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Human pituitary adenomas are one of the most common intracranial neoplasms. Although
most of these tumors are benign and can be treated medically or by transsphenoidal
surgery, a subset of these tumors are fast-growing, aggressive, recur, and remain a
therapeutic dilemma. Because antibodies against immune checkpoint receptors PD-1
and CLTA-4 are now routinely used for cancer treatment, we quantified the expression of
mRNA coding for PD-1, CLTA-4, and their ligands, PD-L1, PD-L2, CD80, and CD86 in
human pituitary adenomas and normal pituitary glands, with the ultimate goal of exploiting
immune checkpoint therapy in aggressive pituitary adenomas. Aggressive pituitary
adenomas demonstrated an increased expression of PD-L2, CD80, and CD86 in
compared to that of normal human pituitary glands. Furthermore, aggressive pituitary
tumors demonstrated significantly higher levels of CD80 and CD86 compared to non-
aggressive tumors. Our results establish a rationale for studying a potential role for
immune checkpoint inhibition therapy in the treatment of pituitary adenomas.

Keywords: pituitary adenoma, immune checkpoint blockade, immunotherapy, immune escape, aggressive
pituitary adenoma
INTRODUCTION

Pituitary adenomas are the second most common primary intracranial tumor (1–3). While the
majority of these benign tumors can be managed effectively medically or with transsphenoidal
surgery, there is a subset that remains resistant and/or recurs (4, 5). While there are no reliable
predictors of aggressive behavior, elevated Ki67 index >3%, tumor invasiveness, large size,
functioning adenomas, silent adenomas, and the rare event of distant metastasis have all been
correlated with increased tumor aggressiveness (6–8). For tumors that grow despite radiation
therapy, the alkylating agent temozolomide is commonly used. Only 50% of patients respond, and
the vast majority of these tumors escape control (9). Therefore, finding additional therapeutic
modalities is critical to their management.

The host response to tumors involves the recruitment and activation of T cell subsets and
macrophages. Tumors escape this response by expressing immune checkpoint molecules on their
n.org October 2021 | Volume 12 | Article 7264481
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surface. These, in turn, interact with their ligand/receptor on
the surface of immune cells down-regulating their anti-tumor
function (10). Among the immune checkpoint pathways, the
most well studied molecules are programmed cell death
protein 1 (PD-1), cytotoxic T-lymphocyte-associated antigen
4 (CTLA-4) and their ligands (11–15). PD-1 is mostly located
on the surface of activated T cells, B cells, monocytes, natural
killer (NK) cells, and dendritic cells. It has two ligands:
programmed death-ligand 1 (PD-L1) and programmed death-
ligand 2 (PD-L2) (16, 17). Unlike PD-1, which inhibits immune
activity after T cells are activated, CTLA-4, which is mainly
expressed on regulatory T cells, regulates the activation of T cells
(14, 15). The CTLA-4 ligands are CD80 and CD86, which are
found on antigen presenting cells. Monoclonal antibodies that
block PD-1, PD-L1, and CTLA-4 have each been found to
demonstrate persuasive anti-tumor effects (18–21). Immune
checkpoint therapy has been effective in treating selective
tumors, as exemplified by melanomas and renal cell carcinoma
(22, 23).

The large majority of immune checkpoint blockade applications
have been in the treatment of malignant tumors (e.g. melanomas),
and there are few data on their efficacy in the treatment of
aggressive benign tumors. Some reports showed increased
expression of PD-L1 in functioning pituitary adenomas (24, 25),
and recently, Lin et al. (26) reported a case of refractory Cushing’s
disease (CD) in which a dramatic response to ipilimumab (anti-
CLTA-4 antibody) and nivolumab (anti-PD-1 antibody) was
observed. This suggests that the use of immune checkpoint
blockade agents may be effective in a subset of refractory cases.
We therefore analyzed mRNA expression of immune checkpoint
molecules including PD-1, PD-L1, PD-L2, CLTA-4, CD80, and
CD86, in clinically aggressive pituitary adenomas, adenomas that
had not exhibited aggressive behavior and normal pituitary tissue
to explore whether there is a scientific rationale for investigating
whether immunotherapeutic agents are effective against aggressive
pituitary tumors.
MATERIALS AND METHODS

