatography nor m/z (in
Kiefer et al. [2], the concentration sum of these compounds
was reported) and compounds that could only be quantified
with high uncertainty as no suitable ISTD was available (rel-
ative recovery < 50% or > 150% or relative standard deviation
of relative recoveries in spiked samples > 50%) were removed
so that the final dataset consisted of 341 compounds.

Ionization efficiency predictions

The ionization efficiency values were predicted with a random
forest regression that has been recently developed by Liigand
et al. [16] based on 3139 data points in ESI+ mode and im-
proved by adding further data. The solvent parameters were
ramped over a wider range: pH 1.8 to 10.7, organic modifier
content 0 to 100%. In addition, both methanol and acetonitrile
as well as various different buffers were used. Experimental
design was used to cover a wide range of possible solvent
combinations. All ionization efficiency measurements were
carried out in the linear range. Also, eight different instru-
ments with different ionization source design were used in
the measurements, starting from simple triple quadrupole

and ion trap instruments to ion mobility/time of flight and
Orbitrap mass spectrometers. To describe the compound
structure, PaDEL 2D descriptors were used. The eluent com-
position is described with five empirical eluent descriptors:
viscosity, surface tension, polarity index, pH, NH4

+ content
(yes/no). Accordingly, the effect of eluent composition is
accounted for in the ionization efficiency predictions but the
impact of the instrumental parameters used for measurements
is not. Therefore, the predicted ionization efficiency values
need to be converted into instrument-specific response factors
as described below.

Response factor prediction

For calibration of the predicted ionization efficiency
values and the quantification based on the closest elut-
ing calibration standard, the following 20 compounds
were used: asulam, carbendazim, chloridazon, darunavir,
disopyramide, exemestane, fenamidone, ifosfamide, mel-
amine, mepivacaine, mesosulfuron-methyl, metosulam,
monolinuron, monuron, N-(4-aminophenyl)-N-methyl-
ace tamid, pregaba l in , pr imidone, su l fadiaz ine ,
thiacloprid, trimethoprim. The compounds were selected
by randomly sampling 20 compounds from the list of
all investigated compounds. The sampling was repeated
three times and was performed in R with sample.split
function from the caTools package [30]. The set with
the widest range of retention time and response factors
was chosen for the final quantification approaches.
Later, these compounds are referred to as calibration
compounds.

The peak area of the analytes in standards and samples was
first corrected with the internal standard signal, if not specified
otherwise:

Signalanalyte;correctedsample ¼ Signalanalytesample∙
MeanSignalISTDstandard

SignalISTDsample

ð1Þ

where Signalanalyte;correctedsample is the corrected signal for a specific

compound in either sample or standard; Signalanalytesample is the not

corrected signal for a specific compound in the sample or

standard; SignalISTDsample is the signal of the internal standard in

the respective sample or standard; and MeanSignalISTDstandard is
the mean signal of the same internal standard in all of the
measured standards. In addition, all signals were corrected
for the isotope peaks by multiplying the monoisotopic peak
area with the isotope correction factor. This is necessary as the
ionization efficiency predictions assume that all of the gas-
phase ions, including isotope peaks and in-source fragments,
formed from the protonated molecules are summed up.

The response factors RF of all of the compounds in the
standard solutions were calculated as follows:
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RF ¼ Signalanalyte;correctedstandard

c Mð Þ ð2Þ

assuming that the intercept of the calibration graph is negligi-
ble and thereafter averaged.

Concentration prediction

For concentration prediction, three quantification approaches
were used:

I. Using the response factor of the parent compound to quan-
tify the TPs.

cTP ¼ Signalanalyte;corrected

RFparent compound
ð3Þ

II. Using the response factor of the calibration compound
eluting closest to the compound of interest.

canalytesample ¼
Signalanalyte;correctedsample

RFcalibration compound eluting next to the compound
sample

ð4Þ

III. Predicting the ionization efficiency of the compound and
using this for quantification. The ionization efficiency
values were predicted with a previously published model
[16] that has been further improved by adding new data
to the model training. As the model output is in universal
ionization efficiency values and not instrumentation spe-
cific, the response factors of the 20 abovementioned cal-
ibration compounds were used to transform the ioniza-
tion efficiency values to instrumentation-specific re-
sponse factors. For this, the RF values of these 20 cali-
bration compounds were correlated with the predicted
ionization efficiency values logIEpred:

logRF ¼ Slope∙logIEpred þ intercept ð5Þ

The logarithmic scale with base 10 was used to have even
weight on all of the points as the values range over several
orders of magnitude.

