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Abstract: It is increasingly clear that the intestinal microbiota plays key roles in the pathogenesis of 

the conditions known as Crohn disease and ulcerative colitis (jointly known as the inflammatory 

bowel diseases). Perturbations of the microbiota, termed dysbiosis, are present at diagnosis and likely 

reflect earlier environmental influences along with interactions with intestinal immune responses. 

Over the last two decades, there has been increasing interest in the use of a nutritional therapy to 

induce remission of active Crohn disease. Amongst a number of recent studies focusing on the 

putative mechanisms of action of enteral nutrition in Crohn disease, there have been several reports 

illustrating profound interactions between this nutritional therapy and the intestinal microbiota. 

Although at present it is still not clear how these changes relate to concurrent improvements in 

inflammation, it has become an area of increasing interest. This review article focuses on the impacts 

of nutritional therapy in individuals with active Crohn disease and overviews the most recent data 

arising from international studies.  
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1. Introduction 

The inflammatory bowel diseases (IBD) are characterised by chronic inflammatory changes 

involving the gastrointestinal tract (gut). Although the two main subtypes of IBD, Crohn disease (CD) 

and ulcerative colitis (UC), share similar features, CD is differentiated from UC by disease location, 

histological changes and disease behaviour [1]. For instance, CD can involve any section of the 
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gastrointestinal tract, with areas of involvement interspersed with uninvolved areas (so-called skip 

lesions). On the other hand, UC typically involves continuous inflammation starting from the rectum 

and involving a variable length of the colon, without involvement of other areas of the gut.  

The pathogenesis of IBD is still not completely understood. At present, the best accepted 

hypothesis is that environmental factors lead to key changes in the intestinal microbiota that then 

trigger dysregulated innate and acquired immune responses in individuals with genetic risk  

factors [2–4]. Important environmental factors include diet, antibiotic exposure, and enteric 

infections. More than 200 genes have now been linked with increased risk of IBD: some of these are 

specific to CD or UC while others (e.g. IL-23R and MUC19) relate to risk for both disease types.  

At present IBD is incurable: management involves induction of remission followed by 

maintenance of remission [1]. Various treatments can be employed: these include medical therapies, 

nutritional interventions and surgery. Several of these interventions induce modulation of the 

intestinal microbiota. Nutritional therapies include the use of fully liquid diets to induce remission: 

termed exclusive enteral nutrition (EEN) [5,6]. EEN has been clearly linked with changes in the 

intestinal microbiota. This review focuses specifically on the current understanding of the impact of 

EEN on the intestinal microbiota.  

2. Exclusive enteral nutrition (EEN) 

EEN involves the exclusive use of a liquid diet for a period of time (typically up to 8 weeks), 

with exclusion of normal diet over this time [5]. The potential role of EEN arose from descriptive 

studies more than four decades ago: these initial case reports and case series demonstrated improved 

inflammatory status in adult patients with CD managed with nutritional interventions [7]. A few 

years later, a randomised controlled study compared EEN and corticosteroids (CS) in Irish adults 

with active CD: in this study EEN and CS performed similarly [8]. Although numerous subsequent 

studies have shown benefits with EEN in adults, many more recent reports have shown that EEN is 

typically more efficacious in children than in adults [5,6]. 

Although the main role of EEN is the induction of remission, this intervention also has various 

other benefits. These include enhancing nutritional status and improving bone health [5,9,10]. 

Furthermore, this intervention essentially has no side-effects and avoids the adverse effects seen with 

CS [1]. Refeeding syndrome, characterised by electrolyte abnormalities following the 

recommencement of nutritional intake after a period of relative or absolute starvation, has however 

been described in a handful of cases [11,12]. 

Following a period of EEN, many units recommend ongoing maintenance enteral nutrition 

(MEN), involving supplementary enteral formulae intake supplied in addition to standard or habitual 

diet. This intervention is associated with maintenance of remission, with reduction in  

relapse [5,13,14]. Further, this strategy enhances nutrition and growth (especially in children). 