Sample Collection
Fresh human pituitary samples were provided by the
Massachusetts General Hospital Neurosurgery service. A total
of 60 tumor samples were collected; among them, 43 samples
were aggressive tumors (28 clinically non-functioning, 7 GH-
secreting, 4 ACTH-secreting, 3 PRL-secreting adenomas, as well
as 1 silent TSH-expressing) and 17 samples were typical benign
adenomas (11 clinically non-functioning, 4 GH-secreting, 1
ACTH-secreting, and 1 PRL-secreting adenomas) that had
exhibited no signs of aggressive behavior. Aggressive tumors
were defined as adenomas that were recurrent despite surgery
and radiation, giant adenomas (≥4cm) with invasiveness,
adenomas requiring multiple surgeries and radiation therapy,
macroadenomas that recurred unusually rapidly (typically within
2-3 years) requiring radiation, and invasive macroadenomas.
One control group was macroadenomas that were non-invasive
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and not recurrent following surgery. In addition to the tumor
controls, 12 normal pituitary tissue samples were obtained from
Harvard Brain Bank. These data are locate in Supplementary
Table 1. This research was approved by the Mass General
Brigham institutional review board.
Total RNA Extraction
Briefly, tissues were cut into pieces and homogenized in TRIZOL
reagent (Invitrogen, Waltham, MA, USA; 1 mL TRIZOL reagent
per 50~100 mg tissue). The samples were kept at room
temperature for a few minutes, then centrifuged. The supernatant
was transferred to a new tube, and 0.2 ml chloroform was
added followed by vigorous vertexing. After one additional
centrifugation, the upper aqueous phase was collected, and an
equal volume of isopropyl alcohol was added. The mixture was
incubated at room temperature for 10 minutes and centrifuged to
precipitate the RNA. Finally, the RNA was washed and dissolved,
then diluted for spectrophotometric analysis to determine
the concentration.
RT-qPCR
First strand cDNA was synthesized using iScript cDNA Synthesis
Kits (Bio-Rad, Hercules, CA, USA), starting with 1 µg of mRNA
and finishing with 50 µL in volume. Quantificational PCR was
performed with PowerUp™ SYBR™GreenMaster Mix (Applied
Biosystems, Foster City, CA, USA) following the manufacturer’s
instructions. Each PCR mix contained 1 µL of cDNA and 20
nmol of each primer; and each reaction started with 50 C for 2
min, followed by 95 C for 10 min and 40 cycles of 95 C for 15 sec
followed by 60 C for 1 min. The primer sequences used were
as follows:

PD-1: 5’- CCAGGATGGTTCTTAGACTCCC -3’(forward),

5’- TTTAGCACGAAGCTCTCCGAT -3’ (reverse);

PD-L1: 5’- TGGCATTTGCTGAACGCATTT -3’(forward),

5’- TGCAGCCAGGTCTAATTGTTTT -3’(reverse);

PD-L2: 5’- ATTGCAGCTTCACCAGATAGC -3’(forward),

5’- AAAGTTGCATTCCAGGGTCAC -3’(reverse);

CTLA-4: 5’- GCCCTGCACTCTCCTGTTTTT -3’(forward),

5’- GGTTGCCGCACAGACTTCA -3’ (reverse);

CD80: 5’- AAACTCGCATCTACTGGCAAA -3’(forward),

5’- GGTTCTTGTACTCGGGCCATA -3’(reverse);

CD86: 5’- CTGCTCATCTATACACGGTTACC -3’(forward),

5’- GGAAACGTCGTACAGTTCTGTG -3’(reverse);

GADPH: 5’- GGAGCGAGATCCCTCCAAAAT -3’ (forward),

5’- GGCTGTTGTCATACTTCTCATGG -3’ (reverse).
Statistical Analysis
Data were analyzed using JMP Pro 15 (SAS, Cary, NC, USA). All
data are expressed as median (interquartile range). Statistical
comparisons were performed using Wilcoxon rank sum test. A
two-tailed p < 0.05 indicates a statistically significant difference.
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RESULTS

Adenoma vs. Normal Pituitary Samples
To examine the differences between aggressive behaving tumors
(N=43) and normal pituitary samples (N=12), we compared the
mRNA levels of the immune checkpoint molecules PD-1, PD-L1,
PD-L2, CTLA-4, CD80, and CD86 by qRT-PCR. As shown in
Figure 1A, there were significantly higher mRNA levels of PD-
L2 (p < 0.0001), CD-80 (p = 0.0035), and CD-86 (p = 0.004) in
aggressive pituitary adenomas. However, there was no significant
difference in PD-1, PD-L1, and CTLA-4 mRNA levels between
aggressive pituitary adenomas and normal pituitary samples.

