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Parkinson’s disease (PD) is a neurodegenerative disease that primarily affects elderly

people. The mechanism on onset and progression of PD is unknown. Currently, there

are no effective treatment strategies for PD. PD is thought to be the loss of midbrain

dopaminergic neurons, but it has recently been discovered that glia also affects brain

tissue homeostasis, defense, and repair in PD. The neurodegenerative process is linked

to both losses of glial supportive-defensive functions and toxic gain of glial functions.

In this article, we reviewed the roles of microglia, astrocytes, and oligodendrocytes

in the development of PD, as well as the potential use of glia-related medications in

PD treatment.
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INTRODUCTION

Parkinson’s disease (PD) is a common neurodegenerative disease characterized by motor and
non-motor symptoms. The motor symptoms include bradykinesia, muscle stiffness, static tremor,
dysfunction of postural, and gait. Non-motor symptoms consist of olfactory disability, cognitive
damage, mental disorders, sleep disorders, autonomic dysfunction, soreness, and fatigue (Agarwal
et al., 2020). The features of PD are the degeneration and loss of dopaminergic neurons in the
midbrain, which results in the inability of downstream neural circuits and the striatum receiving
adequate levels of dopamine, and induces movement symptoms. The pathology hallmark of
PD is abnormal aggregation of alpha-synuclein (α-syn) protein, which is known as a major
component in Lewy bodies and Lewy neurites (Agarwal and Muqit, 2021). The etiopathogenesis
of PD is complicated, such as oxidative stress, inflammation, and autophagy (Barodia et al., 2019;
Baumeister et al., 2019; Bido et al., 2021).

GLIA

In the central nervous system (CNS), neuroglial cells are mainly divided into microglia, astrocytes,
and oligodendrocytes, which play roles in regulating inflammation, metabolism, regeneration, and
myelination of neurons. However, these cells do not act alone. Recent studies demonstrate a new
role for the interaction between microglia and astrocytes in the homeostasis of CNS (di Domenico
et al., 2019). Moreover, microglia also acts on regulating myelination (Dzamko et al., 2017).

The microglia possess an immune function and secrete pro-inflammatory cytokines. According
to the functions of microglia in the neuroinflammation, they can be categorized into two groups:
poisonous to nerves (M1-phenotypemicroglia) and protective to nerves (M2-phenotypemicroglia)
(Biondetti et al., 2021; Chen et al., 2021). Activated microglia secrete interleukin-1α (IL-1α), tumor
necrosis-α (TNF-α), and C1q, the first subcomponent of the C1 complex, which induce astroglia
into A1s (Cheng et al., 2021). In CNS lesions, infection and pathologic changes caused by activated
microglia. Activated microglia operate in the inflammatory processes, interact with other cells, and
affect each other (Choi et al., 2020).
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Astrocyte (A1-phenotype astrocytes) also plays a critical
role in producing pro-inflammatory cytokines and activating
immune cells (Cichorek et al., 2021). It also plays a variety of roles
in the CNS, such as regulating glucose metabolism, reuptaking
glutamate, growth of synapses, and maintaining homeostasis of
the blood–brain barrier (Colombo and Farina, 2016). It has been
reported that astrocytes can be converted into neuronal cells
(Damisah et al., 2020).

Oligodendrocytes are a type of glial cells in the CNS, which
generate myelin to wrap axons. Myelin ensures the efficient
propagation of action potentials along axons.

GLIA AND PARKINSON’S DISEASE

Parkinson’s disease is a multifactorial neurodegenerative disease
in which glial cells are involved in various aspects of the disease.
The dysfunctions of neurons and neural circuits in the nervous
system are involved in PD. However, non-neuronal elements,
like glial cells, also play a crucial role in the nervous system
development, function, and plasticity (Errea and Rodriguez-
Oroz, 2021). SemraSmajić et al. reported that specific neuronal
cell clusters and “pan-glial” activation are involved in the
pathology of the movement disorder based on single-nuclei RNA
sequencing data from the idiopathic PD midbrain (Ettle et al.,
2016).