Thereafter, the slope and intercept were used to transfer the
ionization efficiency values predicted for the other com-
pounds to the response factors. The concentrations were cal-
culated as follows:

canalytesample ¼
Signalanalyte;correctedsample

RFpredicted
ð6Þ

We express the accuracy of the predicted concentrations as
a fold base prediction error

prediction error ¼ max

predicted c
measured c
measured c
predicted c

8
><

>:
ð7Þ

The relative error was used to be able to compare the pre-
diction accuracies for low and high concentrations as well as
to treat equally the over- and underestimation.

The code and data are available from https://github.com/
kruvelab/semi-quantification-water-micropollutants.

Results

Altogether, 341 compounds were included in the dataset, out
of these 20 compounds were used as calibration compounds
for approach II and for transferring ionization efficiency
values for approach III. The calibration compounds were sam-
pled randomly to cover a wide retention time range: from 3.2
to 19.6 min and response factors from 2.2·1019 to 3.3·1020

(M−1) while the corresponding ranges for the whole dataset
were 3.2 to 22.1 min and 1.5·1018 to 5.3·1020 (M−1). The
coverage of the retention time and response factor range is
visualized in Fig. 1.

The concentration of the calibration graph solutions ranged
from 5 × 10−13 to 1 × 10−8 M (0.1–1000 ng/L) and a linearity
check was used to avoid data points lower than the quantifi-
cation limit or higher than the upper limit of linearity. For
groundwater samples, the concentrations included in the
dataset ranged from 5 × 10−13 to 1 × 10−8 M.

On average, the highest prediction accuracy both for stan-
dards (Fig. 2) and real samples (Fig. 3) was observed for the
ionization efficiency-based quantification approach. Though
small numerical differences between ISTD corrected and not
corrected results exist, the differences are not statistically sig-
nificant for any of the quantification methods. Also, the dif-
ferences between standards and spiked samples are statistical-
ly insignificant within one quantification approach. The com-
parison of standards and real samples is complicated as not all
micropollutants and TPs were detected in the samples. For real
samples, the lowest prediction accuracy was observed for the
parent compound-based approach, which is restricted to TPs.
The mean error was a factor of 2.1 and 1.8 with ionization
efficiency-based quantification for standards and samples, re-
spectively. The summary of the performance of the three ap-
proaches is given in Table 1.

1552 Kruve A. et al.

https://github.com/kruvelab/semi-quantification-water-micropollutants
https://github.com/kruvelab/semi-quantification-water-micropollutants


Discussion

Quantification with the parent compounds

In the current dataset, the parent compound could be used for
the quantification of 60 transformation products. It was eval-
uated that TPs mostly had response factors lower than the
parent (Fig. 1a). For example, N-N-dimethylsulfamide had a
factor of 17 lower response factor than the corresponding par-
ent compound, N-N-dimethyl-N-(4-methylphenyl)-
sulfamide. This is expected, as the TP is significantly less
hydrophobic than the parent (logP changes from 1.2 to −
0.9) due to the cleavage of a benzene ring. The hydrophobic
moieties are very important to assure high ionization efficien-
cy in ESI, as more hydrophobic compounds are more surface-
active and partition to the surface of the ESI droplets, which
facilitates the formation of gas-phase ions.