When we compared the relative mRNA levels of the immune
checkpoint molecules between non-aggressive tumors (N=17) and
normal pituitary samples, we found significantly higher mRNA
expression of ligand PD-L1 (p=0.02), PD-L2 (p < 0.0001)
(Figure 1B). There was no significant difference in PD-1,
CTLA-4, CD80, and CD86 mRNA expression between non-
aggressive pituitary adenomas and normal pituitary samples.

Aggressive vs. Non-Aggressive Pituitary
Adenomas
When we compared the levels of mRNA representing immune
checkpoint molecules between these 43 aggressive tumors and 17
non-aggressive tumors (Table 1), only levels of CD86 were
significantly higher in aggressive tumors (p = 0.035)
(Figure 2A). No statistically significant differences were found
between PD-1, PD-L1, PD-L2, CLTA-4, and CD80 mRNA levels
in these groups.

We also compared a subset of aggressive tumors that were
recurrent through radiation or were giant, invasive adenomas on
presentation (N=15) to non-aggressive clinically non-
functioning (N=11) pituitary adenomas. The mRNA levels of
CD80 and CD86 were significantly higher in the aggressive
tumors (p = 0.03, p = 0.002, respectively) (Figure 2B). No
statistically significant difference was found for PD-1, PD-L1,
PD-L2, and CLTA-4 mRNA levels between groups.
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Using thewell-establishedmarkerofKi67asan indicatorof tumor
aggressiveness, we compared mRNA levels of immune checkpoint
molecules between tumors with Ki67 < 3.0% and those with Ki67 ≥
3.0%. We found that the mRNA levels of PD-L1 were significantly
elevated in tumors with higher Ki67 (p < 0.0001) (Figure 2C).
No statistically significant difference was found for PD-1, PD-L2,
CLTA-4, CD80, and CD86 mRNA levels between groups.

Finally, we compared the non-functioning aggressive (N=28)
to the non-aggressive (N=11) pituitary adenomas. mRNA levels
of CD86 were significantly higher in aggressive tumors (p = 0.02)
(Figure 2D). No statistically significant difference was found for
PD-1, PD-L1, PD-L2, CLTA-4 and CD80 mRNA levels between
aggressive and non-aggressive NFTs.

Functioning vs. Non-Functioning
Adenoma Samples
Given reports suggesting higher immune checkpoint molecules
in functioning tumors, we next explored the differences in our
A B

FIGURE 1 | Immune checkpoint molecule mRNA expression in pituitary adenomas (PAs) compared to normal human pituitary tissue. (A) Comparison of relative
mRNA levels of immune checkpoint molecules between aggressive PAs (gray bar, black dots) and normal human pituitary tissue (blue dots). (B) Comparison of
relative mRNA levels of immune checkpoint molecules in non-aggressive PAs (gray bar, black dots) and normal human pituitary tissue samples (blue dots). *p < 0.05;
**p < 0.01; ****p < 0.0001.
TABLE 1 | Clinical features of pituitary adenoma patients.

All
patients

Aggressive
adenomas

Non-
aggressive
adenomas

N 60 43 17

Age 51.8 50.1 56.2
Gender (male, %) 38 (63.3%) 28 (65.1) 10 (58.8)
Classification
NFA 39 28 11
GH 12 8 4
ACTH 5 4 1
Prolactin 4 3 1

Tumor size (mean,
cm)

2.7 3.1 1.7

Ki67 (n = 59, %)
<3 45 28 17
≥3 14 14 0
October 202
1 | Volume 12 | A
NFA, nonfunctioning adenoma; GH, growth hormone-secreting adenoma; ACTH,
adrenocorticotropic hormone-secreting adenomas.
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cohorts of functioning (N=21) and nonfunctioning non-
aggressive tumors (N=11). We found no significant difference
in relative mRNA levels of PD-1, CTLA-4, CD80, and CD86
(Figure 3A). We then compared ACTH-staining tumors (N=5)
to nonfunctioning non-aggressive pituitary adenomas. The
mRNA levels of CD80 and CD86 were significantly elevated in
ACTH tumors (p = 0.02, p = 0.04, respectively) (Figure 3B). We
also analyzed GH-staining tumors (N=12) compared to
nonfunctioning non-aggressive pituitary adenomas. There were
no statistically significant differences in mRNA levels between
the groups (Figure 3C).
DISCUSSION