Glial cells play a variety of roles in the progression of
PD. Microglia and astrocytes play dual roles based on various
microenvironments and cell subtypes, and produce different
responses and perform different functions (Fang et al., 2021).
Molecules related to familial forms of PD, α-syn (SNCA), parkin
(PARK2), DJ-1 (PARK7), and ATPase 13A2 (ATP13A2 gene)
work together with microglial and astrocyte activation (Filippini
et al., 2021; Fu et al., 2021). Oligodendrocytes are associated with
demyelination in PD (Fujita et al., 2018).

Microglia and PD
Microglia are involved in the pathological process of
neuroinflammation and neurodegenerative diseases, including
PD. The α-syn aggregates in neurons which secrete exosomes
carrying α-syn out of cells and activates an inflammatory
response in microglia and astrocytes (Glass et al., 2010). These
exosomes target microglia preferentially (Gordon et al., 2018).
Fyn kinase is a protein tyrosine kinase known to regulate
proinflammatory effects in T cells and other immune cells and
contributes to astrocytic migration and the differentiation of
oligodendrocytes in CNS. Fyn plays the role in activating the
NLR family pyrin domain containing 3 (NLRP3) inflammasome
in any cell types. The FYN gene is identified as a novel PD
risk locus in a genome-wide association study (GWAS). Fyn
conjuncts with the class B scavenger receptor CD36, then
facilitates α-syn importing into microglia (Guo et al., 2020).
Furthermore, microglia Kv1.3, a voltage-gated potassium
channel, is transcriptionally upregulated and post-translationally
modified by Fyn. Whereas, small-molecule PAP-1, an inhibitor
of Kv1.3 can inhibit neuroinflammation regulated by Kv1.3 in
neurodegeneration (Hanslik et al., 2021). The human microglial
transcriptome study showed that microglial expression of

P2Y12R is associated with PD (Hentrich et al., 2020). P2Y12R
regulates ras homolog family member (Rho)-associated coiled
coil-containing protein kinase (ROCK) and p38 MAPK activity
and controls cytokine production. This receptor plays a
dual role in PD: P2Y12Rs are necessary for the initiation of
protective inflammatory response, then maintain the activation
of microglia and stimulate the pro-inflammatory cytokine
response at later stages of neurodegeneration (Hughes and
Appel, 2020). Triggering receptors expressed on myeloid cells
2 (TREM2), phosphoinositide-specific phospholipase C (PLC)
γ2, and protein kinase C (PKC) promote the activation of
reparative/regenerative microglial subtypes which are beneficial
for neurodegenerative diseases (Hughes et al., 2019).

The Toll-like receptors (TLRs) signaling pathway is the
primary signaling pathway that mediates the inflammatory
response. The α-syn sensitizes the TLR4-dependent
inflammatory response (Kon et al., 2019) and decreases
the microglial glucocorticoid receptors (GR) expression.
In the absence of GR in microglia, TLR9 translocation to
endolysosomes is enhanced and the cleavage of TLR9 is also
promoted, which leads to pro-inflammatory gene expression
(Kwon and Koh, 2020). Then microglia secrete cytokines and
promote the death of neurons. Furthermore, the neuronal
expression of TLR2 is significantly increased by α-syn, and
the activated TLR2 leads to neuroinflammatory response, the
production of reactive oxygen species (ROS), the secretion
of inflammatory cytokines, and the microglial-activating
chemokines (Lacagnina et al., 2017).

The NLRP3 inflammasome is related to neuroinflammation
activation in microglia. NLRP3 inflammasome then leads to
Cleaved caspase-1 and the inflammasome adaptor protein
apoptosis-associated speck-like protein containing a C-terminal
caspase recruitment domain (ASC) elevation (Lai et al., 2021),
and the release of interleukin-1β (IL-1β). The α-syn can mediate
the generation of mitochondrial ROS leading to the activation
of the NLRP3 inflammasome (Guo et al., 2020). 1-methyl-
4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), used for making
mouse model of PD, induces mitochondrial ROS in neural
cells, promotes the robust assembly, and activates the NLRP3
inflammasome (Lee et al., 2019).