Recent Japanese studies also show that MEN enhances the benefits of biologic therapies (such as 

infliximab) and prevents relapse after surgically-induced remission [5,15,16]. 

3. The intestinal microbiota in the context of IBD 

Many studies have focused on looking at a single organism as the causative factor for the 

development of IBD [17,18]. Over time, putative candidates have included measles virus, 
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Campylobacter species, Mycobacterium paratuberculosis (MAP) and Escherichia coli (e.g. adherent 

invasive E. coli). As one example, a number of studies illustrate higher rates of CD developing after 

Campylobacter infections. In addition, data shows a significantly greater prevalence of specific 

Campylobacter species (C. concisus) in children with CD compared to well control children [17]. 

Further, these organisms possess key virulence factors, are able to invade enterocytes and trigger 

local inflammatory responses. The occurrence of this organism is not, however, universal and nor 

does the carriage of this organism explain the full pattern of IBD. Overall, at present, there is not yet 

conclusive evidence that supports this or any other single microbe as the causative organism in the 

development of IBD. 

Most recent data illustrate that the presence of distinct changes in the patterns of the flora, so 

called dysbiosis, are more important in the development of IBD. This dysbiosis is considered to be 

present prior to and at the onset of IBD and is characterised by variations in the balance between 

bacterial groups (e.g. Firmicutes and Bacteroidetes). Some recent data also indicate that a reduction 

in one particular group of bacteria, Faecalibacterium prausnitzii is paramount [19]. This bacterium 

possesses at least one protective protein with anti-inflammatory benefits [20]. A reduction in 

numbers of this organism is thought to then lead to altered innate defence responses, thereby raising 

the risk of developing IBD.  

Several animal and human observations confer a critical role for the intestinal microbiota in the 

development of IBD. Firstly, the presence of microbiota is required to promote the development of 

inflammation in various animal models of IBD. An example is the interleukin (IL)-10 knock out 

mouse model [21]. Inflammation does not develop if these animals are housed in a germfree setting 

but does occur when the genetically-at-risk mice are housed in a conventional environment or 

infected with various specific bacteria. Exposure to probiotics or antibiotics also modifies the pattern 

of gut inflammation in these models of IBD.  

In the setting of individuals with CD, a defunctioning surgical procedure (meaning that a 

segment of gut has no faecal flow with a consequent reduction in organisms) is typically followed by 

resolution of inflammation in the bypassed section of gut [22]. Inflammation, however, recurs soon 

on reversal of the defunctioning procedure, recommencement of flow and resumption of direct 

bacterial interaction with the mucosa [23]. Similarly, a prolonged period of antibiotics may delay the 

endoscopic recurrence of disease following a surgical resection [24]. 

4. Alterations in the intestinal microbiota secondary to EEN 

Although EEN has been utilised to induce remission in individuals with active CD for many 

years, it has only been in the last few years that investigators have worked to elucidate the 

mechanisms by which this intervention leads to reduced inflammation. Several mechanisms have 

been demonstrated and proposed. These include enhanced barrier function with increased tight 

junction performance and direct anti-inflammatory effects during EEN therapy [25–27]. A number of 

reports have also clearly demonstrated that EEN leads to significant and relevant alterations in the 

intestinal microbiota. 

The first reports that considered the direct effects of EEN on the intestinal microbiota utilised 

temperature temporal or density gradient gel electrophoresis (TTGE or DGGE respectively) methods. 

These reports demonstrated significant alterations consequent to the nutritional intervention [28–30]. 

For example, in an early study utilising the DGGE technique, the changes in the patterns of 
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microbiota were clearly shown and persisted for some time but were not consistent across each of the 

included subjects [30]. Interestingly, the percentage similarity of Bacteroides-Prevotella group 

bacteria between week 0 and week 8 of EEN was positively correlated with the reduction in disease 

activity (utilising the Pediatric Crohn disease activity index: PCDAI) over this period. Later, in the 

period between 8 and 26 weeks after starting EEN, percent similarity of Clostridium leptum group 

was associated with change in disease activity and change in levels of S100A12 (a faecal marker of 

inflammation).  