The last decade has seen a rapid growth in the use of
immunotherapy, and specifically checkpoint blockade, to
successfully treat a variety of solid tumors. While pituitary
adenomas remain a largely benign disease, the challenging
nature of invasive, recurrent, and/or hormonally functioning
tumors leaves a gap in current management. In this study, we
have found that the mRNA expression levels of the ligands for
Frontiers in Endocrinology | www.frontiersin.org 4
immune checkpoint receptors PD-1 and CTLA-4—namely, PD-
L1 and PD-L2; CD80 and CD86, respectively— were all
significantly higher in pituitary adenomas than in the normal
human pituitary.

Furthermore, the mRNA levels of CD80 and CD86 were
significantly higher in the most aggressive subset of PAs
compared to non-aggressive pituitary adenomas. Tumors with
Ki67 elevated to ≥3%, levels correlated with an increased risk of
recurrence, had significantly elevated PD-L1 and, although we
found no differences in immune checkpoint molecules among
the functioning adenomas compared to non-functioning
adenomas at large, a small subset of 4 ACTH-secreting tumors
had significantly elevated CD80 and CD86.

The tumor cells and their surrounding components, including
fibroblasts, immune cells, vascular networks, extracellular matrix,
etc., comprise the tumor microenvironment (TME) (27).
Physiologically, these stromal components maintain
homeostasis, immune regulation and anti-tumorigenesis (28,
29). We found higher expression of PD-L2, CD80, and CD86 in
aggressive pituitary adenomas when compared to normal pituitary
tissues, suggesting the accumulation of peripheral immune cells
like regulatory T cells, NK cells and dendritic cells in the pituitary
A B

C D

FIGURE 2 | Immune checkpoint molecule mRNA expression in aggressive PAs compared to non-aggressive PAs. (A) Comparison of relative mRNA levels of immune
checkpoint molecules between all aggressive PAs (gray) and all non-aggressive PAs (white). (B) Comparison of relative mRNA levels of immune checkpoint molecules
between PAs recurrent through radiation or giant, invasive on presentation (gray) compared to non-functioning non-aggressive PAs (white). (C) Comparison of relative
mRNA levels of immune checkpoint molecules between PAs with Ki67 ≥ 3% (gray) and PAs with Ki67 < 3% (white). (D) Comparison of relative mRNA levels of immune
checkpoint molecules between non-functioning aggressive PAs (gray) and non-functioning non-aggressive PAs (white). *p < 0.05; **p < 0.01; ****p < 0.0001.
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tumor immune microenvironment (TIME). In non-aggressive
pituitary adenomas, we found higher expression of PD-L1 and
PD-L2 when compared to normal pituitary tissues. This indicates
not only that increased immune infiltrate is not unique to
aggressive tumors, but also that non-aggressive tumors infiltrates
may be linked closer to PD-1 mediated pathways and aggressive
tumors to CTLA-4 pathways. PD-1 mRNA, which is expressed by
activated T cells, was found at the same level in tumor and normal
tissues. These findings suggest that PD-1 and CTLA-4 immune
checkpoint pathways may be useful therapeutic targets for
pituitary adenomas.

Our transcriptional data complements recent findings of
proteomic work by other groups by showing that, despite their
benign nature, pituitary adenomas are not immunologically inert
environments. In 2016, Mei et al. first reported that PD-L1 RNA
and protein expression were significantly increased in
functioning tumors compared to non-functioning adenomas
(25). While this group and others have studied and found
increased immune markers in functioning tumors, we focused
Frontiers in Endocrinology | www.frontiersin.org 5
on tumors with a clinically aggressive course, which included
both functioning and non-functioning pituitary adenomas. In
the most aggressive tumors, those that had recurred following
surgery and radiation and those that were giant and invasive at
presentation, we found significantly elevated CD80 and CD86.
Furthermore, in tumors with elevated Ki67 index ≥3%, we found
significantly elevated levels of PD-L1 mRNA levels. This is
consistent with data from Wang et al., who reported that PD-
L1 immunostaining occurred more frequently in tumors with Ki-
67 index ≥3%, as well as increased PD-L1 immunostaining in
GH and prolactin-secreting tumors (24). Our data demonstrated
higher levels of PD-L1 mRNA in pituitary adenomas as
compared to normal pituitary gland, but we did not find
differences in immune markers when comparing all
functioning pituitary adenomas to non-functioning pituitary
adenomas. We did find that a subset of five ACTH-staining
tumors had significantly elevated CD80 and CD86 mRNA levels
compared to our nonfunctioning controls. Kemeny et al. found
elevated PD-L1 immunostaining in human ACTH-secreting
A