The β-arrestin1 (ARRB1) and β-arrestin2 (ARRB2) play
the opposite roles in microglia-mediated inflammation, as well
as in the pathogenesis of PD (Liddelow and Barres, 2017).
ARRB1 aggravates, whereas ARRB2 ameliorates, the pathological
features of PD. The p65, a component of the NF-κB pathway
can interact with these two ARRBs which lead to adverse
effects on inflammation by activating signal transducers and
activators of transcription 1 (STAT1) and NF-κB pathways.
These two molecules exert different functions in regulating
the expression of nitrogen permease regulator-like 3 (Nprl3),
which conversely mediates the functions of both ARRBs in
microglial inflammatory responses. Fyn kinase mediates NF-κB–
p65 nuclear translocation through PKC-δ (PKCδ) pathway and
promotes the initiation of inflammasome (Guo et al., 2020).

Leucine-rich repeat kinase 2 (LRRK2) plays a critical role
in the microglial inflammatory response mediated by TLR 2
(Liddelow et al., 2017). The α-syn induces the phosphorylation
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and activity of LRRK2, then LRRK2 selectively phosphorylates
and also induces the nuclear factor of activated T cells,
cytoplasmic 2 (NFATc2) translocation into the nucleus, then
promotes a neuroinflammatory cascade. Inhibition of LRRK2
apparently decreases microglial neurotoxicity mediated by α-
syn by reducing the level of TNF-α and IL-6. In microglia,
LRRK2 modulates IFN-γ stimulated the production of cytokine
in an NFAT-independent way (Lin et al., 2021). INF-γ increases
neuronal susceptibility to immune challenges by enhancing
the LRRK2 G2019S-dependent negative regulation of Protein
Kinase B (also known as AKT) phosphorylation and NFAT
activation. Microglia accumulating α-syn aggregation results in
a reactive state with phagocytic function, excessively produces
oxidative and proinflammatory molecules, and selectively
recruits peripheral immune cells (Lopes et al., 2022). These
peripheral immune cells secrete IFN-γ, create a vicious
molecular feed cycle with microglia, and induce neurons
to apoptosis.

The engulfed α-synmediates the upregulation of E3 ubiquitin-
protein ligase pellino homolog 1 (PELI1), which impairs
the autophagy flux and induces the α-syn aggregation in
microglia (Iring et al., 2021). After exceeding its degradation
capacity, the excessive α-syn is released from microglia to
the extracellular matrix, and is taken into neurons resulting
in the transferring of α-syn from cell to cell (Kalia and
Lang, 2015). Thus, the α-syn inhibits microglia autophagy and
promotes neurodegeneration (Kierdorf and Prinz, 2013). In the
meantime, the α-syn activates microglial TLR4, which induces
the transcriptional upregulation of p62/SQSTM1(Sequestosome-
1), selective autophagy of the adaptor protein through the NF-
κB signaling pathway, then p62 facilitates the formation of
α-synuclein/ubiquitin-positive complex which is degraded by
synucleinphagy (a special form of autophagy), thus protecting
neurons (Kim et al., 2020). The p38 MAPK via T-cell
Transcription Factor EB (TFEB) inhibits chaperone-mediated
autophagy (CMA)-mediated NLRP3 degradation which activates
microglia. SB203580 is the inhibitor of p38 MAPK and alleviates
movement dysfunction by preventing neurodegeneration in vivo.
MCC950, a small-molecule NLRP3 inhibitor has the ability to
abolish inflammasome activated by fibrillar α-syn in microglial
cells, slow down the nigrostriatal dopaminergic degeneration,
and mitigate motor deficits (Kim and Kornberg, 2021).