On average, this approach had intermediate performance
for standards and the lowest performance for the real samples.
The average concentration prediction accuracy for the stan-
dards and samples was a factor of 2.5 and 3.8, respectively.
The maximum prediction error was a factor of 38 for N,N-
dimethylsulfamide. The fraction of data points having an ac-
curacy better than an order of magnitude was the lowest in
comparison to other quantification approaches, 90% of all of
the TPs detected in the samples. The error distribution for
parent compound-based quantification (Fig. 4) is tailing to-
wards higher errors than the error distribution for ionization
efficiency-based quantification; however, it is much narrower
than for the closest eluting standard-based quantification.

The parent compound approach also has a major disadvan-
tage: it can only be applied if the compound to be quantified is
a TP. Therefore, in this study, it could be applied to only 203
out of the 475 detected and identified peaks in the real

Fig. 1 RF factor, averaged over all concentrations of the standard, as a
function of relevant parameters used in the different approaches. (a) The
comparison of the response factor for parent and transformation product.
The line shows an ideal case where the response factor of TP and parent
are equal. (b) The response factor of the calibration compounds as a

function of the retention time. The compounds with 2 lowest response
factors are asulam and primidone. (c) The agreement of response factor
predicted based on the ionization efficiencies vs the measured response
factor, yellow dots show the calibration compounds used for transferring
ionization efficiency values to instrument-specific response factors

Fig. 2 The predicted concentrations vs spiked concentrations for the
standard: (a) using the response factor of the parent compound for
quantification; (b) using the response factor of a close eluting standard;
and (c) using response factor based on the predicted ionization efficiency.

The number of data points including all 341 compounds over various
concentrations is 5824. The exception is the first approach (1135 data
points), using the response factor of the parent compound for
quantification of the TP, as this approach is applicable only for TPs
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samples. For a number of cases, the TP and parent also ionize
in different ionization modes or one of them is not detectable
with LC/HRMS and, therefore, the parent compound cannot
be used for the quantification of the TP. For example,
chlorothalonil is not detected in LC/ESI/HRMSwhile the cor-
responding TPs are well detectable.

Quantification with the closest eluting standard

The retention behavior of a compound is influenced by the
genuine hydrophobicity of the compound as well as the dis-
sociation degree of the compound [31]. In reverse-phase chro-
matography, the compounds ionized at the given eluent con-
ditions are eluting earlier than the respective compounds in
their neutral form would.

At the same time, the ionization efficiency of the com-
pounds in ESI is also influenced both by the hydrophobicity
and acid-base properties of the compound [14, 20–22]. For
example, in electrospray positive mode, the more hydropho-
bic compounds have higher ionization efficiency than the less
hydrophobic ones in case of similar basicity [32]. Similarly,
basic compounds that are protonated and possess a positive
charge in the used eluent have higher ionization efficiency
than the neutral compounds [33]. Therefore, the effect of
acid-base properties of the compounds on the retention behav-
ior in reversed-phase chromatography and ionization efficien-
cy in ESI is different.

The closest eluting standard approach assumes a monoton-
ic change in compounds’ ionization efficiency along the re-
tention time. Additionally, the organic solvent content in-
creases with increasing retention time further improving the
ionization efficiency [33, 34]. If the acid-base properties of all
of the studied compounds would be similar, the quantification
based on close eluting standards would perform better. This
has been previously shown for fatty acids by Kamga et al.
[35]. However, the compounds in this study have very differ-
ent acid-base properties. For example, we can see from Fig. 1b
that the response factor of primidone (RT 14.5 min) is much
lower than the ionization efficiency of the neighboring

Fig. 3 The predicted concentrations for micropollutants with the three
approaches in the 31 groundwater samples. Pink dots correspond to the
approach where the TPs were quantified based on the response factor of
the parent compound; the mean prediction error was 3.8×. Gray dots
correspond to the approach where the calibration graph of the
compound closest to the analyte was used for quantification; the mean
prediction error was 3.2×. Yellow dots correspond to the approach where
ionization efficiency of the compound was used to predict the response of
the compounds; the average error was 1.8×.With all approaches, the peak
areas of the compounds were first corrected with the response of the ISTD
according to Eq. 1. The diagonal line shows the perfect fit