In a more recent report that also utilised TTGE (augmented with quantitative PCR),  

Gerasimidis et al. [31] characterised the effects of EEN in 15 children with CD along with paired 

samples from children without IBD. EEN led to a reduction in bacterial diversity, reflected by a 

narrow range of bacterial species present, compared to that seen in the paired samples from the 

control children. In the addition, the paired samples from the control children showed greater 

similarity over time than the paired samples from the children with CD (reflecting a loss of stability 

consequent to the nutritional intervention in the children with CD). Furthermore, Bacteroidetes 

concentrations were reduced during EEN, with subsequent recovery on resumption of normal diet. 

This report also demonstrated that 30 days of EEN resulted in reduced concentrations of  

F. prausnitzii species, contrary to the authors’ hypothesis and contrary to expectations arising from 

the earlier observations made in adult patients with CD [19,20].  

As well as assessing the impact of EEN on the structure of the intestinal microbiota, these 

authors also characterised functional aspects subsequent to the period of nutritional intervention [31]. 

EEN was shown to result in a reduction in butyrate, a critical short chain fatty acid, along with an 

increase in faecal pH and levels of sulfides. These findings provide further information about the 

functional implications of the effects that EEN has on the microbiota. Although these changes may 

simply reflect preferential growth of sulfide producers, and suppressed growth of butyrate-producers, 

the reduction in butyrate may indicate a consequent reduction in colonocyte health during this time. 

This may indicate a therapeutic opportunity for the addition of butyrate along with EEN as an 

adjunctive intervention in order to more optimally support colonic function.  

A number of subsequent studies have employed 16S rRNA high throughput sequencing and 

some reports have also employed whole genome or shot-gun sequencing techniques. Some additional 

reports have also utilised methods to further describe the functional implications of the changes in 

the microbiota.  

One of the first studies to utilise 16S rRNA sequencing showed dysbiosis at the time of 

diagnosis of the five subjects with CD, which was not apparent in control children [32]. After 

commencing EEN, the number of operational taxonomic units (OTU) reduced quickly. This change 

correlated closely with the induction of remission. Later during the period of observation, an increase 

in the number of OTU was also associated with subsequent disease exacerbation. This report also 

indicated that the presence of specific Firmicutes strains were associated with disease activity during 

and after the period of EEN.  

Quince et al. [33] evaluated the effects of EEN in 23 children with CD, with samples before, 

during and after EEN. Comparisons were made to samples collected from 21 healthy children. 16S 

sequencing and shot-gut metagenomics were utilised to assess the impact of the nutritional 

intervention. Overall, these data again illustrated that microbial diversity was less in the children 

with CD prior to EEN than the matched controls. EEN resulted in further reduction of diversity with 

greater differences from the control setting. Similar to earlier data, these investigators showed an 
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association between changes in the flora and faecal calprotectin levels (a marker of gut 

inflammation).  

Lewis and colleagues [34] assessed a large group of patients who were treated with a polymeric 

formula to provide 90% of caloric intake (along with some solid food intake). The EEN protocol 

utilised in this group of children differed from other EEN protocols, in that the enteral formula did 

not provide all caloric intake. This study also included two groups of children treated with other 

interventions: one group received a biologic therapy and the second group received partial enteral 

nutrition (with approximately half of their caloric intake with an enteral formula and half as solid 

foods). Comparisons were also made to samples from another group of children without IBD. 

Relative to the control children, the children treated with EEN had significant changes in the 

diversity of the microbiota within seven days of the intervention. Interestingly, more marked changes 

were seen in the children who responded to enteral nutrition than in those who did not respond. The 

abundance of six specific genera altered over this time. These early changes seen following EEN 

were not seen in the other two treatment groups.  

This study also delineated the patterns of the intestinal microbiota after 8 weeks of therapy and 

stratified according to response (defined as reduction in faecal calprotectin below 250 mcg/g) or non-

response. Response in the groups treated with EEN or a biologic therapy was associated with the 

microbiota reverting closer to the patterns seen in the control children. 