It has been reported that iron content increases in the
substantia nigra pars compacta (SNpc) is a reason for
dopaminergic striatal dysfunction and cell loss (Loria et al.,
2017). Iron content in SN and GP (paleostriatum) gradually
elevated in the whole process of PD (Maatouk et al., 2018).
Iron deposition may be a feature of preclinical and early stage
of this disease; thus deserves more attention. LRRK2 mutations
linked to PD sequester Rab8a to damage lysosomes and regulate
transferrin-mediated iron uptake inmicroglia. LRRK2modulates
iron uptake and storage in microglia after the activation of
proinflammatory molecules (Maatouk et al., 2019). Lin and their
colleagues found that DJ-1 regulated microglial activation in
response to lipopolysaccharide (LPS) treatment. DJ-1 deficiency
in microglia increases the neurotoxicity induced by LPS (Mamais
et al., 2021).

Based on the above reviews, it has been shown that the role of
microglia in PD is closely related to α-syn. The α-syn activates
microglia to induce neuroinflammatory response and inhibits
autophagy and finally results in neurotoxicity in PD. Thus,
regulation of neuroinflammatory and autophagy in microglia is
the therapy strategy for PD. The roles and the related mechanism
of microglia in PD are included in Figure 1.

Astrocyte and PD
Astrocytes phagocytose and degradate α-syn fibrils in vitro and
in ex vivo brain sections (Morales et al., 2017; Oksanen et al.,
2019). 6-hydroxydopamine is used to establish a PD animal
model by destroying dopaminergic neurons in the striatum.
In the rat model of 6-hydroxydopamine, it was observed
that astrocytes phagocytosed dopaminergic debris and α-syn,
which suggests that astrocytes may have a beneficial role in
clearing damaged cellular components in PD (Panicker et al.,
2019; Panagiotakopoulou et al., 2020). Astrocytes have also
been reported to prevent dopaminergic neurons from α-syn
accumulation and spread (Panicker et al., 2019). However, in the
later stage of PD, astrocytes may be induced into the A1 reactive
state, which is highly cytotoxic to neurons and oligodendrocytes
rather than phagocytic (Cheng et al., 2021).

Connexin 30 (Cx30) is an astrocytic gap junction protein. A2
astrocytes reduce dopamine (DA) neuron loss in Cx30 knockout
mice, which indicates that Cx30 plays a critical role in PD
(Picca et al., 2021). The reduction of GR increases Connexin
43 (Cx43) hemichannel activity and elevates intracellular
calcium levels in astrocytes, which induces the elevation of
astrocyte specific inflammation-associated transcripts, including
intercellular cell adhesion molecule-1 (ICAM-1),TNF-α, and IL-
1β, as well as the excessive production of microglia (Qian et al.,
2020).

Compared with neurons, astrocytes also exhibit higher
internalization of α-syn and lysosomal degradation rate (Reyes
et al., 2019). This internalization of α-syn is blocked by
the protein clusterin (Rivetti di Val Cervo et al., 2017).
Astrocytes are able to efficiently degrade fibrillar α-syn through
lysosomal degradation, which decreases the accumulation of
α-syn in neurons and protects them in this way (Morales
et al., 2017). During PD pathogenesis, dysfunctional chaperone-
mediated autophagy (CMA) and impaired macroautophagy lead
to accumulation of α-syn in astrocytes (Panicker et al., 2019).
Then astrocytes secrete majority of their internalized protein
aggregates, most of which are engulfed and cleared by microglia
(Rostami et al., 2020). Thus, the clearance of α-syn is mainly
undertaken by microglia. Furthermore, α-syn fibril oligomers
induce astrocytes to release Ca2+-dependent glutamate, which
then activates glutamate receptors like extrasynaptic N-methyl-
D-aspartic acid receptor (NMDA) receptors (eNMDARs). Thus,
NitroSynapsin (an NMDAR antagonist) can reverse eNMDAR-
mediated synaptic loss induced by oligomeric α-syn (Rostami
et al., 2021).