Table 1 The summary of the performance of the quantification approaches for standards, spiked samples, and real samples. The results are presented
both for ISTD corrected peak areas and not corrected peak areas

Quantification approach RFparent compound RFstandard eluting closest RFpredicted ionization efficiency

ISTD corrected No correction ISTD corrected No correction ISTD corrected No correction

Standards Number of compounds 60 341 60 TPs 341 60 TPs 341 60 TPs 341 60 TPs

Mean error 2.5× 2.2× 3.0× 3.0× 3.3× 3.2× 2.1× 2.3× 2.0× 2.0×

Max error 38× 17× 82× 44× 88× 20× 62× 22× 37× 11×

% of datapoints with error <10× 97% 98% 97% 98% 96% 96% 98% 98% 98% 99%

Spiked samples Number of compounds 60 341 60 TPs 341 60 TPs 341 60 TPs 341 60 TPs

Mean error 2.3× 2.5× 2.9× 2.9× 3.2× 3.2× 2.0× 2.1× 2.2× 2.3×

Max error 17× 20× 59× 19× 61× 22× 51× 51× 61× 61×

% of datapoints with error <10× 98% 98% 97% 98% 97% 96% 98% 99% 98% 99%

Real samples Number of compounds 23 74 23 TPs 72 23 TPs 74 23 TPs 72 23 TPs

Mean error 3.8× 4.3× 3.2× 3.8× 3.6× 4.2× 1.8× 2.0× 1.8× 2.1×

Max error 17× 20× 19× 19× 22× 22× 7× 7× 9× 9×

% of datapoints with error <10× 90% 89% 95% 90% 95% 90% 100% 100% 100% 100%
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compound disopyramide (12.7 min). Primidone is a neutral
compound in the mobile phase while disopyramide is strongly
basic with several hydrophobic moieties. Due to the lack of
significantly basic functional groups, primidone has a lower
ionization efficiency and, accordingly, also a lower response
factor in ESI positive mode. As a result, though these com-
pounds are eluting next to each other as a combination of the
hydrophobicity and acid-base properties, their ionization effi-
ciencies are notoriously different.

The maximum difference in the response factor of the com-
pound of interest and its closest eluting calibration compound
was more than a factor of 60 for spironolactone, which is a late
eluting compound that is not well ionizable in the mobile
phase and has low ionization efficiency. Additionally,
spironolactone can undergo significant in-source fragmenta-
tion. Ideally, the signals of the molecular ion and in-source
fragments would need to be added up to account for all of the
ions formed from. The corresponding calibration compound
was fenamidone, a hydrophobic compound with low basicity.
Therefore, using the response factor of the compound eluting
closest to the compound of interest is resulting in a poor con-
centration prediction accuracy.

The closest eluting standard-based quantification showed
an intermediate prediction accuracy compared to the other two
approaches. The mean errors of the standard solutions and
samples were a factor of 3.0 and 3.2, respectively. In the case

of real sample analysis, 95% of the compounds had an error
less than a factor of an order of magnitude and the maximal
error was a factor of 19.

IE prediction accuracy

Lastly, the ionization efficiency-based quantification was in-
vestigated. The agreement of the measured response factor
and the predicted ionization efficiency is shown in Fig. 1c;
the 20 compounds used for transferring the ionization efficien-
cies to response factors are shown in yellow.

On average, the agreement between the predicted and mea-
sured response factors was good (Fig. 1c). The major outliers
where the predicted ionization efficiency was significantly
higher than the observed response factor were spironolactone
(21×), mono(2-acryloyloxyethyl)-succinate (19×), and
methsuximide (17×). For benzisothiazolin-3-one (BIT) the
predicted response factor was significantly lower (15×) than
the observed RF. The analysis of the values of the most influ-
ential molecular descriptors in the random forest model [16]
showed that the values for these compounds were within the
range of expected descriptor values (Fig. 5). Therefore, the
poor prediction accuracy likely results from missing structur-
ally significant descriptors in the random forest model. This
can occur if the variation in the values of these structural
descriptors was not significant in the training set of the model.