More recently, Schwert and colleagues [35] utilised high throughput sequencing to characterise 

changes in the microbiota in conjunction with detailed immunological assays. Fifteen children with 

active CD were included, with stool samples for characterisation of the microbiota taken prior to and 

then after 2 weeks and 6–8 weeks of EEN. These analyses were correlated with assessments of 

disease activity and with immunological responses at baseline and after 3 weeks of EEN. As 

previously, EEN resulted in reductions in key groups of bacteria, namely those belonging to the 

Bacteroidetes phylum, and with increases in bacteria in the Firmicutes phylum. These changes were 

evident after just two weeks of EEN. Interestingly the changes in the children who were recently 

diagnosed differed from those with longstanding disease. In contrast to the findings described by 

Kaakoush et al. [32], these authors did not demonstrate reductions in the numbers of OTU during 

EEN therapy. 

This study also characterised specific and detailed changes in innate and acquired immune 

status [35]. Specifically, EEN therapy was associated with a decreased number of T regulatory (Treg) 

cells in the lamina propria of the intestinal epithelium. The authors modelled network relationships 

between the altered microbiota and the immunological improvements during this short term dietary 

change. However, no analyses were conducted beyond the period of EEN and the timing of the 

different assessing modalities differed also. 

Dunn et al. [36], in an assessment of the impact of EEN in ten children with IBD and five 

healthy controls, again showed that diversity was lower in individuals with CD compared to control 

subjects. Interesting, the data from this report demonstrated that diversity was lowest in those who 

proceeded to have a subsequent sustained remission. There were also differences in the structure of 

the microbiota in the children who remained in remission up to 24 weeks post diagnosis compared to 

those who did not. Those who remained well had a number of particular strains present, including 

Bacteroides, along with limitation in Proteobacteria. Those who had early relapse had a greater 

proportion of Proteobacteria. These differences were present at baseline: utilisation of these 

differences was then able to predict response rate with 80% accuracy.  
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Each of the studies reported above were conducted in children. To add to this pattern, two 

studies have been reported to date that included adult subjects. Jia et al. [37] assessed the impact of 

two weeks of an elemental formula (given exclusively) in adults with CD (in comparison to subjects 

with irritable bowel syndrome, UC and healthy controls) with PCR to characterise changes in  

F. prausnitzii alone. EEN was noted to reduce several types of this bacterium, similar to and 

supporting the changes described in the afore-mentioned paediatric study [31]. These data indicate 

that the administration of EEN appears to have particular effects on this group of bacteria. 

Shiga and co-authors [38] assessed the impact of EEN in 30 adults with CD, using terminal 

restriction fragment length polymorphism methods augmented with quantitative PCR. An elemental 

formula was utilised over an average of 38 days in this study. This study showed similar findings to 

the paediatric reports that employed more recent molecular methodologies, with reductions in 

bacteria overall (reduced bacterial diversity). During the course of EEN in these patients the numbers 

of bacteria in the Bacteroides fragilis group reduced by one tenth: there were no significant changes 

in the other bacterial groups assessed.  

The focus of the work reviewed above was on the impact of the EEN on the intestinal 

microbiota in the context of CD. Interestingly, there have been a series of reports demonstrating that 

this nutritional intervention is also efficacious and also leads to alteration of the structure and 

function of the intestinal microbiota in rheumatological disease. Swedish authors reported that a 

course of EEN given over 3 to 8 weeks in 13 children with juvenile idiopathic arthritis (JIA) 

promptly resulted in marked reduction of joint inflammatory scores and decreased levels of key pro-

inflammatory cytokines implicated in joint inflammation [39]. This team have also assessed the 

effects of two separate, successive courses of EEN on the intestinal microbiota in one child with  

JIA [40]. EEN resulted in marked changes of the microbiota with particular reduction in the 

Bacteroidetes phylum. Furthermore, short chain fatty acid levels were decreased at the end of each 

course of EEN, with subsequent increases. The changes in the structure and function of the intestinal 

microbiota paralleled the observed clinical improvements. Although this work is preliminary (a 

single patient studied in detail), the data arising is promising, and indicates similar effects of EEN in 

the two disease states and hints at common mechanisms of action of EEN in children. Further work 

in both areas is clearly required to fully define the roles of the intervention and potentially to more 

fully elucidate the mechanisms of action. 