The α-syn is able to activate both non-specific immune
responses and specific immune responses (Sarkar et al., 2020). It
induces astrocytes to express high levels of MHC-II to present
α-syn (Siokas et al., 2022). Then T cells infiltrate into the CNS,
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FIGURE 1 | Microglia in Parkinson’s disease. In Parkinson’s disease, debris containing α-syn and DAMPs from neurons activates microglia through regulating Fyn,

Kv1.3, and P2Y12R via ROCK and p38 MAPK pathways. The α-syn induces neuroinflammatory response through activating TLR4/TLR9/TLR2, NLRP3

inflammasome, ARRB1/ARRB2/STAT1/NF-κB/NLPR3, and LRRK2/NFAT pathways. The phagocytized α-syn impairs the autophagy through PELI1,

TLR4/p62/SQSTM1, and p38/TFEB/NLRP3 pathways.

including Th1/Th2 which produce Th1/Th2 cytokines, CD4+
and CD8+ T cells which secrete IFN-γ. This kind of reaction
aggravates the loss of dopaminergic cells.

Just like in microglia, NLRP inflammasome plays an
important role in astrocytes. Dopamine D2 receptor (Drd2)
inhibits the activation of NLRP3 by regulating β-arrestin2
interaction with NLRP3 and interferes with the inflammasome
assembly. In this way, Drd2 decreases caspase-1 expression and
reduces IL-1β release (Smajic et al., 2021).

Experiments have shown that astrocytes are able to convert
into neurons, and such strategies have considerable therapeutic
potential in the treatment of PD. It has been studied
that the transcription factors, ASCL1, LMX1A, NEUROD1,
and NeAL218 (microRNA miR218) reprogram astrocytes
into induced dopamine neurons (iDANs), and improve the
efficiency of reprogramed astrocytes by promoting the chromatin
remodeling and activating the transforming growth factor-β
(TGF-β), Shh, and Wnt signaling pathways (Spaas et al., 2021).
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FIGURE 2 | Astrocytes in Parkinson’s disease. The engulfed α-syn has a variety of effects on astrocytes. The α-syn induces MHC-II expression in astrocytes and

activates T cells. The α-syn induces the release Ca2+-dependent glutamate and activates eNMDARs to accelerate the injury and loss of synapsis. Drd2 inhibits the

activation of NLRP3 by regulating β-arrestin2.

Phosphatase and tensin homolog deleted on chromosome ten
(PTEN)-induced putative kinase 1 (PINK1)-dependent ubiquitin
phosphorylation is predominantly in astrocytes, which suggests
that PINK1 is related to astrocyte dysfunction in PD (Stok
and Ashkenazi, 2020). Another study showed that depleting
the polypyrimidine tract binding protein (PTB) converted
astrocytes into functional neurons (Tremblay et al., 2019).
Interestingly, astrocytes from different brain regions convert into
different neuronal subtypes. Midbrain astrocytes convert into
dopaminergic neurons whose axons reconstruct the nigrostriatal
circuit, restore dopamine levels, and rescue the motor deficits
in PD.

The above-mentioned reviews suggest that the roles of
astrocytes in PD are closely related to the inflammation,
macroautophagy impairments, and MHC-II regulating
Th1/Th2 cytokines production induced by α-syn. Astrocytes are
converted into functional neurons. The roles of and the related
mechanism of astrocytes in PD are included in Figure 2. The
pathway on the astrocytes converted into neurons is shown
in Figure 3.

Oligodendrocytes and PD
Oligodendrocytes are differentiated from oligodendrocyte
precursor cells (OPCs). OPCs are composed of 5% of the
resident parenchymal central nervous system glial cells. More
and more evidence shows that OPC dysfunction and the
lack of OPC differentiation participate in the progression of
neurodegenerative disorders, such as PD (Trudler et al., 2021).

White matter myelin profiles are linked to clinical subtypes of
PD (Tsunemi et al., 2020).

The progression in oligodendrocytes has been detected in
multiple system atrophy (MSA), a rare and atypical PD (Tu
et al., 2021). An analysis sequence of about 17,000 nuclei
from matched SN samples found that dopaminergic neuron-
specific gene expression makes up the crucial genetic risk
for PD, such as protein folding and ubiquitination pathways,
mitochondrial functioning, and a distinct cell type associated
with PD and oligodendrocyte-specific gene expression (Vizziello
et al., 2021).