Fig. 4 The distribution of the
concentration prediction errors (in
folds) for standards, spiked
samples, and real samples with all
quantification approaches
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For example, spironolactone contains a thioester group, which
might be important from the ionization efficiency point of
view but is poorly represented in the dataset used for devel-
oping the random forest model for predicting ionization effi-
ciency values. The same is likely to be true for the isothiazole
group, present in benzisothiazolin-3-one (BIT) that is also
poorly represented in the dataset used for model training.
This is partially supported by the slight underestimation of
the response factors for 5-chloro-2-methyl-4-isothiazolin-3-
one (CMI) (3×) also containing the isothiazole group; howev-
er, for 2-n-octyl-4-isothiazolin-3-one (OIT) and 2-methyl-4-
isothiazolin-3-one, overestimation was minimal. Therefore, it
is very important to keep updating the ionization efficiency
prediction model with new data and to improve the structural
coverage of the training dataset.

The ionization efficiency-based quantification showed the
highest accuracy and the narrowest error distribution (Fig. 4).
The mean prediction error for standards (Fig. 2) and samples
(Fig. 3) was a factor of 2.1 and 1.8, respectively. On average, the
predictions errors were lowest with the ionization efficiency-based
quantification; though, for some TPs, the parent compound-based
quantification showed lower error. The parent-TP pairs cetirizin
and 1-[(4-chlorophenyl)phenylmethyl]piperazin as well as
normianserin and mianserin had more than 3× lower prediction
error for TPs if the response factor of the parent compound was
used, compared to the ionization efficiency-based quantification.
This is also expected as these parent compound and TPs are very
similar from the ionization efficiency point of view: during trans-
formation, both the hydrophobic part of the compound and a basic
center are retained.

Prediction accuracy for real samples

The final accuracy of the quantification of the micropollutants
was evaluated based on the results obtained from the real

groundwater samples where altogether 74 pollutants were de-
tected and quantified in positive ionization mode. The refer-
ence concentrations were obtained from the quantification
with the analytical standards. The molar concentrations
ranged over four orders of magnitude from 10−13 to 10−8 M
(0.2 to 1800 ng/L). In general, the performance of the quanti-
fication approaches in real samples and standards was similar.
However, for quantification with the parent compound, the
mean prediction errors were a factor of 2.5 to 2.3 for standards
and spiked samples, respectively (60 TPs in both cases). The
mean prediction error for real samples was a factor of 3.8.
However, only 23 TPs were detected in the real samples.
While using the response factor of the closest eluting standard,
a mean error of a factor of 3.0 (n = 60), 2.9 (n = 60), and 3.2
(n = 23) for standards, spiked samples, and samples, respec-
tively, was observed. For ionization efficiency-based
quantification, the mean prediction error was a factor
of 2.3 (n = 60), 2 .1 (n = 60), and 1.8 (n = 23).
Consequently, the prediction accuracy was roughly the
same for standards and spiked samples (same set of
compounds) in case of all quantification approaches.

The trends from spiked samples to real samples are not
directly comparable due to different numbers of compounds;
however, comparison of the quantification approaches across
real samples shows best accuracy for predicted ionization
efficiency-based quantification. On the average, a factor of 2
lower prediction error has been observed with predicted ion-
ization efficiency approach than with the other two ap-
proaches. The quantification accuracy in the spiked and real
samples is influenced by several factors. Firstly, in samples,
the compounds are coeluting with several matrix components
that may cause ionization suppression, also called matrix ef-
fect [36]. The ionization suppression results in slightly more
underestimated concentrations than overestimated concentra-
tions for both parent compound and closest eluting standard-