C

B

FIGURE 3 | Immune checkpoint molecule mRNA expression in functioning PAs compared to non-functioning PAs. (A) Comparison of relative mRNA levels of
immune checkpoint molecules between functioning PAs (gray) and non-functioning non-aggressive PAs (white). (B) Comparison of relative mRNA levels of immune
checkpoint molecules between ACTH-staining PAs (gray) compared to non-functioning non-aggressive PAs (white). (C) Comparison of relative mRNA levels of
immune checkpoint molecules between GH-staining PAs (gray) compared to non-functioning non-aggressive PAs (white). *p < 0.05.
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tumors and, in a murine model of Cushing’s disease, found that
treatment with anti-PD-L1 led to restricted tumor growth and
lower ACTH production (30). These findings are consistent with
a potential role for checkpoint blockade in the management of
pituitary adenomas with an aggressive clinical course,
particularly refractory Cushing’s disease.

The significance of increased CD80 and CD86 expression in
pituitary adenomas has not been previously reported, but we
hypothesize it predicts an increased reliance on CTLA-4
mediated pathway of tumor suppression. Both CD80 and
CD86 serve as co-stimulatory molecules in the immune
environment, serving to activate T cells when they bind to
CD28 or deactivate T cells when they bind to CTLA-4. These
proteins are the most ubiquitous members of the B7 ligand
family but are not currently targets for immune checkpoint
blockade. B7-H3, another member of the B7 ligand family, is a
target currently under active investigation for antibody-based
immunotherapy, as it has been found to be expressed in many
different cancer types but has a limited expression in normal
tissues (31). Next steps may be to further study this ligand
expression in pituitary adenomas. Furthermore, our data suggest
that it is possible that CD80, CD86, and the CTLA-4-dependent
tumor immune escape is involved in the development of tumor
aggressiveness, a hypothesis that also merits further study.

Despite the success of immune checkpoint blockade, there
remain significant challenges in predicting which patients will
respond to therapy. Correlating treatment response with immune
checkpoint expression remains an active area of investigation and
some studies have shown that anti-PD-1/PD-L1 drugs lead to
improved outcomes in patients harboring tumors with high PD-
1/PD-L1 expression (32, 33). In addition, Van Allen et al. showed
that patients who achieved clinical benefit from the anti-CTLA-4
drug ipilimumab for metastatic melanoma had higher levels of
CTLA-4 and PD-L2 expression (34). Our results demonstrating
increased expression of PD-L2, CD80, and CD86 in aggressive
pituitary adenomasamples provide a rationale for studyingwhether
immunecheckpointblockade is effective for tumorcontrol. Lin et al.
attributed the response of a corticotroph pituitary carcinoma to
ipilimumabandnivolumab inpart to thehypermutated statusof the
tumor (26). This group is leading a multi-center clinical trial
(NCT04042753) to further investigate the efficacy of this
combined immunotherapy.

There are several limitations of our work. First, the findings of
our study are limitedby these knownchallenges in correlating levels
of immune checkpoint molecules with response. Furthermore, our
data included small sample sizes, particularly in sub-groups of
functioning adenomas. Given promising results in the role of
immune checkpoint therapy for corticotroph adenomas, a larger
analysis of ACTH-secreting tumors would be valuable.

Overall, our findings indicate that there is a significant
immunologic profile difference between pituitary adenomas
and normal pituitary as well as between clinically aggressive
pituitary adenomas and non-aggressive pituitary adenomas. Our
results suggest a possible role of immune checkpoint pathways in
pituitary adenoma tumorigenesis and growth and also support a
potential role for immune checkpoint blockade in pituitary
Frontiers in Endocrinology | www.frontiersin.org 6
adenomas that prove difficult to control with standard
therapies. The increased expression of the ligands for PD-1
and CLTA-4 in human pituitary tumors suggests that
immunotherapeutic antibodies such as ipilimumab and
nivolumab may be able to directly target clinically aggressive
pituitary tumors resistant to therapy. In addition, although we
had small numbers of tumor samples on which to base any firm
conclusions, our data suggest that corticotroph tumors may be
particularly targetable by these agents.
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