Myelin-associated oligodendrocyte basic protein (MOBP)
polymorphism is one of the risk factors for PD (Williams et al.,
2021). Furthermore, the expression of myelin-associated gene is
increased in the frontal cortex of α-syn overexpressing rats and
PD patients (Xia et al., 2019). Myelin loss is associated with α-syn
accumulation in oligodendrocytes (Tu et al., 2021). In PD and
dementia with Lewy bodies, MOBP is found in LBs originated
from the brainstem, cingulate cortex, and sympathetic ganglia.
However, lots of evidence shows that MOBP doesn’t occur in
other inclusions of neurons and glia in other neurodegenerative
diseases, such as multiple system atrophy, Alzheimer’s disease,
and Pick’s disease. It has been reported that MOBP is upregulated
in neurotoxic conditions, indicating that accumulation of MOBP
in LBs may play a role in protecting cells in LB disease (Xia et al.,
2021).

The previous studies show that the gap junction protein
connexin-32 (Cx32) is crucial for the uptake of α-syn in neurons
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FIGURE 3 | Interaction of glia and neurons in Parkinson’s disease. Neurons secrete α-syn to extracellular matrix which induces glia reaction differently. The molecules

are transmitted among neurons and glia to form a complex regulating network. Astrocytes are induced to A1s by microglia through inflammatory factors IL-6, TNF-α,
and C1q. Astrocytes are converted into functional neurons by ASCL1, LMX1A, NEUROD1, and NeAL218 transcription programs. Cx32 and FABP7 regulate the
oligodendrocytes survival.

and oligodendrocytes and targets Cx32 to block α-syn uptake
(Yellajoshyula et al., 2022). Benztropine restores the α-syn-
induced myelination deficit of oligodendrocytes.

Extracellular vesicles secreted from the PD brain to peripheral
blood contain a higher level of α-syn. Compared to MSA
patients, the peripheral blood of PD patients contains a higher
concentration of oligodendrocyte-derived enrichedmicrovesicles
(OEMVs), whereas the average concentration of α-syn in each
OEMVs shows no significant difference between these two
groups. The mechanism is probably that α-syn interferes with
the interaction between vesicle-associated membrane protein 2
(VAMP2) and syntaxin 4, causing the dysfunction of the soluble
N-ethylmaleimide-sensitive factor attachment protein receptor
(SNARE) complex. This study shows the potential method to
discern PD with MSA (Yu et al., 2020).

Activated phospholipase A2 (PLA2) triggers fatty acid-
binding protein 7 (FABP7) forming a complex with endogenous
α-syn (Zhu et al., 2018). The oligomer induces cell death of

both oligodendrocytes and OPCs. This oligomerization and
aggregation of FABP7 with α-syn are significantly inhibited by
FABP7 ligand 6, so FABP7 ligand 6 prevents oligodendrocytes
and OPCs from cell death. The role and the mechanism of
oligodendrocytes in PD are shown in the part of oligodendrocytes
in Figure 3.

Although the role of oligodendrocytes in PD has not been
studied well, oligodendrocytes play active roles in PD due
to its important role in myelin formation. Indeed, the α-syn
accumulation in oligodendrocytes is related to myelin loss. More
studies on the relationship between PD and oligodendrocytes
are needed.

CONCLUSION AND DISCUSSION

Although α-syn induces the response of various cells in CNS,
recent studies also suggest that microglia and astrocytes play
a minor role in the development of PD (Vizziello et al.,
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2021), the neurons themselves are more related to PD. The
microglia and astrocytes play the role in regulating the
neuroinflammatory response induced by α-syn. The astrocytes
secrete α-syn aggregates, most of which are engulfed and
cleared by microglia. The astrocytes are also involved in
oligodendrocytes. The astrocytes are converted into functional
neurons. The roles and the interaction among microglia and
astrocytes, oligodendrocytes, and neurons in PD are included
in Figure 3.

Understanding what happened in the neurons prior to the
generation of α-syn, and transferring in multi cells is an attractive
research direction on PD. The research about the initiation
of PD will help to understand the molecular mechanism of
PD accurately and has significance in clinically preventing and
treating it. However, because PD symptoms are not significant
during this period, research may be difficult. Thus, paying

attention to glia roles in the CNS is important for preventing
PD early.
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