5. Conclusions 

There are now a number of reports that have utilised various techniques to elucidate the specific 

changes in the intestinal microbiota following the intervention of EEN in the setting of CD. 

Additional reports have also characterised some functional implications of the changes in the 

microbiota. 

Overall, these reports have all shown that EEN leads to profound alterations in the intestinal 

microbiota, with these changes being rapid (within one week) and generally maintained throughout 

the dietary intervention. The reports have also emphasised significant interindividual variations. 

Interestingly, at least two reports have specifically demonstrated changes in F. prausnitzii, which has 

been characterised as a defensive bacterium in adults with CD. Whilst this reduction may just reflect 

the change in nutrient intake for this organism, it is intriguing that this reduction is concurrent with 
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improved inflammation and disease activity, which is contrary to the previously-reported activity of 

this bacterium.  

The changes in the abundance of F. prausnitzii, as noted in several reports, may reflect the 

change in nutrient supply for this bacterium. None of the enteral nutrition formulae utilised in the 

recent EEN studies contain dietary fibre. The lack of this may contribute to the consequent reduction 

in abundance of organisms that have fermentative activities. Consistent with this are the studies that 

have measured specific short chain fatty acids: each of these reports have indicated a reduction in 

levels of faecal butyrate, a product of fermentation of dietary fibre. This feature was also shown in 

the studies involving children with joint disease (without known gut inflammation) reflecting that the 

response is more likely secondary to the nutritional change. 

Several reports have also demonstrated that the changes in the structure in the intestinal 

microbiota may be reflective of the duration of disease (newly-diagnosed versus long-standing 

disease) and also provide predictive pointers to the response to EEN itself. Other reports have 

demonstrated that the changes seen in response to EEN are subsequently reversed in those who have 

an exacerbation of their disease. Together these findings indicate that characterisation of the structure 

of the intestinal microbiota may have significant prognostic relevance in children with CD. Prompt 

assessments of key aspects of the intestinal microbiota may be able to be utilised to predict the 

response to EEN, and also to predict the risk of subsequent relapse of disease. Inclusion of these bio-

indicators in a panel with other specific bio-markers (e.g. inflammatory markers such as faecal 

calprotectin) may be even more advantageous. 

At present the reports of the impact of EEN on the intestinal microbiota do not fully illuminate 

the mode of action of this intervention in the context of active CD. The network modelling of 

Schwert et al. [35] suggest that changes in the flora may interact directly with the intestinal 

epithelium and local/systemic immune responses. However, these immunological events may result 

from direct effects of the enteral formulae utilised for EEN on the epithelium, rather than be 

mediated through changes in the microbiota. Other work has demonstrated that these same polymeric 

formulae have direct anti-inflammatory and protective effects on the epithelium [25–27]. The 

interactions between these mucosal changes and the microbiota have not yet been characterised. As a 

result, it is not yet clear if the modifications in the intestinal microbiota seen after EEN are simply a 

direct consequence of altered dietary intake or if the changes in the microbiota are a direct effect that 

then also modulates the mucosal events. Further work to understand these complex interactions is 

required: as well as enabling optimisation of EEN protocols, such advances in understanding should 

also provide clues about the pathogenesis of CD.  

Although the data outlined in this report have focused on individuals with CD, it is intriguing to 

note that EEN has also been demonstrated to have benefits in other inflammatory conditions, such as 

joint disease. Combined studies of dietary interventions in various inflammatory conditions may also 

help to further advance the roles and mechanisms of EEN. 

In conclusion, there is no doubt of the role of the intestinal microbiota in the development and 

pathogenesis of IBD, especially CD. These data demonstrate that nutritional intervention in 

individuals with CD is associated with wide and profound changes in the patterns of the microbiota. 

These data give strong indications that these changes may be employed in prognostic or predictive 

models to enhance the outcomes of individuals with CD.  
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