Fig. 5 The distribution of the
most important descriptors in the
random forest algorithm for all
compounds. Spironolactone and
benzisothiazolin-3-one (BIT),
two of the most poorly predicted
compounds, are shown with red
and yellow, respectively.
Minimum and sum of CH2 atom
type (minssCH2 and SssCH2),
minimum H and
LipoaffinityIndex are all related to
the hydrophobic moieties of the
compounds. Sum of path lengths
starting from nitrogens (WTPT-5)
describes the molecular branching
while the rest of the parameters
describe the topological proper-
ties of the molecule
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based quantification. The results of the parent compound and
closest eluting standard-based quantification are more likely
to be influenced by the matrix effect than the ionization
efficiency-based quantification. The matrix effect varies from
chromatographic peak to another depending exactly on the
coeluting compounds. Additionally, even for two coeluting
compounds, the magnitude of the matrix effect may be very
different depending on the physicochemical properties of the
compounds [34, 37, 38]. Therefore, it is likely that for these
approaches the matrix effect is different for the compound of
interest and the standard used for its quantification. On the
other hand, ionization efficiency-based quantification does
not apply the response factor of a single standard but calcu-
lates the ionization efficiency of each individual compound
and then transfers these values to response factors with the
aid of all 20 calibration compounds. Therefore, the sharp dif-
ferences in matrix effect from peak to peak are partially can-
celled out by using all 20 compounds for the transformation to
the instrument conditions.

Secondly, the number of pollutants in real samples and
standards differed (74 vs 341). This can cause random varia-
tion depending on the suitability of the quantification ap-
proaches for the particular set of compounds. For example,
none of the compounds yielding low accuracy for standards
was detected in the real samples. For a rigorous comparison,
we evaluated separately the method performance for only the
23 TPs that could be quantified by all three approaches (see
Table 1) from the groundwater samples. Though the mean and
maximum prediction errors slightly change, the trends stay the
same. The ionization efficiency-based quantification approach
clearly outperforms the other two methods regarding all three
performance criteria (mean error, maximum error, and per-
centage of data points with error less than a factor of 10).

The same trends are also seen for six spiked samples (see
Table 1). The spiked concentrations were either 10 or 100 ng/
L, depending on the sample. The mean concentration predic-
tion errors were a factor of 2.3, 2.9, and 2.0 for parent com-
pound-, closest eluting standard-, and ionization efficiency-
based quantification, respectively. Therefore, we can
conclude that the selection of the compounds does af-
fect the performance of the approaches; however, even
though the values of the performance characteristics
somewhat alter from standards to spiked samples to real
samples, the trends remain the same.

Quantification without ISTD correction

All of the previously described results have been obtained
from signals corrected with structurally identical or closest
eluting ISTD; however, often such a wide set of ISTDs are
not available. Therefore, it was of interest to compare the
performance of the quantification approaches when no ISTD
correction was applied. It was observed that the performance

of the approaches was similar. For example, the mean predic-
tion error for standard and samples with the ionization effi-
ciency approach was a factor of 2.1 and 1.8, compared to a
factor of 2.0 and 1.8 observed for ISTD corrected results.
Similar results were also observed for other quantification
results (see Table 1). Additionally, the trends across different
quantification approaches were similar for both ISTD
corrected and not corrected results. This demonstrates two
important aspects; firstly, the comparison of the quantification
approaches is robust as the results hold for both ISTD
corrected and not corrected signals. Secondly, the matrix ef-
fect does not have a statistically significant impact on the
performance of the quantification approaches. Additionally,
it becomes obvious that the errors in the modelling are much
larger than the errors in the analytical workflow that are
corrected by the ISTDs.

Conclusions

The major hurdles towards the unequivocal applicability of
the non-targeted screening in decision-making include the
lack of quantitative information obtained from the analysis if
analytical standards are not available. Here, we have com-
pared three approaches to enable a quantitative analysis of
micropollutants in groundwater without the analytical stan-
dards. For both standards and real samples, the highest accu-
racy was observed with the ionization efficiency-based quan-
tification. The mean quantification error was a factor of 2.1
and 1.8 for standards and real samples, respectively. The
quantification errors were somewhat larger for approaches
using the response factor of the parent compound for quanti-
fication of the transformation products (mean error 2.5 and
3.8) and the approach using the response factor of the closest
eluting analytical standard (mean error 3.0 and 3.2). The par-
ent compound-based quantification also suffers an obvious
limitation in the application range.
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